
Hardware Performance Monitoring Hardware Performance Monitoring
with PAPIwith PAPI

Dan Terpstra
terpstra@cs.utk.edu

CScADS Autotuning Workshop
July 2007

CScADS Autotuning

WhatWhat’’s PAPI?s PAPI?
♦ Middleware that provides a consistent programming

interface for the performance counter hardware found
in most major micro-processors.

♦ Countable events are defined in two ways:
Platform-neutral Preset Events
Platform-dependent Native Events

♦ Preset Events can be derived from multiple Native
Events

♦ All events are referenced by name and collected into
EventSets for sampling

♦ Events can be multiplexed if counters are limited
♦ Statistical sampling is implemented by:

Software overflow with timer driven sampling
Hardware overflow if supported by the platform

CScADS Autotuning

WhereWhere’’s PAPIs PAPI
♦ PAPI runs on most modern processors and

Operating Systems of interest to HPC:
IBM POWER{3, 4, 5} / AIX
POWER{4, 5, 6} / Linux
PowerPC{-32, -64, 970} / Linux
Blue Gene / L
Intel Pentium II, III, 4, M, Core, etc. / Linux
Intel Itanium{1, 2, Montecito?}
AMD Athlon, Opteron / Linux
Cray T3E, X1, XD3, XT{3, 4} Catamount
Altix, Sparc, SiCortex…
…and even Windows!
…but not Mac

CScADS Autotuning

History of PAPIHistory of PAPI

♦http://icl.cs.utk.edu/papi/
♦Started as a Parallel Tools

Consortium project in 1998
♦Goal:

“Produce a specification for a portable
interface to the hardware performance
counters available on most modern
microprocessors”.

CScADS Autotuning

Release TimelineRelease Timeline

SDCI HPC Improvement:
High-Productivity Performance Engineering

(Tools, Methods, Training) for the NSF HPC Applications
Submitted January 22, 2007

Allen D. Malony, Sameer Shende, Shirley Moore, Nicholas Nystrom, Rick Kufrin

Figure 2: Timeline of releases for each tool represented in the project. The vertical dashed lines indicate SC conference
dates where the tools are regularly demonstrated. TAU’s v1.0 release occurred at SC’97.

CScADS Autotuning

♦ TAU (U Oregon) http://www.cs.uoregon.edu/research/tau/

♦ HPCToolkit (Rice Univ) http://hipersoft.cs.rice.edu/hpctoolkit/
♦ KOJAK (UTK, FZ Juelich) http://icl.cs.utk.edu/kojak/
♦ PerfSuite (NCSA) http://perfsuite.ncsa.uiuc.edu/
♦ Titanium (UC Berkeley)

http://www.cs.berkeley.edu/Research/Projects/titanium/

♦ SCALEA (Thomas Fahringer, U Innsbruck)
http://www.par.univie.ac.at/project/scalea/

♦ Open|Speedshop (SGI) http://oss.sgi.com/projects/openspeedshop/

♦ SvPablo (UNC Renaissance Computing Institute)
http://www.renci.unc.edu/Software/Pablo/pablo.htm

Some Tools that use PAPISome Tools that use PAPI

CScADS Autotuning

Current PAPI DesignCurrent PAPI Design

Two exposed interfaces to the underlying counter hardware:
1. The low level API manages hardware events in user

defined groups called EventSets, and provides access to
advanced features.

2. The high level API provides the ability to start, stop and
read the counters for a specified list of events.

PAPI Framework Layer

Low
Level
API

Hi
Level
API

PAPI Component Layer

Perf Counter Hardware
Operating System

Kernel Patch

Portable

Platform
Dependent

CScADS Autotuning

PAPI Hardware EventsPAPI Hardware Events
♦ Preset Events

Standard set of over 100 events for application
performance tuning
No standardization of the exact definition
Mapped to either single or linear combinations of native
events on each platform
Use papi_avail utility to see what preset events are
available on a given platform

♦ Native Events
Any event countable by the CPU

Same interface as for preset events

Use papi_native_avail utility to see all available native
events

♦ Use papi_event_chooser utility to select a
compatible set of events

CScADS Autotuning

Data and Instruction Range QualificationData and Instruction Range Qualification
♦ Generalized PAPI interface for data structure and

instruction address range qualification
♦ Applied to the specific instance of the Itanium2
♦ Extended an existing PAPI call, PAPI_set_opt(),

to specify starting and ending addresses of data
structures or instructions to be instrumented

option.addr.eventset = EventSet;
option.addr.start = (caddr_t)array;
option.addr.end = (caddr_t)(array + size_array);
retval = PAPI_set_opt(PAPI_DATA_ADDRESS, &option);

♦ An instruction range can be set using
PAPI_INSTR_ADDRESS

♦ papi_native_avail was modified to list events
that support data or instruction address range
qualification.

