

Data Analysis and Visualization

CScADS 2011

Venkatram Vishwanath

Your Goals

- What do you look to get out of analysis process?
- What analysis tools are you currently using?
 - What are the limitations?
- Do you do real-time exploration or batch processing?
 - What is the role of real-time exploration?
- Batch?
 - Percentage of your analysis time spent in either mode?
- Do you look at images, movies or graphs?
 - What is role of each (e.g. graphs for science, images publications, movies for talks)

Your Footprint

- How long do your simulations run?
 - Is the result a time series?
 - How many files does that produce?
- How much of your simulation time is I/O?
- What are your dataset sizes?
 - checkpoint files, variables, species, analysis files
- How long do you spend on analysis, what is the fraction of compute versus human?

One cycle of the simulation		Files / Sim	Data Size
	Checkpoint Files	100	4.2 TB
	Plot Files	800	10 TB
	Particle Data	5000	500 GB

All Sorts of Tools

- Visualization Applications
 - VisIt
 - ParaView
 - EnSight
- Domain Specific
 - PyMol, RasMol
- APIs
 - VTK: visualization
 - ITK: segmentat & registration
- GPU performance
 - vl3: shader-based vol ren
 - Scout: GPGPU acceleration

- Analysis Environments
 - Matlab
 - Parallel R
- Utilities
 - GnuPlot
 - ImageMagick
- Visualization Workflow
 - VisTrails

ParaView Overview

- Parallel Visualization Application
- Open source
- VTK + Tcl
- Python scripting
- Interactive and batch
- About
 - Kitware, Sandia National Labs,
 CSimSoft, LANL, Army Research
 ...and community
 - http://www.paraview.org

Vislt Overview

- Parallel interactive
 visualization application
- About
 - DOE ASCI
 - https://www.llnl.gov/visit

VisTrails

 Scientific workflow management for visual data analysis

Construct and execute pipelines

Visual programming

VTK, ITK, and Matplotlib

History tree captures prov

Visualization spreadsheet

- About
 - http://www.vistrails.org

ParaView Hands On

Tutorial

https://wiki.alcf.anl.gov/index.php/ParaView_Red_Blood_Cell_Tutorial

Download ParaView at:

http://www.paraview.org/paraview/resources/software.html

Traditional Science Pipeline

Time to discovery is high as we are moving data to and from storage

Post Processing Pipeline in HPC

Storage systems are currently unable to cope with extreme scale data sizes in a cost-effective way and this will only get worse in future

in situ - Simulation Time Analysis on the Compute Resource

Analysis occurs during simulation time on the compute resource

co-analysis - Simulation time analysis on a direct attached analysis resource

- Compute resource and Analysis resource are directly connected over an ultra high-speed network
- Data is moved to the analysis resource memory

in situ versus co-analysis

in situ

Pros

- Uses simulation data structures
- No additional hardware resource required

Cons

 Time-varying and memory-intensive analysis is extremely difficult

co-analysis

Pros

- Extremely flexible

 analysis including time varying analytics
- Does not require precious simulation resources

Cons

 Requires a coscheduling infrastructure

Proposed solutions require modification to the simulations code and a flexible approach is needed

How do I analyze my data? in situ, co-analysis or post processing?

There are multiple answers!!

A solution needs to consider, among others:

- Simulation characteristics
- Analysis characteristics
- System characteristics
- Be flexible enough to meet the needs of the science

Argonne Leadership Computing Facility Infrastructure and Analysis Opportunities

The analysis abstractions are applicable to other leadership class infrastructures

