

Introduction to vl3

Venkat Vishwanath
Argonne National Laboratory
University of Chicago

Volume Rendering Pipeline

Data → Filter → Render → Composite → Image

- Reduces 2- and 3-dimensionsal datasets into 2D images
- Enables one to better understand scientific phenomena

Scalable Volume Rendering

Leverage Parallelism in all stages

- Subdivision of data
- Parallel rendering
- Parallel image composition

Software Rendering vs Hardware Rendering

- Software rendering refers to the computations being performed on the CPU.
- Software rendering is extremely flexible and runs on any hardware.
- With the proliferation of commodity Graphical Processing Units (GPU), one can leverage GPUs for volume rendering. This is referred to as Hardware Rendering.
- Hardware Rendering requires a GPU and is portable across GPUs (AMD, NVidia) using the GLSL shading language. CUDA is not portable.

vl3 Architecture - Modular and Extensible

- vl3 runs on a desktop, GPU-based clusters and CPU-based clusters
- vl3 was used to generate the top 2 visualizations at SciDAC
 2010 and has won a total of 5 OASCRs in the past 3 years

vl3 Features

- Parallel Volume Visualization
- Supports both Software and GPU-based
 Hardware volume rendering and compositing
- Support for multiple data formats, filters, compositing algorithms via plugins
- Support for multiple output modes
- Support for multiple interaction devices
- Configurable design enables vl3 to be customized for the underlying architecture

vl3 Examples

Computed Tomography

Microtomography

Cosmology

vl3- Enabling Domain-specific Visualization

vl3- Enabling Domain-specific Visualization

- vl3 is regularly used by surgeons at Univ. of Chicago and provides them with an intuitive user experience
- vl3 is used in teaching a virtual anatomy class at University of Chicago

vl3 users

APS, Argonne

Argonne Leadership Class Facility (ALCF)

Eureka is a 110 Tflop GPU-based Data Analytics and Visualization Cluster facilitating major scientific discoveries and breakthroughs for programs including INCITE and ALCC

Exploring Cosmology With Supercomputers, Supernetworks, and Supervisualization

Intergalactic medium on 2 Glyr scale

- 4096³ particle/cell hydrodynamic cosmology simulation
- NICS Kraken (XT5)
 - 16,384 cores
- Output
 - 148 TB movie output
 - 80 TB diagnostic dumps

Science: Norman, Harkness, Paschos SDSC Visualization: Insley, ANL; Wagner SDSC

ESnet

StarGate Streaming Rendering

ALCF Internal

3

A media bridge at the border provides secure access to the parallel rendering streams.

gs1.intrepid.alcf.anl.gov

SDSC

San Diego

5

Updated instructions are sent back to the renderer to change views, or load a different dataset.

flPy, a parallel (MPI) tiled image/movie viewer composites the individual movies, and synchronizes the movie playback across the OptIPortal rendering nodes.

The full image is broken into subsets (tiles). The tiles are continuously encoded as a separate movies.

1

Simulation volume is rendered using vl3, a parallel (MPI) volume renderer utilizing Eureka's GPUs. The rendering changes views steadily to highlight 3D structure.

ANL * Calit2 * LBNL * NICS * ORNL * SDSC

Rick Wagner in front of OptiPortal on SC09 show floor in Portland, OR, with vl3 streaming from Eureka at Argonne

vl3 Rendering Performance on Eureka

Data Size	Number of Processors/ Graphics Cards	Render + Composite Time
1024 ³	8	0.9 sec
4096 ³	64	1.3 sec

vl3 has currently scaled to (6400)³ data sizes and the entire Eureka cluster

Acknowledgements

This work was supported was in part by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357, by the National Library of Medicine as part of contract #N01-LM-3-3508, and by the National Science Foundation as part of contract OCI-0504086, and in part by the DOE-supported ASC / Alliance Center for Astrophysical Thermonuclear Flashes at the University of Chicago.

- Eric Olson, Joseph Insley, Michael Papka, Mark Hereld, Tom Uram (ANL); Brad Gallagher (UChicago)
- Matt McCrory (NWU) and Joe Paris (NWU)

Back up Slides

