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Walking Difficult Call Stacks

= Functions can produce call frames that are
difficult to walk through

» Optimize away frame pointers
* Non-standard frame pointers
» Regions where frame pointer is not yet set up

= New features in StackwalkerAPT
* Use debug information from binary
» Use static analysis on binary
* Use heuristics to dynamically search call graph
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StackwalkerAPI

= Simple interface for collecting call stacks
walker = new walker(pid);

walker->walkStack(...);

= Callback interface for customization
» Walks through types of stack frames

» Identifies types of stack frames
* Looks up symbol names
- Accesses target process
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Easy Stackwalking

Registers (x86) framgﬂn

Frame Ptr (EBP) funcl

frame ptr
Instruc Ptr (EIP)——— func?2

Stack Ptr (ESP)—

= Basic stack walking is essentially following a linked
list.
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casy Tricky Stackwalking

main
frame ptr

funcl
frame ptr

2
RegiSTer'S (X86) fr-queup?rc':

saved regs

Frame Ptr (EBP) >Lsighan dler
Instruc Ptr (EIP)

Stack Ptr (ESP)/

= Signal handlers and instrumentation tools may add
non-standard frame layouts.
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Casy Tricky Difficult Stackwalking

main
frame ptr

funcl
frame ptr

func2
Registers (x86) frame ptr

saved regs
Frame Ptr (EBP) sighandler

frame ptr
Instruc Ptr (EIP)\»opT_ func
Stack Ptr (ESP) -

= Optimized functions may trash frame pointers

The StackwalkerAPI




casy Tricky Very Difficult Stackwalking

main
frame ptr

funcl
frame ptr

func2

frame ptr

Registers (x86) / c[ | saved regs
Frame Ptr (EBP) sighandler

frame ptr
Instruc Ptr (EIP) opt_func
Stack Ptr (ESP) \ |
= Functions may not yet have created stack frames, or
could change stack frames during execution.
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Stacks without frame pointers

= What we have

- The return address from the _ Oxb7ff696f

previous frame. 0x00000005
0x00003002

0x00000000
0x0804896f

* A pointer to the top of the

frame Oxbfd02830

0x00a6ed03
» What we want 0xbfd02848

- The return address for this 0xf7fb5fcs8
fr-ame 0x09ec8a60

>
—p Ox00a82cl4
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Techniques

= Debug Information

- DWARF, STABS, etc... tell how to walk
through a stack frame

= Static Analysis

* Analyze the binary to understand what
function stack frames look like

= Heuristic Stack Searching

» Search through the stack to find stack
frames

The StackwalkerAPI




Debug Information

= Given a code address and process state gives the
location of the return address.

» E.g. the return address is 40 bytes above the top of the
stack

* E.g. the return address is at 7%ebp + 4

= Potential Issues
» Is occasionally wrong
* Not present in all binaries
* Requires reading from the binary

= Usable through SymtabAPI
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Static Analysis

A=4 push %eax
push %edx
sub $20, %esp
cmp %ebx, $0
je
"%
A=32 push $4
A=36 push S8
A=36 call foo
A=28 add $8, %esp
-~
A=24 pop %Sedx
A=20 pop %eax
A=0 add $20, %esp
A=0 ret

= Use static analysis to determine A, the distance to
the top of the stack frame, for each instruction
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Undefined Stacks

= May see unknown changes to the stack pointer.

A=4 lea 4 (%esp), %ecx
A=?7?7? and SOxXEfffffffo, %esp
A=??? pushl Oxfffffffc (%ecx)
A=??? push %ecx
A=??? sub $20, %esp

= May have conflicting stack values

A=28 xorl %eax, %eax A=28 push $4
A=24 pop %eax A=32 push $8
A=24 Jmp ... A=36 call foo

‘\\\“ “(,/’
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Other Issues
= Some functions may “clean” their parent's stack:

funcl: push %eax
push %ebx
call func2

ret

func2: push %ebp
mov %esp, sebp

leave
ret 8

= Non-returning function calls interfere with

analysis:

funcl: ...

push %eax
push %ecx
call abort

push %ebp
mov %esp, %ebp
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Static Analysis Results

Functions with Functions w/
Compiler  Functions Frame Undefined
Pointers Stacks

233,787
(99.5%)

gcc
4172

ICC
v10.0

234,955 644 (0.2%)

45173 18,921 (41.9%) 3,019 (6.7%)
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Static Analysis Results

= Manually found all non-returning functions in icc
compiled gdb.