CScADS Autotuning

PAPI Preset EventsPAPI Preset Events
♦ Of ~100 events, over half are cache related:

PAPI_L1_DCH: Level 1 data cache hits
PAPI_L1_DCA: Level 1 data cache accesses
PAPI_L1_DCR: Level 1 data cache reads
PAPI_L1_DCW: Level 1 data cache writes
PAPI_L1_DCM: Level 1 data cache misses

PAPI_L1_ICH: Level 1 instruction cache hits
PAPI_L1_ICA: Level 1 instruction cache accesses
PAPI_L1_ICR: Level 1 instruction cache reads
PAPI_L1_ICW: Level 1 instruction cache writes
PAPI_L1_ICM: Level 1 instruction cache misses

PAPI_L1_TCH: Level 1 total cache hits
PAPI_L1_TCA: Level 1 total cache accesses
PAPI_L1_TCR: Level 1 total cache reads
PAPI_L1_TCW: Level 1 total cache writes
PAPI_L1_TCM: Level 1 cache misses

PAPI_L1_LDM: Level 1 load misses
PAPI_L1_STM: Level 1 store misses ♦ Repeat for

Levels 2 and 3…

CScADS Autotuning

PAPI Preset Events (ii)PAPI Preset Events (ii)
♦Other cache and memory events:

PAPI_CA_SNP: Requests for a snoop
PAPI_CA_SHR: Requests for exclusive access to shared cache line
PAPI_CA_CLN: Requests for exclusive access to clean cache line
PAPI_CA_INV: Requests for cache line invalidation
PAPI_CA_ITV: Requests for cache line intervention

PAPI_TLB_DM: Data translation lookaside buffer misses
PAPI_TLB_IM: Instruction translation lookaside buffer misses
PAPI_TLB_TL: Total translation lookaside buffer misses
PAPI_TLB_SD: Translation lookaside buffer shootdowns

PAPI_LD_INS: Load instructions
PAPI_SR_INS: Store instructions

PAPI_MEM_SCY: Cycles Stalled Waiting for memory accesses
PAPI_MEM_RCY: Cycles Stalled Waiting for memory Reads
PAPI_MEM_WCY: Cycles Stalled Waiting for memory writes
PAPI_RES_STL: Cycles stalled on any resource
PAPI_FP_STAL: Cycles the FP unit(s) are stalled

Shared
cache

TLB

Resource
Stalls

CScADS Autotuning

PAPI Preset Events (iii)PAPI Preset Events (iii)
♦ Program flow:

PAPI_BR_INS: Branch instructions
PAPI_BR_UCN: Unconditional branch instructions
PAPI_BR_CN: Conditional branch instructions
PAPI_BR_TKN: Conditional branch instructions taken
PAPI_BR_NTK: Conditional branch instructions not taken
PAPI_BR_MSP: Conditional branch instructions mispredicted
PAPI_BR_PRC: Conditional branch instructions correctly predicted

PAPI_BTAC_M: Branch target address cache misses

PAPI_CSR_FAL: Failed store conditional instructions
PAPI_CSR_SUC: Successful store conditional instructions
PAPI_CSR_TOT: Total store conditional instructions

Branches

Conditional
Stores

CScADS Autotuning

PAPI_TOT_CYC: Total cycles

PAPI_TOT_IIS: Instructions issued
PAPI_TOT_INS: Instructions completed
PAPI_INT_INS: Integer instructions completed
PAPI_LST_INS: Load/store instructions completed
PAPI_SYC_INS: Synchronization instructions completed

PAPI_BRU_IDL: Cycles branch units are idle
PAPI_FXU_IDL: Cycles integer units are idle
PAPI_FPU_IDL: Cycles floating point units are idle
PAPI_LSU_IDL: Cycles load/store units are idle

PAPI_STL_ICY: Cycles with no instruction issue
PAPI_FUL_ICY: Cycles with maximum instruction issue
PAPI_STL_CCY: Cycles with no instructions completed
PAPI_FUL_CCY: Cycles with maximum instructions completed

PAPI_HW_INT: Hardware interrupts

PAPI Preset Events (iv)PAPI Preset Events (iv)
♦Timing, efficiency, pipeline:

CScADS Autotuning

PAPI Preset Events (v)PAPI Preset Events (v)
♦Floating point:

PAPI_FP_INS: Floating point instructions
PAPI_FP_OPS: Floating point operations
PAPI_FML_INS: Floating point multiply instructions
PAPI_FAD_INS: Floating point add instructions
PAPI_FDV_INS: Floating point divide instructions
PAPI_FSQ_INS: Floating point square root instructions
PAPI_FNV_INS: Floating point inverse instructions
PAPI_FMA_INS: FMA instructions completed
PAPI_VEC_INS: Vector/SIMD instructions

CScADS Autotuning

WhatWhat’’s a Native Event?s a Native Event?

