
F

Scalasca components with reuse potential

M
it
g

lie
d

 d
e

r
H

e
lm

h
o

lt
z
-G

e
m

e
in

s
c
h

a
ft

July 21th 2008

Bernd Mohr, Felix Wolf

June 7th 2008

Outline

• Overview of Scalasca

• Components with reuse potential

 OPARI OpenMP source-code instrumenter

 MPI tracing wrappers and wrapper generator

 Compiler event adapters

 Library for efficient parallel file I/O

 Profile browser

• Ongoing and planned collaborations

June 7th 2008

• Started in January 2006

• Scalable performance-analysis toolset for parallel codes

 Emphasis on detection of wait states

• Designed for large-scale systems

such as IBM Blue Gene or Cray XT

• Funded through Helmholtz

Impulse and Networking Funds

• Developed in cooperation with the

University of Tennessee

• http://www.scalasca.org/

http://www.scalasca.org/

June 7th 2008

Functionality

• Integrated performance analysis procedure

 Runtime summaries (i.e., profiles)

 Overview of performance behavior

 Refinement of instrumentation

 In-depth study of application behavior via event traces

 Localization and quantification of wait states

 Switching between both options without recompilation or re-

linking

• Programming models supported

 MPI-1

 MPI-2 + other one-sided models (in progress)

 OpenMP (in progress)

June 7th 2008

Parallel pattern

search

Summary

report

Instrumenter

compiler /

linker

Pattern

report

Instrumented

executable

Instr.

target

application

Measurement

library

HWC

R
e

p
o

rt

m

a
n

ip
u

la
ti
o

n

Report

explorer

Report

explorer

Performance data flow

Local event

traces

Source

modules

Optimized measurement configuration

KOJAK

Pattern

report
Global trace

Property

trace

Exported

trace

Sequential

pattern search

Trace

browser

Merge

Conversion

= Third-party component

June 7th 2008

OPARI OpenMP source-code instrumenter

• Instruments Fortran, C, C++ OpenMP 2.5 codes with

POMP instrumentation calls

• Used by KOJAK, Scalasca, TAU, VampirTrace, ompP

• Not perfect, but works for us

• Ongoing work

 Removal of limitations

 Nested and dynamic threading

 Inter-compilation units dependencies

 Support for OpenMP 3.0 features

June 7th 2008

MPI tracing wrappers and wrapper generator

• Complete MPI-2 tracing wrappers

 Enter, Exit, Send, Recv, Collective, Get, Put events

 C/C++ and Fortran support

• Basis also for Vampirtrace

• Very flexible wrapper generator

• Testsuite

June 7th 2008

Compiler event adapters

• Many compilers have (sometimes unsupported and

undocumented) options for user function instrumentation

 GNU, Intel, PGI, Pathscale, IBM XL, Sun f90, NEC, Hitachi

• Used by KOJAK, Scalasca, Vampirtrace

• Compiler event adapter component

 Translates compiler specific events to generic enter/exit

 Function filtering at run-time

• Planned

 Function filtering at compile time (GNU, IBM XL)

June 7th 2008

Efficient parallel I/O with sionlib

• Scalable I/O library for native parallel file access

• Efficiently reading and writing binary files from thousands

of processes, e.g.,

 Process-local scratch/restart files

 Process-local trace files (Scalasca)

• Simplified file handling

 Only one large file instead of thousands of small files

• Optimized I/O

 Alignment to file system blocks

• Minimal source code changes

 Allows use of standard file pointer (FILE* fp)

June 7th 2008

Typical use case: parallel I/O to separate files

MPI_Init() /* n tasks */

…

fileptr=fopen(file_###)

…

fwrite(buffer,fileptr)

…

fclose(fileptr)

…

MPI_Finalize()

outdir/
file_001

file_002

file_n-1

file_n

…

Problem 1: file handling (backup, HSM) number of files

Problem 2: slow create & open of files Lock on outdir (serialization)

data1

data2

data n-1

data n

…

June 7th 2008

Example: native parallel direct access

MPI_Init() /* n tasks */

…

fileptr=fopen(file_common)

