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Outline

• Overview of Scalasca

• Components with reuse potential 

 OPARI OpenMP source-code instrumenter

 MPI tracing wrappers and wrapper generator

 Compiler event adapters

 Library for efficient parallel file I/O

 Profile browser

• Ongoing and planned collaborations
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• Started in January 2006

• Scalable performance-analysis toolset for parallel codes

 Emphasis on detection of wait states

• Designed for large-scale systems 

such as IBM Blue Gene or Cray XT

• Funded through Helmholtz

Impulse and Networking Funds

• Developed in cooperation with the

University of Tennessee

• http://www.scalasca.org/

http://www.scalasca.org/
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Functionality

• Integrated performance analysis procedure

 Runtime summaries (i.e., profiles)

 Overview of performance behavior

 Refinement of instrumentation

 In-depth study of application behavior via event traces

 Localization and quantification of wait states

 Switching between both options without recompilation or re-

linking

• Programming models supported

 MPI-1

 MPI-2 + other one-sided models (in progress)

 OpenMP (in progress)
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OPARI OpenMP source-code instrumenter

• Instruments Fortran, C, C++ OpenMP 2.5 codes with 

POMP instrumentation calls

• Used by KOJAK, Scalasca, TAU, VampirTrace, ompP

• Not perfect, but works for us

• Ongoing work

 Removal of limitations

 Nested and dynamic threading

 Inter-compilation units dependencies

 Support for OpenMP 3.0 features
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MPI tracing wrappers and wrapper generator

• Complete MPI-2 tracing wrappers

 Enter, Exit, Send, Recv, Collective, Get, Put events

 C/C++ and Fortran support

• Basis also for Vampirtrace

• Very flexible wrapper generator

• Testsuite
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Compiler event adapters

• Many compilers have (sometimes unsupported and 

undocumented) options for user function instrumentation

 GNU, Intel, PGI, Pathscale, IBM XL, Sun f90, NEC, Hitachi

• Used by KOJAK, Scalasca, Vampirtrace

• Compiler event adapter component

 Translates compiler specific events to generic enter/exit

 Function filtering at run-time

• Planned

 Function filtering at compile time (GNU, IBM XL)
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Efficient parallel I/O with sionlib

• Scalable I/O library for native parallel file access

• Efficiently reading and writing binary files from thousands 

of processes, e.g.,

 Process-local scratch/restart files 

 Process-local trace files (Scalasca)

• Simplified file handling

 Only one large file instead of thousands of small files

• Optimized I/O 

 Alignment to file system blocks

• Minimal source code changes 

 Allows use of standard file pointer (FILE* fp)  
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Typical use case: parallel I/O to separate files 

MPI_Init() /*  n tasks */

…

fileptr=fopen(file_###)

…

fwrite(buffer,fileptr)

…

fclose(fileptr)

…

MPI_Finalize()

outdir/
file_001

file_002

file_n-1

file_n   

…

Problem 1: file handling (backup, HSM)                number of files

Problem 2: slow create & open of files  Lock on outdir (serialization)

data1

data2

data n-1

data n

…
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Example: native parallel direct access

MPI_Init() /*  n tasks */

…

fileptr=fopen(file_common)

…

fseek(mypos)

fwrite(buffer,fileptr)

…

fclose(fileptr)

…

MPI_Finalize()

outdir/

file_common

Initial Problem solved: fast open, only one file

New Problem 1: meta data handling, start positions and length not stored 

New Problem 2: file system locks on blocks, overlapping parallel access to blocks

Restriction:        space required by each process must be known in advance

data1

data2

data n-1

data n

…
…

filesystem blocks 

(GPFS: 2 MB)
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Access with sionlib

MPI_Init() /*  n tasks */

…

sid=sion_paropen_mpi(fname, 

localsize, fsblocksize,…, &fileptr)

…

sion_ensure_free_space(sid, nbytes)

fwrite(buffer,fileptr)

… 

sion_ensure_free_space(sid, nbytes) 

fwrite(buffer,fileptr)

…

sion_parclose(sid)

…

MPI_Finalize()

outdir/

file_common

Problems solved: simple file handling, fast open and fast I/O (fs block alignment) 

Restriction: space required by each process must be known in advance 

 new allocation at the end of the file if writing more data than

initially allocated

data1

data2

data n-1

data n

… …

filesystem blocks 

(GPFS: 2 MB)

metadata
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sionlib: internal file format

metadata I

task 1

task 2

task n-1

task n

…

task 1

task 2

task n-1

task n

…

block of chunks 1

…

metadata II

endianness

of file system

number of tasks

global ranks

file format id

requested chunk size

0001

blocksize

numpe

global_rk[n]

size_rk[n]

'sion'

maxchunks max. # chunks

block of chunks n
ptrmetadata II

# chunks of each task

chunk sizes block 1

chunk sizes block 2

chunks[n]

chunksize[n]

chunksize[n]

… …
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sionlib: comand line tools

siondump [-a] <sionfile>                   

• prints on stdout all information from the first meta data block , with -a also all

chunk sizes from the second meta data block

siondefrag [-q blksize] [-s chunksize] <sionfile> <new_sionfile>

• generates a new sion file from an existing sion file

• the new file will have only one chunk per task which contains the data of all

chunks of this task in the old sion file

• generates with “–q 1” a compact sion file without gaps

sionsplit [-d digits] <sionfile>  <prefix>                 

• extracts task related files from a sion file 

• a file will be generated for each task with a filename starting with <prefix> 

• the task number will be appended to the <prefix>
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Measurement on 16 rack Blue Gene/P

• BG/P connected to file server with 128 x 10 GiE

GPFS file system bandwidth: ~ 6GB/s 

• Parallel test: (file server in production) 

 Writing and reading 2 TB data, 32 MB from each task

 65536 MPI-tasks, 128 I/O-nodes

 Parallel open of one SION file  ~ 1s

 Overall write bandwidth  3.7 GB/s

550s for writing 2 TB

 Overall read bandwidth  5.4 GB/s

380s for reading 2 TB
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CUBE - Call-path profile browser

• Browser based on tree widgets & topological display

• Data model and format to store call-path profiles

• Utilities to manipulate & analyze instances

 Difference, mean, merge, cut, rank

• New version based on Qt

• Current applications

 Scalasca trace analysis results 

& runtime summaries

 TAU call-path profiles

 MARMOT runtime errors
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Improvements of new version

• More configuration options

 Order of trees

 Color spectrum

 Format and precision

of numbers

 Fonts

• Optimized to handle large

data sets

 Fast parser

 No 3rd-party XML library

 Dynamic loading of

individual metrics 

 Faster aggregation algorithms

• More flexible and user-friendly topology widget

 E.g., rotation of topology via mouse
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Ongoing and planned collaborations

• Vampir & Scalasca

 Unified parallel read interface for OTF & EPILOG traces

 Unified tracing library (planned)

• TAU & Scalasca

 Unified instrumentation facilities 

 Unified profiling runtime (planned)  
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Thank you!

www.scalasca.org

Please download and try 

Version 1.0

http://www.scalasca.org/
http://www.scalasca.org/

