POET:

Parameterized Optimizations
For Empirical Tuning

Qing Yi
University of Texas at San Antonio

Extracting high performance
through empirical tuning

O Producing high-performance applications is hard
= Tt is increasingly hard to predict
how machines will behave
how applications will behave
how compilers will behave
how the network will behave ...

O The promising solution: empirical tuning

= Experiment with different transformations to the
application

= Collect performance feedback
= Adjust transformations and re-experiment

Empirical tuning systems

O Domain-specific libraries
Many highly successful
ATLAS, PHiPAC, FFTW, SPIRAL...

Time consuming: needs to manually orchestrate specialized
optimizations

Not reusable across different problem domains
O Empirical optimizing compilers

= Compilers trying to automate the tuning process
= Hard to incorporate customized optimizations
= Does not allow human intervention in general

O POET is trying to provide

= A tool box for programmers to easily build high-performance
kernels

= A communication interface among all components of a tuning
system 3

Application _

Analysis Engine

Configuration space

Parameterized
transformation

scripts

Transformation

1

Final program

engine

<

Parameter
values

A 4

Search Engine

machine

Optimzied code

O Analysis engine/ Human
Understand application and machine, choose optimizations to apply

O Search engine exploits the configuration space
Use info from program analysis (encoded in configuration space)

O Transformation engine

Transforms application code based on transformation script and
search configuration

Performance

inati : : Configuration space
Application _, | Analysis Engine 0 P

Parameterized
transformation
scripts

Parameter

: values v___
Transformation < Search Engine

1 engine

Final program

» machine

O Language for expressing result of analysis engine
Parameterized code transformation scripts
Parameterized configuration space

O Interpreted by search engine and transformation engine

Configuration space interpreted by independent search engine
Sequence of parameters, constraints on parameter values

Transformations applied by transformation engine
Configuration determined by search engine

O Portability --- applications can be shipped in POET
representation

Tuned by independent search and transformation engines on
different platforms

O Efficiency --- both transformation and search engines are
light-weight

Heavy weight analysis optimizations done only once in
analysis and optimization engine

Result parameterized to be tuned many times on different
platforms

O Flexibility --- analysis engine and transformation/search
engine can reside on different machines

Analysis engine not involved in the tuning process
Analysis and tuning research is separate and independent

Different optimizations can be combined through an external
common language

POET: Describing Structure of
Input computation

Example: code templates for C in POET

<code Nest pars=(loop, body) >
@loop@ {

@body@
by

</code>

<code Sequence pars=(sl1,s2) >
@sl1@

@s2@

</code>

<code Loop pars=(i,start,stop,step) >
@init=(if start=="" then "" else (i "=" start));
test=(if stop=="" then "" else (i "<=" stop));
incr=(if step=="" then "" else (i "+=" step));
@for (@init@; @test@; @incr@)

</code>

O POET: scripting language to
be embedded in arbitrary
languages

= Syntax of source
language described in a
collection of code
templates

Support strings, integers,
lists, tuples, tables, AST
based on code templates

Support
loops,conditionals,
recursion

Predefined library of
code transformation
routines

O Analysis engine

= Decompose application
into code templates

= Specify transformations

Example: the input specification for dgemm

{

inti,j, I;
for(j=0;J<N;j+=1) //@ =>loopl:Loop BEGIN(nest3)

{

for(i=0;i<M;i+=1)

{

//@; BEGIN(gemm)
void ATL_USERMM(const int M, const int N, const int K,

const double alpha, const double *A, const int Ida,
const double *B, const int Idb, const double beta,

C

for(1=0;1<K; 1 +=1)

{

//@=>_:Exp

//@; BEGIN(_)

double *C, const int Idc)
//@=>gemmbDecl:Stmt; BEGIN(gemmBody)

//@; BEGIN(body3)
//@=>loopl:Loop BEGIN(nest2)
//@;BEGIN(body2) BEGIN(parse)
[j*ldc+i] = beta * C[j*ldc+i]; //@END(parse) =>_:Stmt
//@=>loopL:Loop BEGIN(nestl1)

//@;BEGIN(parse)
C[j*ldc+i] += alpha * A[i*Ilda+I] * B[j*Idb+1]; //@END(parse) =>stmtl:Stmt
//@END(nestl:Nest) END(body2:Sequence)