Functions

w/
Undefined
Stacks

489 1,007
(8.06%) (16.6%)

649
(10.37%)

Recognize Functions
Non- Functions with Frame
Returning Pointers

No 6,067

Yes 6,051 10 (0.16%)
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Implementation

= Now
* DyninstAPI runs analysis, produces result file
- Result file is fed into StackwalkerAPI

- - =

= Goal
» StackwalkerAPI runs analysis when needed

- -

The StackwalkerAPI




Heuristic Stack Searching

» Use heuristics to search the stack for frames
An Address Space The Stack

080483f15:
08048319: ..

40000000:
41000000:

bFfe00000:
c0000000:

call foo —
+——§\\\\\\__— 0x00000482
0x080483f9

Heap ) 0xbfed6b30
ey 2 :\ 0x4010a7£0

Stack'ﬁxk_ 0x0000000c

Stack Bottom

= An address is likely the top of a frame if ...
v ... it points to an instruction that follows a call
v ... the following address points into the stack
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Questions?
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Dyninst and Static Rewriting

Mutatee
Process

DyninstAPI

ine counter
%ggh gebp
P ..
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Dyninst and Static Rewriting

Rewritten Binarv

DyninstAPI Target Binary
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A Static Binary Rewriter

= Uses the same abstractions and interfaces as Dyninst

= Tnstrument and modify objects on disk
» Instrument once, run many times

* Run instrumented binaries on otherwise unsupported
systems (e.g. BlueGene)

= Operates on unmodified binaries
* No debug information required
* No linker relocations required
* No symbols required
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Static Vs. Dynamic Rewriting

Static Rewriting

v'/Amortize parsing and
instrumentation time

v'Easier to port (no
process control)

v'Generate more efficient
modified binaries

Dynamic Rewriting

v'Insert and remove
iInstrumentation at run
time

v’ Execute instrumentation
at a particular time
(oneTimeCode)

v'Tool can respond to run
time events (shared library
loads, exec, ...)
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The Binary Rewriter Interface

BPatch_addressSpace Corr'\mon.
Instrumentation Functionality
I'mage functions

Dynamic

Rewriting Static Rewriting

BPatch_binaryEdit
Open files

Write files
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BPatch_addressSpace

= Use BPatch addressSpace for static and
dynhamic code instrumentation.

IT (use bin _edit)
addr_space = bpatch.openFile(...)
else
addr_space = bpatch.attachProcess(...)

addr_space->getlmage()->findFunction(...);
addr_space->insertSnippet(...);
addr_space->replaceFunction(...);
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BPatch_binaryEdit

= Open a file and its libraries for rewriting

a.out

libc.so libstdc++.s0 libpthread.so

libm.so

= Open a single file for rewriting

libbar.so

= Add new libraries to an application
a.out libinstr_helper.so
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New Dyninst Requirements

= Need to write object files

+ Add new code

- e.g., Add generated instrumentation code
* Write changes to existing code.

- e.g., Write trampoline jumps
* Reference symbols in other libraries

- e.g., Generate instrumentation that calls libc's write
from the a.out

» Update headers

= Start with Dyninst's existing instrumentation
and parsing mechanisms.
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elf _hdr
prog_hdr
dynamic

code

data

Modifying the Binary

Elf Header contains:

-Meta-information about the
object

‘Pointers to the locations of
important sections
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elf _hdr
prog_hdr
dynamic

code

data

Modifying the Binary

Program Header contains:

*Information on how to lay out
the binary in memory

*The related section header
contains information on how the
binary is laid out on disk.
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elf _hdr
prog_hdr
dynamic

code

data

Modifying the Binary

Dynamic Section contains:

‘How to resolve references to
other libraries.

*Multiple sections involved:
Dynamic Symbol Table
Dynamic Strings Table
‘Relocation tables

»Symbol Versioning info
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elf _hdr
prog_hdr
dynamic

code

data

Modifying the Binary

-

elf _hdr
prog_hdr

dynamic

code

data

dyninstInst

= Add space for
Instrumentation
and relocated
functions to end
of object.
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elf_hdr
prog_hdr
dynamic

code

data

Modifying the Binary

elf _hdr'

prog hdr' = Need to modify

prog_hdr with new
section info.

dynamic
' = Grow prog_hdr by

code copying it elsewhere.