…

fseek(mypos)

fwrite(buffer,fileptr)

…

fclose(fileptr)

…

MPI_Finalize()

outdir/

file_common

Initial Problem solved: fast open, only one file

New Problem 1: meta data handling, start positions and length not stored

New Problem 2: file system locks on blocks, overlapping parallel access to blocks

Restriction: space required by each process must be known in advance

data1

data2

data n-1

data n

…
…

filesystem blocks

(GPFS: 2 MB)

June 7th 2008

Access with sionlib

MPI_Init() /* n tasks */

…

sid=sion_paropen_mpi(fname,

localsize, fsblocksize,…, &fileptr)

…

sion_ensure_free_space(sid, nbytes)

fwrite(buffer,fileptr)

…

sion_ensure_free_space(sid, nbytes)

fwrite(buffer,fileptr)

…

sion_parclose(sid)

…

MPI_Finalize()

outdir/

file_common

Problems solved: simple file handling, fast open and fast I/O (fs block alignment)

Restriction: space required by each process must be known in advance

 new allocation at the end of the file if writing more data than

initially allocated

data1

data2

data n-1

data n

… …

filesystem blocks

(GPFS: 2 MB)

metadata

June 7th 2008

sionlib: internal file format

metadata I

task 1

task 2

task n-1

task n

…

task 1

task 2

task n-1

task n

…

block of chunks 1

…

metadata II

endianness

of file system

number of tasks

global ranks

file format id

requested chunk size

0001

blocksize

numpe

global_rk[n]

size_rk[n]

'sion'

maxchunks max. # chunks

block of chunks n
ptrmetadata II

chunks of each task

chunk sizes block 1

chunk sizes block 2

chunks[n]

chunksize[n]

chunksize[n]

… …

June 7th 2008

sionlib: comand line tools

siondump [-a] <sionfile>

• prints on stdout all information from the first meta data block , with -a also all

chunk sizes from the second meta data block

siondefrag [-q blksize] [-s chunksize] <sionfile> <new_sionfile>

• generates a new sion file from an existing sion file

• the new file will have only one chunk per task which contains the data of all

chunks of this task in the old sion file

• generates with “–q 1” a compact sion file without gaps

sionsplit [-d digits] <sionfile> <prefix>

• extracts task related files from a sion file

• a file will be generated for each task with a filename starting with <prefix>

• the task number will be appended to the <prefix>

June 7th 2008

Measurement on 16 rack Blue Gene/P

• BG/P connected to file server with 128 x 10 GiE

GPFS file system bandwidth: ~ 6GB/s

• Parallel test: (file server in production)

 Writing and reading 2 TB data, 32 MB from each task

 65536 MPI-tasks, 128 I/O-nodes

 Parallel open of one SION file ~ 1s

 Overall write bandwidth 3.7 GB/s

550s for writing 2 TB

 Overall read bandwidth 5.4 GB/s

380s for reading 2 TB

June 7th 2008

CUBE - Call-path profile browser

• Browser based on tree widgets & topological display

• Data model and format to store call-path profiles

• Utilities to manipulate & analyze instances

 Difference, mean, merge, cut, rank

• New version based on Qt

• Current applications

 Scalasca trace analysis results

& runtime summaries

 TAU call-path profiles

 MARMOT runtime errors

June 7th 2008

Improvements of new version

• More configuration options

 Order of trees

 Color spectrum

 Format and precision

of numbers

 Fonts

• Optimized to handle large

data sets

 Fast parser

 No 3rd-party XML library

 Dynamic loading of

individual metrics

 Faster aggregation algorithms

• More flexible and user-friendly topology widget

 E.g., rotation of topology via mouse

June 7th 2008

Ongoing and planned collaborations

• Vampir & Scalasca

 Unified parallel read interface for OTF & EPILOG traces

 Unified tracing library (planned)

• TAU & Scalasca

 Unified instrumentation facilities

 Unified profiling runtime (planned)

June 7th 2008

Thank you!

www.scalasca.org

Please download and try

Version 1.0

http://www.scalasca.org/
http://www.scalasca.org/