//@END(nest2:Nest) END(body3:Nest)
//@END(nest3:Nest) END(gemmBody:Nest) END(_:Sequence)
//@END(gemm:Function)

<xform Stripmine pars=(inner,bsize,outer)
tune=(unroll=0,split=0)

O POET is a dynamic

output=(_nvars,_bloop,_tloop,_cloop,_body)> functional language
switch outer { designed for the ease of

Case inner : ("","","“,"",inner) Writing COde.

case Loop#(i,start,stop,step): transformations

default: Supports pattern

¥ matchln?, code
</xform> traversal,

replacement, and
<xform BlockHelp duplication

pars=(bloop,tloop,rloop,bbody,cbody,cloop)>
if (bloop == "") ... <*base case*>... Support control flows

else { ...<*recursively call BlockHelp*>... } and recursion
</xform> support auto tracing
of code fragments
<xform BlockLoops _ going through

pars=(inner,outer,decl,input) transformations

tune=(bsize=16, split=0, unroll = 0) > ib i
... = Stripmine[unroll=unroll,split=split] Libraries to support most

(inner, bsize,outer); eXiSting COd.e
... call BlockHelp modify input ... transformations known

</xform> to be important

POET: What Analysis Engine
Needs to Write?

<parameter SSELEN=16, SSENO=16 />
<parameter mu=6, nu=1, ku=36, NB=36, MB=36, KB = 36, PF=1 />

<trace nest3,loop],body3,nest2,loopl,body?2,
nestl,loopL,stmtl,gemm,gemmDecl,gemmBody/>

<define Specialize DELAY {
if (SP) {
REPLACE("N",NB,loop]); REPLACE("M",MB,loopl); REPLACE("K",KB,loopL);
REPLACE("Ida",MB, gemmBody); REPLACE("Idb",NB, gemmBody);
if (alpha == 0) { REBUILD(REPLACE("alpha",1, gemmBody) }
> r/>

<define nest3_UnrollJam DELAY {
if(mu>1]||nu>1){
UnrollJam[factor=(nu mu)](nestl,nest3,gemmBody);

F />

<define nestl_Unroll DELAY { if (ku > 1) {
UnrollLoops[factor=ku](stmtl,nestl,body?2);

POET: Applying Transformations

<output dgemm_kernel.c (
TRACE gemm;
APPLY Specialize;
APPLY A_ScalarRepl;
APPLY nest3_UnrollJam;
APPLY B_ScalarRepl;
APPLY C_ScalarRepl;
APPLY array_ToPtrRef;
APPLY Abuf_SplitStmt;
APPLY body2_Vectorize;
APPLY array_FiniteDiff;
APPLY body2_Prefetch;
APPLY nestl_Unroll;
gemm

) />

O Writing a POET script

Define transformation
parameters

Define the input
computation

Define tracing variables
Define each

O

O

transformation
independently

Apply transformations
and output

Empirical tuning using POET

Code Generation Time

' ' Lor:-meces'sor —_—
POET -——#—— —

£
=
-
o
2
[FE]

e e e e T e B e B B e e e T S TR b

0 | I 1 1 | |
o 20 40 60 &80 100 120 140

Blocking Amount
Compared to empirical tuning using a source-to-source loop optimizer
Collaborated work with You, Seymour (UTK), Quinlan and Vuduc (LLNL)

Automatic production of
ATLAS library kernels

O Library kernels are
= Computational intensive routines
= invoked by higher-level procedures

= Assumptions can be made about pre-applied optimizations, e.qg.,
specialization on matrix sizes, array copy

O Using POET to automatically produce ATLAS library kernels
= Define the input computation in C with POET annotations
Define global variables to trace fragments to be optimized
= Define a collection of potential optimizations independently
Invoke the optimizations and output
= Parameterization: precision of kernel, how to apply optimizations

O Automatically produced ATLAS kernels: gemm, gemv, ger

= Encoded the relevant ATLAS optimizations in POET

specialization, unroll-and-jam, loop unroll, scalar repl, strength
reduction, SSE vectorization

