The Dyninst Binary Code Toolkits

Drew Bernat
Matthew LeGendre
Bill Williams

University of Wisconsin
http://www.paradyn.org

April 2008

Walking Difficult Call Stacks

= Functions can produce call frames that are
difficult to walk through

» Optimize away frame pointers
* Non-standard frame pointers
» Regions where frame pointer is not yet set up

= New features in StackwalkerAPT
* Use debug information from binary
» Use static analysis on binary
* Use heuristics to dynamically search call graph

The StackwalkerAPI

StackwalkerAPI

= Simple interface for collecting call stacks
walker = new walker(pid);

walker->walkStack(...);

= Callback interface for customization
» Walks through types of stack frames

» Identifies types of stack frames
* Looks up symbol names
- Accesses target process

The StackwalkerAPI

Easy Stackwalking

Registers (x86) framgﬂn

Frame Ptr (EBP) funcl

frame ptr
Instruc Ptr (EIP)——— func?2

Stack Ptr (ESP)—

= Basic stack walking is essentially following a linked
list.

The StackwalkerAPI

|

casy Tricky Stackwalking

main
frame ptr

funcl
frame ptr

2
RegiSTer'S (X86) fr-queup?rc':

saved regs

Frame Ptr (EBP) >Lsighan dler
Instruc Ptr (EIP)

Stack Ptr (ESP)/

= Signal handlers and instrumentation tools may add
non-standard frame layouts.

—5— The StackwalkerAPI

Casy Tricky Difficult Stackwalking

main
frame ptr

funcl
frame ptr

func2
Registers (x86) frame ptr

saved regs
Frame Ptr (EBP) sighandler

frame ptr
Instruc Ptr (EIP)\»opT_ func
Stack Ptr (ESP) -

= Optimized functions may trash frame pointers

The StackwalkerAPI

casy Tricky Very Difficult Stackwalking

main
frame ptr

funcl
frame ptr

func2

frame ptr

Registers (x86) / c[| saved regs
Frame Ptr (EBP) sighandler

frame ptr
Instruc Ptr (EIP) opt_func
Stack Ptr (ESP) \ |
= Functions may not yet have created stack frames, or
could change stack frames during execution.

—7 - The StackwalkerAPI

Stacks without frame pointers

= What we have

- The return address from the _ Oxb7ff696f

previous frame. 0x00000005
0x00003002

0x00000000
0x0804896f

* A pointer to the top of the

frame Oxbfd02830

0x00a6ed03
» What we want 0xbfd02848

- The return address for this 0xf7fb5fcs8
fr-ame 0x09ec8a60

>
—p Ox00a82cl4

The StackwalkerAPI

Techniques

= Debug Information

- DWARF, STABS, etc... tell how to walk
through a stack frame

= Static Analysis

* Analyze the binary to understand what
function stack frames look like

= Heuristic Stack Searching

» Search through the stack to find stack
frames

The StackwalkerAPI

Debug Information

= Given a code address and process state gives the
location of the return address.

» E.g. the return address is 40 bytes above the top of the
stack

* E.g. the return address is at 7%ebp + 4

= Potential Issues
» Is occasionally wrong
* Not present in all binaries
* Requires reading from the binary

= Usable through SymtabAPI

The StackwalkerAPI

Static Analysis

A=4 push %eax
push %edx
sub $20, %esp
cmp %ebx, $0
je
"%
A=32 push $4
A=36 push S8
A=36 call foo
A=28 add $8, %esp
-~
A=24 pop %Sedx
A=20 pop %eax
A=0 add $20, %esp
A=0 ret

= Use static analysis to determine A, the distance to
the top of the stack frame, for each instruction

The StackwalkerAPI

Undefined Stacks

= May see unknown changes to the stack pointer.

A=4 lea 4 (%esp), %ecx
A=?7?7? and SOxXEfffffffo, %esp
A=??? pushl Oxfffffffc (%ecx)
A=??? push %ecx
A=??? sub $20, %esp

= May have conflicting stack values

A=28 xorl %eax, %eax A=28 push $4
A=24 pop %eax A=32 push $8
A=24 Jmp ... A=36 call foo

‘\\\“ “(,/’

The StackwalkerAPI

Other Issues
= Some functions may “clean” their parent's stack:

funcl: push %eax
push %ebx
call func2

ret

func2: push %ebp
mov %esp, sebp

leave
ret 8

= Non-returning function calls interfere with

analysis:

funcl: ...

push %eax
push %ecx
call abort

push %ebp
mov %esp, %ebp

The StackwalkerAPI

Static Analysis Results

Functions with Functions w/
Compiler Functions Frame Undefined
Pointers Stacks

233,787
(99.5%)

gcc
4172

ICC
v10.0

234,955 644 (0.2%)

45173 18,921 (41.9%) 3,019 (6.7%)

The StackwalkerAPI

Static Analysis Results

= Manually found all non-returning functions in icc
compiled gdb.

