L
UTSA

Achieving accurate & context-sensitive timing

for code optimization
or
How do we measure success for tuning &
performance?

R. Clint Whaley
whaley@cs.utsa.edu
www.cs.utsa.edu/~whaley

Anthony M. Castaldo

castaldo@ti%esrs. utsa.edu

R. Clint Whaley (UTSA-CS) July 9, 2008

1/18

gh

Timer Presentation Outline

. Motivation

. Introduction: Naive kernel and timer implementations

. Flushing caches when calling kernel once per sample

. Flushing caches when calling kernel multiple times per sample
. Timer refinements/misc timing techniques

. Further Information

VIIL.

Response to mandatory questions/red meat to dogs

R. Clint Whaley (UTSA-CS) timers July9,2008 2/18

€ I(a). Problem Motivation
UTSA Why do context-sensitive timings matter?

Problem Definition
@ Literature contains much discussion of optimizations, little
discussion on how to measure transformation results
@ Performance of optimization usually measured by home-grown
timer

o If timer does not replicate the calling context found in target
application(s), timer results are often misleading

e Most important context is probably cache state

Does Lack of Context Sensitivity Matter?
o Changes magnitude of speedup enormously (next slide)
@ Changes best parameters for most optimizations

@ Changes viability of many optimizations altogether

R. Clint Whaley (UTSA-CS) timers July 9, 2008

3/18

S I(b). Impact of Timer Method. on Speedup

UTSA Performance of DDOT using flushed & non-flushed timers

‘A no flush = ﬂushed‘

2200
2000 =

1800 \\(,r_d__f—a__f—a__*_*__k\y
1600

1400 \\
1200 \

1000
\
800
600 \

400
200

MFLOP

\\\\\\
mememememe
ooooooooooooooooooooooooo

Vector length (N)

R. Clint Whaley (UTSA-CS) timers July 9, 2008 4/18

¢ I(c). Timing Methodology and Autotuning

UTJA Does changing timers change best optimizations?

Demonstrated strong effect of in- vs. out-of-cache timing
on all considered optimizations in:

@ R. Clint Whaley and David B. Whalley, “Tuning High
Performance Kernels through Empirical Compilation”, In The
2005 International Conference on Parallel Processing, June 2005.

Less formally, consider:

@ Optimizations like: load/use pipelining, data prefetch, tiling
= All may show no benefit, slowdown, get wrong param value
when timed in-cache, but used out-of-cache
— All may be critical for out-of-cache performance

@ Does this actually occur (yes, next slide)?

R. Clint Whaley (UTSA-CS) timers July 9, 2008 5/18

S I(d). Wrong Timer's Impact on Autotuning
WA ATLAS DGEMM performance when installed with /without flushing

‘I Flush tune

A No#Mshtune‘

2200
2000

o

1800

A X

1600

~

1400

A

el

~

MFLOPS

1200
1000

i

Y

7

800
600

/._//

400

200

0

20

R. Clint Whaley (UTSA-CS)

40 60 80

Matrix Order (N)

timers

100 200 400 600 800 1000 1200 1400 1600 1800 2000

July 9, 2008 6 /18

€ |l. Naive Kernel and Timer
UTSA
DDOT kernel Naive timer
double dotprod(for (i=0; i < N; i++)
const int N, { // Init operands
const double *X, X[i] = rand(Q);
const double *Y) Y[i] = rand(Q);
{ }
int i; //
double dot=0.0; // Perform timing
for (i=0; i<N; i++) //
dot += X[i] * Y[i]; t0 = my_time();
return(dot) ; dot = dotprod(N, X, Y);
} tl = my_time();

V.

@ Init preloads operands to any cache large enough to hold them

R. Clint Whaley (UTSA-CS)

timers July 9, 2008

o

[Il. Portable Cache Flushing for One Call

5A Cache flushing when kernel is called only once per sample

LRU-based cache flush
sizeof (double)
cacheKB*x1024/dsz;
flush = calloc(cs,dsz);
for (i=0; i < N; i++) {

dsz =
cs =

X[i] = rand(); // Init
Y[i] = rand();
}
for (i=0; i < cs; i++)
tmp += flush[i]; //flsh
assert(tmp < 10.0);
t0 = my_time();
dot = dotprod(N, X, Y);
tl = my_time();

v

R. Clint Whaley (UTSA-CS)

timers

OneCallFlushLRU Notes
= Access unrelated area >

cache size to force flush
@ Relies on LRU for flush

— For non-LRU caches,
increase cachekB

@ Vary flush level wt cacheKB

@ Allow specific ops in-cache

by initing after flush

@ Paper has x86-specific
method using explicit
cache-flush instructions

July 9, 2008

8/ 18

¢ 1V(a). Cache Flushing for Multiple Calls

- . . - . . .
TOA Timing when each measurement contains multiple kernel invokations

When kernel call below repeatable clock resolution, can time loop
that invokes kernel nrep times to get timing interval above resolution:

@ Cannot start & stop timers inside loop
— each interval below resolution, so timing mostly error
— adding them up gives erroneous time
= Must start timer before nrep loop, stop after:

o If you call with same operands, will be in-cache

o If you use prior technique, last nrep — 1 calls in-cache
e If you put flush inside loop, flush time added to kernel time

— Cannot time flush only loop and subtract, since flush time may
vary strongly depending on external access

= Must lay out operands in mem, and move so that each kernel
invocation uses out-of-cache data (next slide)

R. Clint Whaley (UTSA-CS) timers July9,2008 9 /18

¢ IV(b). What not to do

- . . - . . .
SA Timing when each measurement contains multiple kernel invocations

bad ideal - no resolution
sizeof (double)
flush = calloc(cs,dsz);
for (j=0; j < nrep; j++)
{

dsz =

for (i=0; i < cs; i++)
tmp += flush[i];

assert(tmp < 10.0);

t0 = my_time();

dot = dotprod(N, X, Y)

tl += my_time() - tO;

R. Clint Whaley (UTSA-CS)

timers

bad idea?2 - flush prob

t0 = my_time();
for (j=0; j < nrep; j++) {
for (i=0; i < cs; i++)
tmp += flush[i];
assert(tmp < 10.0);
dot = dotprod(N, X, Y);

}
tl = my_time() - tO;
t0 = my_time();

for (j=0; j < nrep; j++) {
for (i=0; i < cs; i++)
tmp += flushl[i];
}
tl -= my_time() - tO;

v

July 9, 2008 10 / 18

& 1V(c). Cache Flushing for Multiple Calls

TOA Cache flushing when kernel called multiple times in one sample

Tk opl Multiple call dot product timer
ste"t 0p2 cs = cacheKB*(1024/sizeof (double)) ;
1 setsz = N + N; // 2 N-length ops in wrk set
| opN g nset = (cs + setsz-1)/setsz;
I fopl] if (nset < 1) nset=1;
wrk Op2 e Nt = nset * setsz;
set | — f X = vp = malloc(sizeof (double)*Nt) ;
L bl o Ko sewem vl
: 5 or (x=vp,i=Nt-1; i >= 0; i--)
h x[i] = my_drand();
. 3 x=X; y=Y; k=0; alpha = 1.0;
- r t0 = my_time();
Mik opl € for (i=0; i < nrep; i++) {
set op2 dot += alpha*dotprod(N, X, Y)
N s if (++k != nset) {x -= setsz; y -= setsz;}
| PpN T else {x=X;y=Y;k=0;alpha = -alpha;}

}
time = (my_time()-t0)/((double)nrep);

R. Clint Whaley (UTSA-CS) timers July 9, 2008 11 /18

€ V. Timer Refinements
UfﬁA List of additional timing techniques/tips covered in paper

Paper provides techniques for avoiding:
@ Floating point over/under-flow,
o Lazy page zeroing,
@ Virtual memory instruction load,
@ Incorrect timings due to CPU throttling.

Paper discusses methods for:
@ Choosing best system timer

@ Getting more repeatable results using both CPU and WALL
timers,

@ Varying type and thoroughness of flush,
e Enforcing memory (mis)alignment,

o Adapting cache flushing for parallel timings.

R. Clint Whaley (UTSA-CS) timers July 9, 2008

12 /18

& VI. Further Information
TSA

o Presenter homepage: wuw.cs.utsa.edu/ whaley/

e Timing paper: Clint Whaley and Anthony M. Castaldo,
“Achieving accurate and context-sensitive timing for code
optimization”, accepted for publication in Software: Practice &
Experience

— www.cs.utsa.edu/"whaley/papers/timing_SPE0S8.pdf
o ATLAS homepage: math-atlas.sourceforge.net
o iFKO paper: R. Clint Whaley and David B. Whalley, “Tuning
High Performance Kernels through Empirical Compilation”, In
The 2005 International Conference on Parallel Processing, June
2005.

— www.cs.utsa.edu/"whaley/papers/icpp05_8.ps

R. Clint Whaley (UTSA-CS)

timers

July 9, 2008 13 /18

€ Picking losing fights

<2
=

Self-tuned libraries will always outperform compiler-generated code

= In theory, no, in practice, yes.
— Probably will compete on selected benchmarks, but be crushed
for actual use.

R. Clint Whaley (UTSA-CS) timers July9,2008 14 /18

& Picking losing fights

SA Self-tuned libraries will always outperform compiler-generated code

= In theory, no, in practice, yes.

— Probably will compete on selected benchmarks, but be crushed
for actual use.

Why: Three anti-HPC Compiler Traditions

Q@ My assumptions trump your experimental results
o Libraries eventually have users wt. applications
— keeps them honest to some degree
@ All problems solved 20 years ago — nothing works today

e HPC weak, but does reward raw performance improvement
e We haven't solved this prob in serial:

= Let's solve it on heterogeneous massively parallel machine!

© 10,000 front-ends, 0 HPC backends

o CISC compaction, front-end (arch) optimization, inst alignment,
inst selection & sched

R. Clint Whaley (UTSA-CS) timers July 9, 2008 15 / 18

