German Research School
for Simulation Sciences

Recent Scalasca Research

Felix Wolf
02-08-2011

RWTHAACHEN
UNIVERSITY

&

German Research School
for Simulation Sciences

Joint venture of

— Forschungszentrum Julich
— RWTH Aachen University
Four research laboratories
— Computational biophysics

— Computational engineering Aachen
— Computational materials science
— Parallel Programming
Education

— M.Sc. in simulation Sciences

— Ph.D. program

About 50 scientific staff members

Jalich

Rheinisch-Westfalische
Technische Hochschule Aachen

« Strong focus on engineering

« ~ 200 ME€ third-party funding
per year

 Around 31,000 students in
over 100 academic programs

> 5000 international students
from 120 different countries

« Cooperates with Julich within the
Julich Aachen Research Alliance (JARA)

scalasca (¥

Scalable performance-analysis toolset for parallel codes
— Focus on communication & synchronization

Integrated performance analysis process
— Performance overview on call-path level via runtime summarization
— In-depth study of application behavior via event tracing

Supported programming models
— MPI-1, MPI-2 one-sided communication
— OpenMP (basic features)

Available for all major HPC platforms

Joint project of 0 J U LI C H @ German Research School

for Simulation Sciences
FORSCHUNGSZENTRUM

H]

E Optimized measurement configuration i

: :

v]
Measurement > SUETEY >
library report

Report

lation

manipu

—> localevent —> i ;

: races —_—
e — 5, statesearch report
application

: - Where in the Which
Instrumented Wh'Ch prOblem 3 3
programrt process:
executable
AR, R A A
File Display Help
)))) B)) e e
Own root percent v] [Melri: root percent ‘v] [Peerper:enl ‘v]
Instrumenter ‘ '
. . Metric tree Calltree | Flatview | Systemtree | TopologyO ' Topology 1
compller/ linker & 0 000 Time =] & O 000<<time step loop>> <
&+ [38.36 Execution |- O 0.00 updatedt
& [0.00 MPI &+ [0.06 updatex
&+ [0.00 Communicition &+ @ 867 updateien
[9.12 Collectiv: @&+ [J 0.00 gene
E [0.00 Early Reduce & O 000 <<iteration loop>>
[0.00 Late 3roadcast & 228 genbc
143 Wait tNxN T [0 0.00 setd
11.92 Point-to noint [0.00 newx
Source 0.16 Late | eceiver [0 0.00 genf
[0 0.00 genu
d | [0.00 MPI /0 [0.00 genh
[0.00 Init/Exit [0.00 newd <
mo u es & [0.00 Synchronization = 3 [J 0.00 ewdtime stamp l
=8 0.07 Barrier t~ O 0.00 ewdmo; zloc_
0.01 Barrier Completion i} [] 0.00 blkins3 ist
& 954 Wait at Barrier - [0.00 blkrhs
L [0.00 Overhead —} [0 0.00 ewdsc itter2
L @ 100 visits & [0.00 ew dscatter2i
L O - Communication Matrix

[0 00 ewdmalloc_
O 0.C)MPI_Send
I9MPI Recv
O 0.00 ewdfree_
-} [0.00 ewdstatrhs

[0 0.00 ewddot
o [0.00 ewdreducefloat

L [J 0.00 MPI_Allreduce
@ + [0 0.00 ewdbsrgetdiag @
< [«]»]] . D
[0.000000 29386941 100000000 [0.000000 11191419 100.000000] ~ [0.000000 100.000000]

YoXe)
[« [) ([b o scatascacorgy 3 CED

scalasca 3

www.scalasca.org

Scalasca

Scalasca is a software tool that supports the performance
optimization of parallel programs by measuring and analyzing
their runtime behavior. The analysis identifies potential
performance bottlenecks - in particular those concerning
communication and synchronization - and offers guidance in
exploring their causes.

Home | Imprint

7th VI-HPS Tuning Workshop

HLRS, Stuttgart/Germany, March
28-30, 2011 Three-day hands-
on workshop covering the...
more...

