
 POET:
Parameterized Optimizations

For Empirical Tuning

Qing Yi
University of Texas at San Antonio

2

Extracting high performance
through empirical tuning
 Producing high-performance applications is hard

 It is increasingly hard to predict
 how machines will behave
 how applications will behave
 how compilers will behave
 how the network will behave ...

 The promising solution: empirical tuning
 Experiment with different transformations to the

application
 Collect performance feedback
 Adjust transformations and re-experiment

2

3

Empirical tuning systems
 Domain-specific libraries

 Many highly successful
 ATLAS, PHiPAC, FFTW, SPIRAL...

 Time consuming: needs to manually orchestrate specialized
optimizations

 Not reusable across different problem domains

 Empirical optimizing compilers
 Compilers trying to automate the tuning process
 Hard to incorporate customized optimizations
 Does not allow human intervention in general

 POET is trying to provide
 A tool box for programmers to easily build high-performance

kernels
 A communication interface among all components of a tuning

system 3

Empirical tuning approach

 Analysis engine/ Human
 Understand application and machine, choose optimizations to apply

 Search engine exploits the configuration space
 Use info from program analysis (encoded in configuration space)

 Transformation engine
 Transforms application code based on transformation script and

search configuration

Search Engine

Application

machine
Optimzied code

Final program

Performance

Parameterized
transformation
scripts

Transformation
engine

Configuration space

Parameter
values

Analysis Engine

The POET Language

 Language for expressing result of analysis engine
 Parameterized code transformation scripts
 Parameterized configuration space

 Interpreted by search engine and transformation engine
 Configuration space interpreted by independent search engine

 Sequence of parameters, constraints on parameter values
 Transformations applied by transformation engine

 Configuration determined by search engine

Search Engine

Application

machine
Final program

Parameterized
transformation
scripts

Transformation
engine

Configuration space

Parameter
values

Analysis Engine

Flexibility, Modularity and
Efficiency
 Portability --- applications can be shipped in POET

representation
 Tuned by independent search and transformation engines on

different platforms
 Efficiency --- both transformation and search engines are

light-weight
 Heavy weight analysis optimizations done only once in

analysis and optimization engine
 Result parameterized to be tuned many times on different

platforms
 Flexibility --- analysis engine and transformation/search

engine can reside on different machines
 Analysis engine not involved in the tuning process
 Analysis and tuning research is separate and independent
 Different optimizations can be combined through an external

common language

POET: Describing Structure of
Input computation

 POET: scripting language to
be embedded in arbitrary
languages
 Syntax of source

language described in a
collection of code
templates

 Support strings, integers,
lists, tuples, tables, AST
based on code templates

 Support
loops,conditionals,
recursion

 Predefined library of
code transformation
routines

 Analysis engine
 Decompose application

into code templates
 Specify transformations

<code Nest pars=(loop, body) >
@loop@ {
 @body@
}
</code>

<code Sequence pars=(s1,s2) >
@s1@
@s2@
</code>

<code Loop pars=(i,start,stop,step) >
@init=(if start=="" then "" else (i "=" start));
 test=(if stop=="" then "" else (i "<=" stop));
 incr=(if step=="" then "" else (i "+=" step));
@for (@init@; @test@; @incr@)
</code>

Example: code templates for C in POET

POET: Describing Structure of
Input computation

 //@; BEGIN(gemm)
void ATL_USERMM(const int M, const int N, const int K,
 const double alpha, const double *A, const int lda,
 const double *B, const int ldb, const double beta,
 double *C, const int ldc) //@=>_:Exp
{ //@; BEGIN(_)
 int i, j, l; //@=>gemmDecl:Stmt; BEGIN(gemmBody)
 for (j = 0; j < N; j += 1) //@ =>loopJ:Loop BEGIN(nest3)
 { //@; BEGIN(body3)
 for (i = 0; i < M; i += 1) //@=>loopI:Loop BEGIN(nest2)
 { //@;BEGIN(body2) BEGIN(parse)
 C[j*ldc+i] = beta * C[j*ldc+i]; //@END(parse) =>_:Stmt
 for (l = 0; l < K; l +=1) //@=>loopL:Loop BEGIN(nest1)
 { //@;BEGIN(parse)
 C[j*ldc+i] += alpha * A[i*lda+l] * B[j*ldb+l]; //@END(parse) =>stmt1:Stmt
 } //@END(nest1:Nest) END(body2:Sequence)
 } //@END(nest2:Nest) END(body3:Nest)
 } //@END(nest3:Nest) END(gemmBody:Nest) END(_:Sequence)
} //@END(gemm:Function)