= Linux bug means

prog_hdr must follow
elf _hdr

data

dyninstInst
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elf _hdr
prog_hdr
dynamic

code

data

Modifying the Binary

)

elf _hdr'
prog_hdr’

dynamic

code w/
patches

data

dyninstInst

= Add trampolines
and other Dyninst
modifications by
patching existing
code.
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Modifying the Binary

elf_hdr elf_hdr
prog_hdr prog_hdr’

dynamic dynamic

- code w/

code patches

data data

dyninstInst dyninstInst
dynamic’
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Need to add to
dynamic for external
references made by
instrumentation.

Cannot grow dynamic,
so copy to end of
object.
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Modifying the Binary
elf _hdr elf _hdr'
prog_hdr’. w | prog_hdr' pjes of sections in
|

dynamic

= | ointers in elf _hdr to
codew/ mmmp, codew/ . oo tion locations.

patches patches

[
data | data Ve code or data

dyninstInst dyninstInst
dynamic’
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Current Status

= Beta of binary rewriter in Dyninst 5.2.
- Static binaries
* Dynamic objects (but not inter-library calls)

» System V ELF platforms (Linux,BG/L,Solaris,...)
- x86, x86-64, PPC, TA-64, SPARC

= Coming Soon in Dyninst 6.0
* Inter-library calls in dynamic objects
» Adding new libraries to an object

The StackwalkerAPI




Questions?
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The Deconstruction of Dyninst:
The InstructionAPI

Bill Williams
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The InstructionAPI Goal

Support analysis algorithms
Provide a model that is:

+ Simple

* Portable

- Abstract
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Instructions Are Complicated

Platform-specific
decoder

Abstract
instruction model

Register Transfer
Lists

Portable

Filters information

Matches expectations of analysis
algorithms

Non-portable

No abstraction

Can build analysis if you know
platform details

Portable

Anti-abstraction

Great for code generation
Wordy & awkward for analysis
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How Do We Build a Good Model?

= Make a good component
+ Abstract, platform-independent interfaces
- Abstract away unnecessary platform/encoding specifics
- Allow clean access to platform specifics
= Make it useful to customers
» Concise model of syntax

- Solid base for semantics
- Direct queries for important analytic properties
= Focus on analysis
» Good models exist for code generation
» Code generation & analysis produce different abstractions
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Comparison With Existing Tools
« VEX (Valgrind, RTL)

* Doesn't provide interface for analysis queries
- Represents semantics

= XED (PIN, Platform-specific)

» Doesn't provide interface for analysis queries

* Preserves all IA32 platform details
» Closed-source license

= Both of these are focused on code generation,
not analysis
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The InstructionAPI System

Machine language buffer

Instruction
Decoder

Instruction Instruction Instruction
object object object

Operation Operands
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Our Instruction Model

We summarize information
from this tree:

* At the instruction level

- At the opcode level

* For each operand

* For the elements of each
operand
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Use Cases

= Register liveness
= Stack frame analysis
= Evaluation and update
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Use Case: Register Liveness

= Building pre-liveness from post-liveness
* Input: set of registers live post-instruction
* Get registers read, written
* Live,, = (Live, U read(i)) — written(i)
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Use Case: Stack Frame Analysis

* Find instructions that write the stack
pointer: 1sUsed(r_ESP)

= If push/pop, get size of what's pushed:
getOperand(i).size()

» If add/subtract, evaluate the operand that's

not the stack pointer:
getOperand(n).eval()

= If we have a known change, record it; if not,
fall to UNKNOWN
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Use Case: Evaluation & Update

v eax > Febx * 4 + eox]

Instruction defines
memory at unknown
address

20
1000

Outside analysis gives us values for ebx, ecx

machineState

machineState
machineState
UpdateRegisterValues machineState
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Current Status

= TA32/AMD64 completed

= Integration into Dyninst in progress
» Stack analysis completed
* Liveness completed
* Parsing coming soon

= Manhual available
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Extensions and Future Work

= Provided by UW:

» Additional platforms
- TA64, Power, SPARC

- Value-added libraries
- Machine state abstraction

= Components we'd like:
- Operation semantics
» Code generation IR
- Instruction parsers
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Questions?
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Binary Parsing
Symbol Table AST

Parser
PE Instrumentation

ELF Code
User Process Gen Debugger
COFF Interface

Binary Instruction Code PE;Z?:Z 9 Win

Decoder Farser

IA32 Linux

Stack-
AMDG64 walking AlX

Power
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SymtabAPI

= Generate new binary files
* Add and modify sections
= Dynamic address mapping
 Memory addresses to file offsets
= Parse debug information

* Line information
* Local variables and their types

The StackwalkerAPI