Scalasca at SC'10

November 13-19, 2010: Join us
at SC'10 in New Orleans, LA,
USA. Scalasca team... more...

#) J0LICH

FORSCHUNGSZENTRUM

()

German Research School
for Simulation Sciences

Outline

* Recent scalability improvements
* Mapping wait states onto their root cause

« Two approaches to low-overhead MPI profiling
— Low-overhead direct instrumentation using prior static analysis
— Reconciling sampling and direct instrumentation

Hierarchical unification

« Unification maps local identifiers of regions, call paths etc.
onto global ones

— Generation of a unified set of global definitions
— Generation of local-to-global identifier mappings for each process
— Writing the global definitions and the identifier mappings to disk.

10000

O O O O O O O e (v1.3) Serial unification
. - - . == (new) Parallel unification
Unify(0) Unify(2) Unify(4) Unify(6)
v v v 1000
Unify(0,1) Unify(2,3) Unify(4,5)
“ “ 100
O O :
Q
Unify(0,1,2,3) Unify(4,5,6) E S M G 2 OOO
w 10
Unify(0,1,2,3,4,5)
1
O -» with dat
== MPI Communica tion
0.1 1k 2k 4k 8k 16k 32k 64k 128k 256k

Processes

@ Markus Geimer et al.: Further improving the scalability of the Scalasca toolset. In
Proc. of PARA 2010: Reykjavik, Iceland, June 6—9 2010, Springer, 2011. (to appear).

Communicator management

Distorted waiting times in
PFLOATRAN on Jugene

 Scalasca records communicators in event traces
— Needed for trace replay

* Previous method created multiple types of overhead
— Memory due to replication of data across processes
— Measurement dilation due to runtime rank translation
— Unification of local communicator IDs

 New method creates global comm. 1D at runtime
— Stores information only once per communicator

— Avoids runtime rank translation by
storing translation tables at the end

— Essentially eliminates unification

In Proc. of the 18th European MPI Users' Group Meeting (EuroMPI), Santorini,

@ Markus Geimer et al.: Scaling Performance Tool MPI Communicator Management.
Greece, Springer, 2011. (to appear)

Incremental loading of report

« Currently, the entire report is loaded in to
the GUI in one piece
— Severe limitation of interactive experience

« |In the future, data sets exceeding a
certain size will be loaded incrementally

« At 288k processes, initial loading time
reduced from 200s to 4s in prototype

@ Markus Geimer et al.: Further improving the scalability of the Scalasca toolset. In
Proc. of PARA 2010: Reykjavik, Iceland, June 6—9 2010, Springer, 2011. (to appear).

Propagation of waiting time

process

Indirect waiting time Direct waiting time

v

time

Identifying delays in traces and assessing their cost

« Essentially scalable version of Meira Jr. et al.

« Classification of waiting times into
— Direct vs. indirect
— Propagating vs. terminal

 Attributes costs of wait states to delay intervals
— Requires forward and backward replay

David Bohme et al.: Identifying the root causes of wait states in large-scale
@ parallel applications. In Proc. of the 39th International Conference on Parallel
Processing (ICPP), San Diego, CA,, IEEE Computer Society, September 2010.

Best Paper Award

Origin of delay costs in Zeus-MP/2

—_—
y — 4
2=
y — 4
y — 4

=T
y — 4
—_—

Computation Waiting time Delay costs

Delay analysis of code lllumination

« Particle physics code (laser-plasma interaction)

« Delay analysis identified inefficient communication
behavior as cause of wait states

Computation Propagating wait states: Costs of direct delay
Original vs. optimized code in optimized code

Direct instrumentation

« Every entry or exit event of an instrumented function
causes the measurement system to be called

« Even instrumentation of all user functions plus MPI
wrappers results in reasonable overhead (< 15%) in
many cases

* |n others, overhead can be excessive
— Especially C++ codes with their many tiny methods