Example: the input specification for dgemm

Define transformations in POET
<xform Stripmine pars=(inner,bsize,outer)
 tune=(unroll=0,split=0)
 output=(_nvars,_bloop,_tloop,_cloop,_body)>
 switch outer {
 case inner : ("","","","",inner)
 case Loop#(i,start,stop,step):
 default:
 }
</xform>

<xform BlockHelp
 pars=(bloop,tloop,rloop,bbody,cbody,cloop)>
 if (bloop == "") ... <*base case*>...
 else { ...<*recursively call BlockHelp*>... }
</xform>

<xform BlockLoops
 pars=(inner,outer,decl,input)
 tune=(bsize=16, split=0, unroll = 0) >
 ... = Stripmine[unroll=unroll,split=split]
 (inner, bsize,outer);
 ... call BlockHelp modify input ...
</xform>

 POET is a dynamic
functional language
designed for the ease of
writing code
transformations
 Supports pattern

matching, code
traversal,
replacement, and
duplication

 Support control flows
and recursion

 support auto tracing
of code fragments
going through
transformations

 Libraries to support most
existing code
transformations known
to be important

POET: What Analysis Engine
Needs to Write?

<parameter SSELEN=16, SSENO=16 />
<parameter mu=6, nu=1, ku=36, NB=36, MB=36, KB = 36, PF=1 />

<trace nest3,loopJ,body3,nest2,loopI,body2,
 nest1,loopL,stmt1,gemm,gemmDecl,gemmBody/>

<define Specialize DELAY {
 if (SP) {
 REPLACE("N",NB,loopJ); REPLACE("M",MB,loopI); REPLACE("K",KB,loopL);
 REPLACE("lda",MB, gemmBody); REPLACE("ldb",NB, gemmBody);
 if (alpha == 0) { REBUILD(REPLACE("alpha",1, gemmBody) }
} } />

<define nest3_UnrollJam DELAY {
 if (mu > 1 || nu > 1) {
 UnrollJam[factor=(nu mu)](nest1,nest3,gemmBody);
} } />

<define nest1_Unroll DELAY { if (ku > 1) {
 UnrollLoops[factor=ku](stmt1,nest1,body2);
} }/>
......

POET: Applying Transformations
.......

<output dgemm_kernel.c (
 TRACE gemm;
 APPLY Specialize;
 APPLY A_ScalarRepl;
 APPLY nest3_UnrollJam;
 APPLY B_ScalarRepl;
 APPLY C_ScalarRepl;
 APPLY array_ToPtrRef;
 APPLY Abuf_SplitStmt;
 APPLY body2_Vectorize;
 APPLY array_FiniteDiff;
 APPLY body2_Prefetch;
 APPLY nest1_Unroll;
 gemm
) />

� Writing a POET script
� Define transformation

parameters
� Define the input

computation
� Define tracing variables
� Define each

transformation
independently

� Apply transformations
and output

Empirical tuning using POET

Compared to empirical tuning using a source-to-source loop optimizer
Collaborated work with You, Seymour (UTK), Quinlan and Vuduc (LLNL)

Automatic production of
ATLAS library kernels
 Library kernels are

 Computational intensive routines
 invoked by higher-level procedures
 Assumptions can be made about pre-applied optimizations, e.g.,

specialization on matrix sizes, array copy

 Using POET to automatically produce ATLAS library kernels
 Define the input computation in C with POET annotations

 Define global variables to trace fragments to be optimized
 Define a collection of potential optimizations independently

 Invoke the optimizations and output
 Parameterization: precision of kernel, how to apply optimizations

 Automatically produced ATLAS kernels: gemm, gemv, ger
 Encoded the relevant ATLAS optimizations in POET

 specialization, unroll-and-jam, loop unroll, scalar repl, strength
reduction, SSE vectorization

