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Positions and Propositions
 Today’s autotuning work does not address the challenges of

petascale
 Not yet. Many components are still missing.

 How do we measure success for tuning?
 Practical vs. theoretical percentage of peak
 Does the produced code achieve close to peak performance?

How hard is it to achieve that?
 What problems should we look at?

 All the components that are required to automate the process
of getting best perf.

 Optimizations + search + abstraction
 Self-tuned libraries will out-perform compilers most of the time ---

because they have more knowledge (people are more smart than
tools?)

 Compilers are better at automation, but to catch libraries, it needs
to better understand abstractions/machines/optimizations
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Empirical tuning systems
 Domain-specific auto-tuning systems

 Successful and widely used: ATLAS, PHiPAC, FFTW, SPIRAL...
 Manually orchestrate specialized optimizations

 Not reusable across different problem domains

 Empirical optimizing compilers
 Target general-purpose applications

 Results include tuning a wide variety of optimizations on
different platforms

 Hard to incorporate customized optimizations
 Domain-specific knowledge no longer available

 What about combining the two approaches?
 Developers + compilers + libraries + tuning(machines)

 Communication is the key
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A Collaborative Infrastructure
 Developers -> compilers (what’s missing in existing

programming languages?)
 What to optimize? what to tune? How to parallelize the code

(data partition, communication/synchronization,..)
 Domain/algorithmic specific knowledge (what operations are

distributive? What dependences can be ignored,…)
 Compilers -> Developers (a feedback language/GUI?)

 What has the compiler discovered and what does it plan to do?
 Compilers should consult developers sometimes on important

decisions
 Libraries -> compilers (an annotation language?)

 What is interface of each routine? How to use them?
 Developers/compilers -> Tuning systems (a parameterized

transformation/search language)
 What are the tuning parameters? How to apply optimizing

transformations correspondingly? How to search?
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POET Is A Transformation Scripting
Language
 A communication interface between developers/compilers

and empirical-tuning systems
 A language for building code generators/transformation

engines in auto-tuning

 Using POET, developers (specialists) can easily define and
tune domain-specific optimizations
 An optimization script for each high-performance kernel
 Programable control for all optimizations

 Compilers can produce a POET transformation script as
output instead of producing a single optimized code
 POET output includes program analysis results, what

transformations to apply, and what to tune

 Developers can see what the compiler is doing and modify
POET output if desired
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Empirical tuning approach

 Analysis engine: developers or compilers or both of them
 Understand application and machine, choose optimizations to apply

 Search engine exploits the configuration space
 Use info from program analysis (encoded in configuration space)

 POET Transformation engine
 Interpret the POET scripts: where and how to apply transformations
 Produce optimized code based on transformation script and

search configuration

Search Engine

Application

machine
Optimzied code

Final program

Performance

POET transform
scripts
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(developer/compiler)
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Flexibility, Modularity and Efficiency
 Portability --- applications can be shipped in POET

representation
 Tuned by independent search and transformation engines on

different platforms
 Efficiency --- both transformation and search engines are

light-weight
 Heavy weight analysis optimizations done only once in

analysis and optimization engine
 Result parameterized to be tuned many times on different

platforms
 Flexibility --- analysis engine and transformation/search

engine can reside on different machines
 Analysis engine not involved in the tuning process
 Analysis, parameterization, and tuning research are separate

and independent
 Different optimizations can be combined through an external

common language



cscads'08 8

Going all the way
 An integrated

optimization
development
environment
 Analysis engines

(compilers) interact
with developers

 Use the ROSE
compiler at LLNL

 Analysis results
expressed in POET

 can be modified
by developers

 POET
transformations
empirically tuned
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The POET Language
 Language for expressing parameterized program transformations

 Parameterized code transformations and configuration space
 Transformations controlled by tuning parameters
 Configuration space: parameters and constraints on their values

 Interpreted by search engine and transformation engine

 Language requirements (characteristics):
 Able to parse/transform/output arbitrary languages

 Have tried subsets of C/C++, Cobol, Java; going to add Fortran
 Able to express arbitrary program transformations

 Support all optimizations by compilers or developers
 Have achieved comparable performance to ATLAS(LCSD07)
 Have implemented a large collection of compiler optimizations
 Currently adding multi-threading transformations

 Able to easily compose different transformations
 Built-in tracing capability that allows transformations to be defined

independently and easily reordered
 Empirical tuning of transformation ordering (LCPC08)

 Of course, parameterization is built-in and well supported
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Language Summary
 POET stands for Parameterized Optimizations for Empirical Tuning

 Designed for empirical tuning of compiler optimizations
 Automated code generation and transformation

 Focused on parameterization of compiler transformations
 Includes many difficult transformations on AST

 Supported data types
 strings, integers, lists, tuples, associative tables, code templates (AST

nodes)
 Support arbitrary control flow

 loops, conditionals, function calls, recursion
 Support Built-in operations for code (AST) transformation

 Pattern-matching based traversal, replacement and query
 Duplication and permutation of code fragments
 Tracing of a sequence of transformations on a single AST fragment
 Parameterization and variation of transformation configurations