Functions

w/
Undefined
Stacks

489 1,007
(8.06%) (16.6%)

649
(10.37%)

Recognize Functions
Non- Functions with Frame
Returning Pointers

No 6,067

Yes 6,051 10 (0.16%)

The StackwalkerAPI

Implementation

= Now
* DyninstAPI runs analysis, produces result file
- Result file is fed into StackwalkerAPI

- - =

= Goal
» StackwalkerAPI runs analysis when needed

- -

The StackwalkerAPI

Heuristic Stack Searching

» Use heuristics to search the stack for frames
An Address Space The Stack

080483f15:
08048319: ..

40000000:
41000000:

bFfe00000:
c0000000:

call foo —
+——§__— 0x00000482
0x080483f9

Heap) 0xbfed6b30
ey 2 :\ 0x4010a7£0

Stack'ﬁxk_ 0x0000000c

Stack Bottom

= An address is likely the top of a frame if ...
v ... it points to an instruction that follows a call
v ... the following address points into the stack

- 17 — The StackwalkerAPI

Questions?

The StackwalkerAPI

Dyninst and Static Rewriting

Mutatee
Process

DyninstAPI

ine counter
%ggh gebp
P ..

The StackwalkerAPI

Dyninst and Static Rewriting

Rewritten Binarv

DyninstAPI Target Binary

The StackwalkerAPI

A Static Binary Rewriter

= Uses the same abstractions and interfaces as Dyninst

= Tnstrument and modify objects on disk
» Instrument once, run many times

* Run instrumented binaries on otherwise unsupported
systems (e.g. BlueGene)

= Operates on unmodified binaries
* No debug information required
* No linker relocations required
* No symbols required

The StackwalkerAPI

Static Vs. Dynamic Rewriting

Static Rewriting

v'/Amortize parsing and
instrumentation time

v'Easier to port (no
process control)

v'Generate more efficient
modified binaries

Dynamic Rewriting

v'Insert and remove
iInstrumentation at run
time

v’ Execute instrumentation
at a particular time
(oneTimeCode)

v'Tool can respond to run
time events (shared library
loads, exec, ...)

The StackwalkerAPI

The Binary Rewriter Interface

BPatch_addressSpace Corr'\mon.
Instrumentation Functionality
I'mage functions

Dynamic

Rewriting Static Rewriting

BPatch_binaryEdit
Open files

Write files

The StackwalkerAPI

BPatch_addressSpace

= Use BPatch addressSpace for static and
dynhamic code instrumentation.

IT (use bin _edit)
addr_space = bpatch.openFile(...)
else
addr_space = bpatch.attachProcess(...)

addr_space->getlmage()->findFunction(...);
addr_space->insertSnippet(...);
addr_space->replaceFunction(...);

The StackwalkerAPI

BPatch_binaryEdit

= Open a file and its libraries for rewriting

a.out

libc.so libstdc++.s0 libpthread.so

libm.so

= Open a single file for rewriting

libbar.so

= Add new libraries to an application
a.out libinstr_helper.so

— 25— The StackwalkerAPI

New Dyninst Requirements

= Need to write object files

+ Add new code

- e.g., Add generated instrumentation code
* Write changes to existing code.

- e.g., Write trampoline jumps
* Reference symbols in other libraries

- e.g., Generate instrumentation that calls libc's write
from the a.out

» Update headers

= Start with Dyninst's existing instrumentation
and parsing mechanisms.

— 26 — The StackwalkerAPI

elf _hdr
prog_hdr
dynamic

code

data

Modifying the Binary

Elf Header contains:

-Meta-information about the
object

‘Pointers to the locations of
important sections

The StackwalkerAPI

elf _hdr
prog_hdr
dynamic

code

data

Modifying the Binary

Program Header contains:

*Information on how to lay out
the binary in memory

*The related section header
contains information on how the
binary is laid out on disk.

The StackwalkerAPI

elf _hdr
prog_hdr
dynamic

code

data

Modifying the Binary

Dynamic Section contains:

‘How to resolve references to
other libraries.

*Multiple sections involved:
Dynamic Symbol Table
Dynamic Strings Table
‘Relocation tables

»Symbol Versioning info

The StackwalkerAPI

elf _hdr
prog_hdr
dynamic

code

data

Modifying the Binary

-

elf _hdr
prog_hdr

dynamic

code

data

dyninstInst

= Add space for
Instrumentation
and relocated
functions to end
of object.

The StackwalkerAPI

elf_hdr
prog_hdr
dynamic

code

data

Modifying the Binary

elf _hdr'

prog hdr' = Need to modify

prog_hdr with new
section info.

dynamic
' = Grow prog_hdr by

code copying it elsewhere.

= Linux bug means

prog_hdr must follow
elf _hdr

data

dyninstInst

The StackwalkerAPI

elf _hdr
prog_hdr
dynamic

code

data

Modifying the Binary

)

elf _hdr'
prog_hdr’

dynamic

code w/
patches

data

dyninstInst

= Add trampolines
and other Dyninst
modifications by
patching existing
code.