* Filtering (black/white listing) can help reduce overhead

— Static: filtered functions are not instrumented in the first place
— Dynamic: invocation of the measurement system suppressed

 Tradeoff: lower overhead but loss of information

Configurable binary instrumenter (Cobi)

« (Generating the filter usually requires extra run

* Idea: determine filter based on prior static analysis
— Rules to specify analysis objectives (i.e., limit loss of information)

Adapter specification

/

Instrumentation
specmcatlon

User Ada pte
fllter fllter

Read

[ExecutableJ—> structural
code

information

>

Evaluate
filters

P

Re-write
binary
with
Dyninst

executable

_,E nstrumentedJ

Cobi - filters

* Are specified in a separate
XML file

« Start with all or no function

* |nclude/exclude functions with
filter rules

* Rules can be combined by
logical operators

Springer, 2011. (to appear)

* Are on call path

* Lines of source code

* Cyclomatic complexity
* Number of instructions
* Number and nesting

level of loops
* Number of function calls
* Depth in call tree
* Name matching
* Prefix
* Suffix

Possible rules

Jan MukRler et al.: Reducing the overhead of direct application instrumentation
using prior static analysis. In Proc. of the Euro-Par Conference, Bordeaux, France,

Instrumented fraction of functions with filters

100.00

90.00

80.00
70.00
60.00
50.00
40.00
30.00
20.00
10.00

0.00 -

HCC2+ %
CC3+ %

B oC5+ %

= MPI path %

Runtime overhead in percent

303
2R3 EE2S 3 g B
30.00 -
25.00 -
20.00 -
15.00 -
" Full

10.00 - mCC2+
. cc3+

' ¥ oC5+

000 N T T T u MPI path

Reconciling sampling and direct instrumentation

« Sampling allows better control of overhead

* But may miss critical events
— Hard to capture accurate communication metrics
* New hybrid approach
— Applies low-overhead sampling to user code
— Intercepts MPI calls via direct instrumentation
— Relies on efficient stack unwinding
— Integrates measurements in statistically sound manner

Zoltan Szebenyi et al.: Reconciling sampling and direct instrumentation for

@ unintrusive call-path profiling of MPI programs. In Proc. of the International
Parallel and Distributed Processing Symposium (IPDPS), Anchorage, AK, USA. IEEE
Computer Society, May 2011.

Joint work with ||l Lawrence Livermore
National Laboratory

How it works
lgnore samples inside MPI calls and restart timer
' ' ' v v

: : v : : :
v v wpi Y L v MPI

Account for extended / shortened effective interval length

1

I |
:4 > MPI < ,:
[[I time
| I | o
interrupt i-2 interrupt i-1 interrupt i
| | |
| |
— MPI P E— MPI >
| | [time

interrupt i-2 interrupt i-1 interrupt i

Overhead of compiler instrumentation

B PMPI + compiler
W PMPI + compiler (with filter)
W PMPI (without callpath)

Overhead of hybrid method

I(X) | | | | | | | | | |
1 100Hz PMPI
" 10Hz PMPI
W OHz PMPI
75
50
25
0 | — lee B i (I W _‘lhhmu

A S O AL (4]
SRS A SN ¥ WS R
N\ \%6 ’ \'L 6?‘ \V \"’)q" Sy ‘3\66 X
\ N

SIONIib update

Support for OpenMP and hybrid programs (MPI/OpenMP)
Multi-file support in serial tools and API

New installation process with configure tool

Fortran interface enhanced

http://www.fz-juelich.de/jsc/sionlib/

Summary

* Ensuring scalability is continuous labor-intensive effort
— Next step: validation of new enhancements in concert

« Delay analysis offers new insight into the actual cost of
load and communication imbalance

* No single cure for measurement dilation
— However, combination of different methods often successful

Thank you!

ﬁ HELMHOLT?Z Deutsche % Bundesministerium

Forschungsgemeinschaft “> [firBildung
| ASSOCIATION PR und Forschung

VFG