13

Experimental Design

14

Platform Compiler Flags

2.66GHz
Core2Duo

icc 9.1

gcc 4.0.1

-xP -msse3 -O3 -mp1 -fomit-frame-pointer

-mfpmath=sse -msse3 -O2 -m64 -fomit-frame-pointer

2.2GHz Athlon
64 X2

gcc 4.2.0 -mfpmath=387 -falign-loops=4 -fomit-frame-pointer -O2

precision scalar Unit vector Unit scalar Unit vector Unit

single 5320 21280 4400 8800

double 5320 10640 4400 4400

Core2Duo Peak MFLOPS Athlon-64 X2 Peak MFLOPS

Peak performance of machines

Collaborated work with Clint WhaleyATLAS version 3.7.30;

Result for Level-3 BLAS

15

gcc
+ref

icc
+ref

ATLAS
gen

ATLAS
full

POET
+ref

gcc
+ref

ATLA
S gen

ATLAS
full

POET
+ref

 571/
2.7%

 6226/
29.3%

4730/
22.2%

13972/
65.6%

15048/
70.7%

1009/
11.5%

 4093/
46.5%

 7651/
86.9%

6918/
78.6%

649/
6.1%

3808/
35.8%

4418/
41.5%

 8216/
77.2%

 7758/
72.9%

 939/
21.3%

 3737/
84.9%

 4009/
91.1%

 3754/
85.3%

 Core2Duo MFLOPS Athlon-64 MFLOPSMFLOP/
%PEAK

sgemmK

dgemmK

PEAK: using vector (SSE) units

Result for Level-2 BLAS
gcc+ref icc

+ref
ATLAS
full

POET
+ref

gcc+ref ATLAS
full

POET
+ref

sgerK 1230/
5.7%

2927/
13.7%

3751/
17.6%

 3400/
15.9%

 639 /
7.3%

 1005/
11.4%

 962/
10.9%

dgerK 439/
4.1%

438/
4.1%

 462/
4.3%

 519/
4.9%

 411/
9.3%

 518/
11.8%

 500/
11.4%

sgemvTK 556/
2.6%

1826/
8.6%

1752/
8.2%

 2171/
10.2%

 835/
9.5%

 1389/
15.8%

 2056/
23.4%

dgemvTK 556/
5.2%

 574/
5.4%

 835/
7.8%

 1079/
10.1%

 579/
13.2%

 739/
16.8%

 1049/
23.8%

sgemvNK 438/
2.1%

 859/
4.0%

 1838/
8.6%

 2097/
9.8%

 529/
6.0%

 1185/
13.5%

 1986/
22.6%

dgemvNK 382/
3.6%

 574/
5.4%

 939/
8.8%

 1069/
10.0%

 408/
9.3%

 799/
18.2%

 902/
20.5%

 Core2Duo MFLOPS/ %PEAK Athlon-64 MFLOPS/ %PEAK

Improvement For LAPACK
(Core2Duo)

17

0

2,375

4,750

7,125

9,500

100 200 300 400 500 600 700 800 900 1000
SGELS-ATL SGELS+POET
DGELS-ATL DGELS+POET

MFLOPS

Improvement For LAPACK
(Athlon X2)

18

0

1,125

2,250

3,375

4,500

100 200 300 400 500 600 700 800 900 1000
SGELS-ATL SGELS+POET
DGELS-ATL DGELS+POET

MFLOPS

Summary
 POET targets

 General-purpose compiler transformations
 Separate transformation from program analysis

 They are separated within compilers anyway
 Each transformation:replace an AST fragment with a new one

 Parameterized interface for applying transformations
 Loop fusion, interchange, blocking, unroll-and-jam, unrolling,

scalar replacement, array copy, SIMD vec., prefetching,
strength reduction ...

 Domain-specific transformations
 Equivalent algorithms that might return different results

 precision of floating point numbers, error analysis
 Using POET to define customized transformations

 Write transformation routines
 Can operate on high-level concepts

POET in Empirical Tuning
 Compilers/analyzers => POET transformation engine

 Compilers/analyzers
 Discover performance-critical routines; apply outlining;

insert POET computation annotations
 Discover profitable optimizations; produce parameterized

transformation scripts (invocations to POET libraries)
 Export program analysis results to POET

 Dependence constraints, insight about programs
 Information useful to the empirical search engine

 POET transformation engine
 Interpret the POET scripts; apply transformations; output result

 POET transformation engine => Empirical tuning
 Search driver decides configuration of transformation parameters
 POET transformation engine acts as the code generator