The StackwalkerAPI

Modifying the Binary

elf_hdr elf_hdr
prog_hdr prog_hdr’

dynamic dynamic

- code w/

code patches

data data

dyninstInst dyninstInst
dynamic’

— 33—

Need to add to
dynamic for external
references made by
instrumentation.

Cannot grow dynamic,
so copy to end of
object.

The StackwalkerAPI

Modifying the Binary
elf _hdr elf _hdr'
prog_hdr’. w | prog_hdr' pjes of sections in
|

dynamic

= | ointers in elf _hdr to
codew/ mmmp, codew/ . oo tion locations.

patches patches

[
data | data Ve code or data

dyninstInst dyninstInst
dynamic’

—34 - The StackwalkerAPI

Current Status

= Beta of binary rewriter in Dyninst 5.2.
- Static binaries
* Dynamic objects (but not inter-library calls)

» System V ELF platforms (Linux,BG/L,Solaris,...)
- x86, x86-64, PPC, TA-64, SPARC

= Coming Soon in Dyninst 6.0
* Inter-library calls in dynamic objects
» Adding new libraries to an object

The StackwalkerAPI

Questions?

The StackwalkerAPI

The Deconstruction of Dyninst:
The InstructionAPI

Bill Williams
University of Wisconsin

April 2008

The InstructionAPI Goal

Support analysis algorithms
Provide a model that is:

+ Simple

* Portable

- Abstract

The StackwalkerAPI

Instructions Are Complicated

Platform-specific
decoder

Abstract
instruction model

Register Transfer
Lists

Portable

Filters information

Matches expectations of analysis
algorithms

Non-portable

No abstraction

Can build analysis if you know
platform details

Portable

Anti-abstraction

Great for code generation
Wordy & awkward for analysis

The StackwalkerAPI

How Do We Build a Good Model?

= Make a good component
+ Abstract, platform-independent interfaces
- Abstract away unnecessary platform/encoding specifics
- Allow clean access to platform specifics
= Make it useful to customers
» Concise model of syntax

- Solid base for semantics
- Direct queries for important analytic properties
= Focus on analysis
» Good models exist for code generation
» Code generation & analysis produce different abstractions

The StackwalkerAPI

Comparison With Existing Tools
« VEX (Valgrind, RTL)

* Doesn't provide interface for analysis queries
- Represents semantics

= XED (PIN, Platform-specific)

» Doesn't provide interface for analysis queries

* Preserves all IA32 platform details
» Closed-source license

= Both of these are focused on code generation,
not analysis

The StackwalkerAPI

The InstructionAPI System

Machine language buffer

Instruction
Decoder

Instruction Instruction Instruction
object object object

Operation Operands

The StackwalkerAPI

Our Instruction Model

We summarize information
from this tree:

* At the instruction level

- At the opcode level

* For each operand

* For the elements of each
operand

The StackwalkerAPI

Use Cases

= Register liveness
= Stack frame analysis
= Evaluation and update

The StackwalkerAPI

Use Case: Register Liveness

= Building pre-liveness from post-liveness
* Input: set of registers live post-instruction
* Get registers read, written
* Live,, = (Live, U read(i)) — written(i)

The StackwalkerAPI

Use Case: Stack Frame Analysis

* Find instructions that write the stack
pointer: 1sUsed(r_ESP)

= If push/pop, get size of what's pushed:
getOperand(i).size()

» If add/subtract, evaluate the operand that's

not the stack pointer:
getOperand(n).eval()

= If we have a known change, record it; if not,
fall to UNKNOWN

The StackwalkerAPI

Use Case: Evaluation & Update

v eax > Febx * 4 + eox]

Instruction defines
memory at unknown
address

20
1000

Outside analysis gives us values for ebx, ecx

machineState

machineState
machineState
UpdateRegisterValues machineState

The StackwalkerAPI

Current Status

= TA32/AMD64 completed

= Integration into Dyninst in progress
» Stack analysis completed
* Liveness completed
* Parsing coming soon

= Manhual available

The StackwalkerAPI

Extensions and Future Work

= Provided by UW:

» Additional platforms
- TA64, Power, SPARC

- Value-added libraries
- Machine state abstraction

= Components we'd like:
- Operation semantics
» Code generation IR
- Instruction parsers

The StackwalkerAPI

Questions?

The StackwalkerAPI

Binary Parsing
Symbol Table AST

Parser
PE Instrumentation

ELF Code
User Process Gen Debugger
COFF Interface

Binary Instruction Code PE;Z?:Z 9 Win

Decoder Farser

IA32 Linux

Stack-
AMDG64 walking AlX

Power

The StackwalkerAPI

SymtabAPI

= Generate new binary files
* Add and modify sections
= Dynamic address mapping
 Memory addresses to file offsets
= Parse debug information

* Line information
* Local variables and their types

The StackwalkerAPI

