
cscads'08 1

 POET: Parameterized
Optimizations For Empirical

Tuning
Qing Yi

University of Texas at San
Antonio

cscads'08 2

Positions and Propositions
 Today’s autotuning work does not address the challenges of

petascale
 Not yet. Many components are still missing.

 How do we measure success for tuning?
 Practical vs. theoretical percentage of peak
 Does the produced code achieve close to peak performance?

How hard is it to achieve that?
 What problems should we look at?

 All the components that are required to automate the process
of getting best perf.

 Optimizations + search + abstraction
 Self-tuned libraries will out-perform compilers most of the time ---

because they have more knowledge (people are more smart than
tools?)

 Compilers are better at automation, but to catch libraries, it needs
to better understand abstractions/machines/optimizations

cscads'08 3

Empirical tuning systems
 Domain-specific auto-tuning systems

 Successful and widely used: ATLAS, PHiPAC, FFTW, SPIRAL...
 Manually orchestrate specialized optimizations

 Not reusable across different problem domains

 Empirical optimizing compilers
 Target general-purpose applications

 Results include tuning a wide variety of optimizations on
different platforms

 Hard to incorporate customized optimizations
 Domain-specific knowledge no longer available

 What about combining the two approaches?
 Developers + compilers + libraries + tuning(machines)

 Communication is the key

cscads'08 4

A Collaborative Infrastructure
 Developers -> compilers (what’s missing in existing

programming languages?)
 What to optimize? what to tune? How to parallelize the code

(data partition, communication/synchronization,..)
 Domain/algorithmic specific knowledge (what operations are

distributive? What dependences can be ignored,…)
 Compilers -> Developers (a feedback language/GUI?)

 What has the compiler discovered and what does it plan to do?
 Compilers should consult developers sometimes on important

decisions
 Libraries -> compilers (an annotation language?)

 What is interface of each routine? How to use them?
 Developers/compilers -> Tuning systems (a parameterized

transformation/search language)
 What are the tuning parameters? How to apply optimizing

transformations correspondingly? How to search?

cscads'08 5

POET Is A Transformation Scripting
Language
 A communication interface between developers/compilers

and empirical-tuning systems
 A language for building code generators/transformation

engines in auto-tuning

 Using POET, developers (specialists) can easily define and
tune domain-specific optimizations
 An optimization script for each high-performance kernel
 Programable control for all optimizations

 Compilers can produce a POET transformation script as
output instead of producing a single optimized code
 POET output includes program analysis results, what

transformations to apply, and what to tune

 Developers can see what the compiler is doing and modify
POET output if desired

cscads'08 6

Empirical tuning approach

 Analysis engine: developers or compilers or both of them
 Understand application and machine, choose optimizations to apply

 Search engine exploits the configuration space
 Use info from program analysis (encoded in configuration space)

 POET Transformation engine
 Interpret the POET scripts: where and how to apply transformations
 Produce optimized code based on transformation script and

search configuration

Search Engine

Application

machine
Optimzied code

Final program

Performance

POET transform
scripts

POET Transformation
engine

Configuration space

Parameter
values

Analysis engine
(developer/compiler)

cscads'08 7

Flexibility, Modularity and Efficiency
 Portability --- applications can be shipped in POET

representation
 Tuned by independent search and transformation engines on

different platforms
 Efficiency --- both transformation and search engines are

light-weight
 Heavy weight analysis optimizations done only once in

analysis and optimization engine
 Result parameterized to be tuned many times on different

platforms
 Flexibility --- analysis engine and transformation/search

engine can reside on different machines
 Analysis engine not involved in the tuning process
 Analysis, parameterization, and tuning research are separate

and independent
 Different optimizations can be combined through an external

common language

cscads'08 8

Going all the way
 An integrated

optimization
development
environment
 Analysis engines

(compilers) interact
with developers

 Use the ROSE
compiler at LLNL

 Analysis results
expressed in POET

 can be modified
by developers

 POET
transformations
empirically tuned

cscads'08 9

The POET Language
 Language for expressing parameterized program transformations

 Parameterized code transformations and configuration space
 Transformations controlled by tuning parameters
 Configuration space: parameters and constraints on their values

 Interpreted by search engine and transformation engine

 Language requirements (characteristics):
 Able to parse/transform/output arbitrary languages

 Have tried subsets of C/C++, Cobol, Java; going to add Fortran
 Able to express arbitrary program transformations

 Support all optimizations by compilers or developers
 Have achieved comparable performance to ATLAS(LCSD07)
 Have implemented a large collection of compiler optimizations
 Currently adding multi-threading transformations

 Able to easily compose different transformations
 Built-in tracing capability that allows transformations to be defined

independently and easily reordered
 Empirical tuning of transformation ordering (LCPC08)

 Of course, parameterization is built-in and well supported

cscads'08 10

Language Summary
 POET stands for Parameterized Optimizations for Empirical Tuning

 Designed for empirical tuning of compiler optimizations
 Automated code generation and transformation

 Focused on parameterization of compiler transformations
 Includes many difficult transformations on AST

 Supported data types
 strings, integers, lists, tuples, associative tables, code templates (AST

nodes)
 Support arbitrary control flow

 loops, conditionals, function calls, recursion
 Support Built-in operations for code (AST) transformation

 Pattern-matching based traversal, replacement and query
 Duplication and permutation of code fragments
 Tracing of a sequence of transformations on a single AST fragment
 Parameterization and variation of transformation configurations