 Predefined library of code transformation routines
 Currently support many compiler transformations
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POET: Describing Syntax of
Programming Languages

     POET can be used to
parse/unparse arbitrary
languages

 Syntax of source language
described in a collection of
code templates

 Code templates
 Used in parsing/unparsing

 Data structures used in IR
(AST)

 Top-down recursive
descent parsing of the
input program

 Can insert annotations in
the input to speed up
parsing

<code FunctionCall pars=(func,args) >
@func@(@args@)
</code>

<code FunctionDecl
          pars=(decl:(ParseTypeDecl[stop="("]),
                 params : TUPLE(ParseTypeDecl[stop=(","|")")])) >
@decl@(@params@)
</code>

<code FunctionDefn
         pars=(decl : FunctionDecl,
                    body : ((LIST(Nest|Stmt)|_),_))>
@decl@
{
  @body@
}

</code>

Example code templates for C 
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Parsing Functions
 Some language

syntax may be too
complex to fully
express using code
templates
 Can define parsing

functions that
perform top-down
parsing explicitly

 Example: parse type
declarations in C

 Not required to parse
an entire language
 Can selectively

parse fragments
that transformations
care

……
<xform ParseTypeDecl pars=(input) stop="”
                                           output=(result,restOfInput) >
switch (input) {
case (first second) :
    if (first : stop) { ("", input) }
    else  {
       (secondResult,rest) = ParseTypeDecl(second);
       if  (secondResult == "") { (first, rest) }
       else if (secondResult : TypeDecl#(secondType,var)) {
            ((secondType == " ")? (TypeDecl#(first, var),rest)
                       : (TypeDecl#((first secondType),var), rest))}
       else if (first == " " || first == "*" || first == "&")
                {  (TypeDecl#(first, secondResult), rest) }
       else  { ( (first secondResult), rest) }
   }
default:
   (input : stop)? ("",input) : (input, "")
}
</xform>
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POET: Define transformations
<xform Stripmine pars=(inner,bsize,outer)
                              unroll=0  split=0
  output=(_nvars,_bloop,_tloop,_cloop,_body)>
   switch outer {
      case inner : ("","","","",inner)
      case Loop#(i,start,stop,step): ......
      default:  ......
   }
</xform>

<xform BlockHelp
   pars=(bloop,tloop,rloop,bbody,cbody,cloop)>
  if (bloop == "") ... <*base case*>...
  else { ...<*recursively call BlockHelp*>... }
</xform>

<xform BlockLoops
       pars=(inner,outer,decl,input)  factor=16
       cleanup=0  unroll = 0 tDecl=“” trace=“”>
     ... = Stripmine[unroll=unroll,split=split]
                             (inner, bsize,outer);
     ... call BlockHelp ...  ... modify input ...
</xform>

 POET is designed to ease
the construction of code
transformations
 Supports pattern

matching, code
traversal,
replacement,
duplication,
permutation, …

 Support control flows
and recursion

 support auto tracing
of code fragments
going through
transformations

 Libraries to support
existing compiler
transformations known
to be important
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Applying Transformations
 Writing a POET

script
 Define

transformation
parameters

 Define the input
computation

 Define tracing
variables

 Define each
transformation
independently

 Apply
transformations
and output

<parameter fname=STRING[""] "input file name"/>
<parameter pre=("s","d")["d"] "Whether to
compute at single- or double- precision" />
<parameter NB=1.._[62], MB=1.._[72], KB =
1.._[72] "Blocking size of the matrices"/>

<input target=gemm code=“Cfront.code”
type=FunctionDefn file=fname/>

<define Specialize DELAY { … }/>
.......
<output dgemm_kernel.c (   TRACE gemm;
APPLY Specialize;
APPLY A_ScalarRepl;    APPLY nest3_UnrollJam;
APPLY B_ScalarRepl;     APPLY C_ScalarRepl;
APPLY array_ToPtrRef;   APPLY Abuf_SplitStmt;
APPLY body2_Vectorize;    APPLY array_FiniteDiff;
APPLY body2_Prefetch;   APPLY nest1_Unroll;
gemm     ) />
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Example
Tuning Transformation Orders

 PERM1: permutation of loop-unroll&jam with scalar
replacement for A,B,C

 Best case:SR-A -> UJ -> SR-B + SR-C

Performance Sensitivity to PERM1 on C2D (dgemm)
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Summary and Ongoing work
 Proposition: separate optimization concerns from algorithm

design
 Start from a simple algorithm specification/implementation

 In C/C++ or a domain-specific language
  Use an optimization environment/language to achieve high

performance through a sequence of code transformations
 Use auto-tuning for architecture sensitive transformations

 Stabilize POET for software optimization needs
 A language for addressing code generation/optimization needs of

software development
 Produce efficient implementations from high-level specifications

 Using POET to build high-performance kernels/benchmarks
 Going all the way in optimizations (parallelization,memory, registers)

 Auto-tuning of optimization spaces

 What does it take for a compiler to automatically produce the POET scripts?
What knowledge is missing? What abstraction is necessary?


