
Pinpointing Data Locality Problems
Using Data-centric Analysis

Xu Liu
XL10@rice.edu

Department of Computer Science
Rice University

Center for Scalable Application Development Software

CScADS Performance Tools Workshop August 2010 2

 Outline

• Introduction to data-centric analysis
• Implementation
• Experiments
• Conclusion

CScADS Performance Tools Workshop August 2010 3

Code-centric and data-centric

• Code-centric analysis
– Attribute metrics to statements
– Identify problematic statements, loops or subroutines

• Data-centric analysis
– Attribute metrics to data structures
– Identify problematic data structures

CScADS Performance Tools Workshop August 2010 4

Data-centric analysis is necessary

• Code-centric analysis is not enough
– Difficult to understand locality problems with data

• Example: A=B+C:
– Cannot tell which array is responsible for cache misses
– Does one array have a bad layout?
– Can one array’s access patterns be changed to increase locality?

• Data-centric analysis can provide more detail
– Attribute metrics to specific variables
– Data-centric optimization strategies

• Transform access pattern to shorten reuse distance
• Transform data layout to better support the usage pattern
• Adjust the allocation to address NUMA issues

– Uneven mapping of data to memory modules

CScADS Performance Tools Workshop August 2010 5

Related work
• StatCache

– Approach
• Wrap all load/store instructions
• Simulate memory hierarchy
• Compute reuse distance to find temporal locality problems

– Disadvantages:
• Assume fully associative caches, LRU replacement
• Large overhead and low accuracy, especially for shared caches

• Memphis
• Measure using AMD’s Instruction-based Sampling (IBS)
• Map metrics to static data
• Identify NUMA problems by monitoring remote accesses

– Disadvantages:
• Require user to add instrumentation to their source code
• Only associate measurements with static data
• Somewhat narrowly focused on NUMA problems

CScADS Performance Tools Workshop August 2010 6

 Outline

• Introduction to data-centric analysis
• Implementation
• Experiments
• Conclusion

CScADS Performance Tools Workshop August 2010 7

Introduction to AMD’s IBS

• Hardware provided by AMD Opteron cores
– Periodically tag the instruction and monitor its execution

• Record events (cache miss, TLB miss, etc.) and latencies
– Record precise IP at the sample point

• IBS fetch: select a fetch
– Monitor instruction cache and instruction TLB utilization
– Fetch latency

• IBS op: select an op
– Monitor data cache and data TLB utilization
– Effective address for load/store instructions
– Data load latency
– Branch information

CScADS Performance Tools Workshop August 2010 8

Data collection
• Data at allocation points

– Heap data
• Wrap malloc family functions

– Record memory ranges allocated
– Associate each data range with its allocation point

• Record of the call path of heap allocation
– Static data

• Use libelf to record address ranges for static data
– Record memory ranges allocated

• Data at IBS samples (only load/store op)
– Precise IP

• Unwind the call stack and record the call path
– Effective address touched by load/store instructions

• Associate the IBS sample to the allocation point
– Cache miss, cache miss latency, TLB miss, data location (local/remote L3

cache/memory)

CScADS Performance Tools Workshop August 2010 9

Measurement post-processing

• Post mortem
– Group all samples touching the same data structure
– Find the least common ancestor of these samples in the calling context

tree
• Display:

– Allocation point of data structures (for heap allocation)
– All uses of the data in the call paths from the least common ancestor
– Metrics

CScADS Performance Tools Workshop August 2010 10

Experimental results

• Hardware
– CPU: AMD Opteron family 10h (Barcelona)

• Applications
– S3D: direct numerical simulation of turbulent combustion

• Pathscale compiler
• Data structures are mostly allocated on the heap

– PFLOTRAN: model multi-scale, multi-phase, multi-component
subsurface reactive flows

• GNU compiler
• Data structures are mostly allocated on the heap

– Flash
• Intel compiler
• Data structures are mostly allocated statically (static data section)

CScADS Performance Tools Workshop August 2010 11

Conclusions

• Innovative method to pinpoint data locality problems
– Which data has bad performance

• Find data structure allocation and attribute all metrics to it
• Sort the metric values (latency, cache/TLB, NUMA info) of all data

structures
– Where does the poor performance happen

• Decompose metrics to each use in the call path
• Sort the uses of the data according to metric values

• Advantages
– Low overhead

• S3D: 24.0%, flash: 13.7%
– High accuracy

• No simulation
• No “skid”

• NOT confined to AMD Opteron: Intel Nehalem with PEBS