 Predefined library of code transformation routines
 Currently support many compiler transformations

cscads'08 11

POET: Describing Syntax of
Programming Languages

 POET can be used to
parse/unparse arbitrary
languages

 Syntax of source language
described in a collection of
code templates

 Code templates
 Used in parsing/unparsing

 Data structures used in IR
(AST)

 Top-down recursive
descent parsing of the
input program

 Can insert annotations in
the input to speed up
parsing

<code FunctionCall pars=(func,args) >
@func@(@args@)
</code>

<code FunctionDecl
 pars=(decl:(ParseTypeDecl[stop="("]),
 params : TUPLE(ParseTypeDecl[stop=(","|")")])) >
@decl@(@params@)
</code>

<code FunctionDefn
 pars=(decl : FunctionDecl,
 body : ((LIST(Nest|Stmt)|_),_))>
@decl@
{
 @body@
}

</code>

Example code templates for C

cscads'08 12

Parsing Functions
 Some language

syntax may be too
complex to fully
express using code
templates
 Can define parsing

functions that
perform top-down
parsing explicitly

 Example: parse type
declarations in C

 Not required to parse
an entire language
 Can selectively

parse fragments
that transformations
care

……
<xform ParseTypeDecl pars=(input) stop="”
 output=(result,restOfInput) >
switch (input) {
case (first second) :
 if (first : stop) { ("", input) }
 else {
 (secondResult,rest) = ParseTypeDecl(second);
 if (secondResult == "") { (first, rest) }
 else if (secondResult : TypeDecl#(secondType,var)) {
 ((secondType == " ")? (TypeDecl#(first, var),rest)
 : (TypeDecl#((first secondType),var), rest))}
 else if (first == " " || first == "*" || first == "&")
 { (TypeDecl#(first, secondResult), rest) }
 else { ((first secondResult), rest) }
 }
default:
 (input : stop)? ("",input) : (input, "")
}
</xform>

cscads'08 13

POET: Define transformations
<xform Stripmine pars=(inner,bsize,outer)
 unroll=0 split=0
 output=(_nvars,_bloop,_tloop,_cloop,_body)>
 switch outer {
 case inner : ("","","","",inner)
 case Loop#(i,start,stop,step):
 default:
 }
</xform>

<xform BlockHelp
 pars=(bloop,tloop,rloop,bbody,cbody,cloop)>
 if (bloop == "") ... <*base case*>...
 else { ...<*recursively call BlockHelp*>... }
</xform>

<xform BlockLoops
 pars=(inner,outer,decl,input) factor=16
 cleanup=0 unroll = 0 tDecl=“” trace=“”>
 ... = Stripmine[unroll=unroll,split=split]
 (inner, bsize,outer);
 ... call BlockHelp modify input ...
</xform>

 POET is designed to ease
the construction of code
transformations
 Supports pattern

matching, code
traversal,
replacement,
duplication,
permutation, …

 Support control flows
and recursion

 support auto tracing
of code fragments
going through
transformations

 Libraries to support
existing compiler
transformations known
to be important

cscads'08 14

Applying Transformations
 Writing a POET

script
 Define

transformation
parameters

 Define the input
computation

 Define tracing
variables

 Define each
transformation
independently

 Apply
transformations
and output

<parameter fname=STRING[""] "input file name"/>
<parameter pre=("s","d")["d"] "Whether to
compute at single- or double- precision" />
<parameter NB=1.._[62], MB=1.._[72], KB =
1.._[72] "Blocking size of the matrices"/>

<input target=gemm code=“Cfront.code”
type=FunctionDefn file=fname/>

<define Specialize DELAY { … }/>
.......
<output dgemm_kernel.c (TRACE gemm;
APPLY Specialize;
APPLY A_ScalarRepl; APPLY nest3_UnrollJam;
APPLY B_ScalarRepl; APPLY C_ScalarRepl;
APPLY array_ToPtrRef; APPLY Abuf_SplitStmt;
APPLY body2_Vectorize; APPLY array_FiniteDiff;
APPLY body2_Prefetch; APPLY nest1_Unroll;
gemm) />

cscads'08 15

Example
Tuning Transformation Orders

 PERM1: permutation of loop-unroll&jam with scalar
replacement for A,B,C

 Best case:SR-A -> UJ -> SR-B + SR-C

Performance Sensitivity to PERM1 on C2D (dgemm)

0

1

2

3

4

5

1 3 5 8 10 13 15 17 20 22

PERM1 Value

P
e
rf

o
rm

a
n

c
e
 (

G
F
L
O

P
S

)

Colaborate
d work with
Apan
Qasem
(LCPC08)

cscads'08 16

Summary and Ongoing work
 Proposition: separate optimization concerns from algorithm

design
 Start from a simple algorithm specification/implementation

 In C/C++ or a domain-specific language
 Use an optimization environment/language to achieve high

performance through a sequence of code transformations
 Use auto-tuning for architecture sensitive transformations

 Stabilize POET for software optimization needs
 A language for addressing code generation/optimization needs of

software development
 Produce efficient implementations from high-level specifications

 Using POET to build high-performance kernels/benchmarks
 Going all the way in optimizations (parallelization,memory, registers)

 Auto-tuning of optimization spaces

 What does it take for a compiler to automatically produce the POET scripts?
What knowledge is missing? What abstraction is necessary?