Platform

Compiler

Flags

2.66GHz
Core2Duo

icc 9.1

-XP -msse3 -03 -mp1l -fomit-frame-pointer

gcc 4.0.1

-mfpmath=sse -msse3 -02 -m64 -fomit-frame-pointer

2.2GHz Athlon
64 X2

gcc 4.2.0

-mfpmath=387 -falign-loops=4 -fomit-frame-pointer -02

Peak performance of machines

Core2Duo Peak MFLOPS

Athlon-64 X2 Peak MFLOPS

precision

scalar Unit

vector Unit

scalar Unit

vector Unit

single

5320

21280

4400

8800

double

5320

10640

4400

4400

ATLAS version 3.7.30; Collaborated work with Clint Whaley

14

Result for Level-3 BLAS

MFLOP/

%PEAK

Core2Duo MFLOPS

Athlon-64 MFLOPS

sgemmK

icC
+ref

ATLAS
gen

ATLAS
full

POET
+ref

gcc
+ref

ATLA
S gen

ATLAS
full

6226/
29.3%

4730/
22.2%

13972/
65.6%

15048/
70.7%

1009/
11.5%

4093/
46.5%

7651/
86.9%

dgemmK

3808/
35.8%

4418/
41.5%

8216/
77.2%

7758/
72.9%

939/
21.3%

3737/
84.9%

4009/
91.1%

PEAK: using vector (SSE) units

Result for Level-2 BLAS

Core2Duo MFLOPS/ %PEAK

Athlon-64 MFLOPS/ %PEAK

gcc+ref

icC
+ref

ATLAS
full

POET
+ref

gcc+ref

ATLAS
full

POET
+ref

sgerkK

1230/
5.7%

2927/
13.7%

3751/
17.6%

3400/
15.9%

639 /
7.3%

1005/
11.4%

962/
10.9%

dgerK

439/
4.1%

438/
4.1%

462/
4.3%

519/
4.9%

411/
9.3%

518/
11.8%

500/
11.4%

sgemvTK

556/
2.6%

1826/
8.6%

1752/
8.2%

2171/
10.2%

835/
9.5%

1389/
15.8%

2056/
23.4%

dgemvTK

556/
5.2%

574/
5.4%

835/
7.8%

1079/
10.1%

579/
13.2%

739/
16.8%

1049/
23.8%

sgemvNK

438/
2.1%

859/
4.0%

1838/
8.6%

2097/
9.8%

529/
6.0%

1185/
13.5%

1986/
22.6%

dgemvNK

382/
3.6%

574/
5.4%

939/
8.8%

1069/
10.0%

408/
9.3%

799/
18.2%

902/
20.5%

Improvement For LAPACK
(Core2Duo)

MFLOPS

9,500

7,125

2375 %

, |
I00 200 300 400 500 600 700 800 900 1000
@ SGELS-ATL SGELS+POET
© DGELS-ATL DGELS+POET 17

Improvement For LAPACK
(Athlon X2)

MFLOPS

4,500

3,375

2,250 ?/,/\/M‘
l,125

0

I00 200 300 400 500 600 700 800 900 1000
@ SGELS-ATL SGELS+POET
© DGELS-ATL DGELS+POET 18

O POET targets

General-purpose compiler transformations

Separate transformation from program analysis
*= They are separated within compilers anyway
= Each transformation:replace an AST fragment with a new one

Parameterized interface for applying transformations

= Loop fusion, interchange, blocking, unroll-and-jam, unrolling,
scalar replacement, array copy, SIMD vec., prefetching,
strength reduction ...

Domain-specific transformations
Equivalent algorithms that might return different results
= precision of floating point numbers, error analysis

Using POET to define customized transformations
= Write transformation routines
= Can operate on high-level concepts

POET in Empirical Tuning

O Compilers/analyzers => POET transformation engine
= Compilers/analyzers

Discover performance-critical routines; apply outlining;
insert POET computation annotations

Discover profitable optimizations; produce parameterized
transformation scripts (invocations to POET libraries)

Export program analysis results to POET
= Dependence constraints, insight about programs
= Information useful to the empirical search engine

= POET transformation engine
Interpret the POET scripts; apply transformations; output result
O POET transformation engine => Empirical tuning
= Search driver decides configuration of transformation parameters
= POET transformation engine acts as the code generator