8 mask bits 8 bits: 256 events

16 mask bits 6 bits: 64 events

PMC: Pentium 4

PMC: Intel Pentium II, III, M, Core; AMD Athlon, Opteron

PMD: AMD Athlon, Opteron

CScADS Autotuning

Intel Pentium Core: L2_STIntel Pentium Core: L2_ST
{ .pme_uname = "SELF",

.pme_udesc = "This core",

.pme_ucode = 0x40
},
{ .pme_uname = "BOTH_CORES",

.pme_udesc = "Both cores",

.pme_ucode = 0xc0
}

},
.pme_numasks = 7

},

…

…
{ .pme_name = "L2_ST",

.pme_code = 0x2a,

.pme_flags = PFMLIB_CORE_CSPEC,

.pme_desc = "L2 store requests",

.pme_umasks = {
{ .pme_uname = "MESI",

.pme_udesc = "Any cacheline access",

.pme_ucode = 0xf
},
{ .pme_uname = "I_STATE",

.pme_udesc = "Invalid cacheline",

.pme_ucode = 0x1
},
{ .pme_uname = "S_STATE",

.pme_udesc = "Shared cacheline",

.pme_ucode = 0x2
},
{ .pme_uname = "E_STATE",

.pme_udesc = "Exclusive cacheline",

.pme_ucode = 0x4
},
{ .pme_uname = "M_STATE",

.pme_udesc = "Modified cacheline",

.pme_ucode = 0x8
}

PRESET,
PAPI_L2_DCA,
DERIVED_ADD,
L2_LD:SELF:ANY:MESI,
L2_ST:SELF:MESI

CScADS Autotuning

How many counters does it takeHow many counters does it take……

Pen
tiu

m
Pen

tiu
m II

Pen
tiu

m III
Pen

tiu
m M

Ita
niu

m
AMD Athl

on
AMD O

pte
ron

SiCort
ex

 M
IPS

Int
el

Core
POWER3
POWER4

Cell
POWER5
Pen

tiu
m 4

BG/L
Cray

 X1

S1

0

10

20

30

40

50

60

70

2 4
5

(3 fixed)

8

8:16
4:32

12
(6:2)

18

48+2+2

32+16+16

CScADS Autotuning

PAPI and BG/LPAPI and BG/L
♦ Performance Counters:

48 UPC Counters
shared by both CPUs
External to CPU cores
32 bits :(

2 Counters on each FPU
1 counts load/stores
1 counts arithmetic operations

Accessed via blg_perfctr
15 Preset Events

10 PAPI presets
5 Custom BG/L presets

328 native events available

2 FPU PMCs

2 FPU PMCs

UPC Module
48 Shared
Counters

CScADS Autotuning

Cell Broadband EngineCell Broadband Engine
♦ Each Cell contains: 1 PPE and 8 SPEs.

…and 1 PMU external to all of these.
8 16-bit counters configurable as 4 32-bit counters.
1024 slot 128-bit trace buffer
400 native events

♦ Working with IBM
engineers on

developing perfmon2
libpfm layer for Cell BE
Linux Cell BE
kernel modifications
Porting PAPI-C
(LANL grant)

CScADS Autotuning

Top500 Operating SystemsTop500 Operating Systems

CScADS Autotuning

PerfctrPerfctr

♦Written by Mikael Petterson
Labor of love…
First available: Fall 1999
First PAPI use: Fall 2000

♦Supports:
Intel Pentium II, III, 4, M, Core
AMD K7 (Athlon), K8 (Opteron)
IBM PowerPC 970, POWER4, POWER5

CScADS Autotuning

PerfctrPerfctr FeaturesFeatures

♦ Patches the Linux kernel
Saves perf counters on context switch
Virtualizes counters to 64-bits
Memory-maps counters for fast
access
Supports counter overflow interrupts
where available

♦User Space Library
PAPI uses about a dozen calls

CScADS Autotuning

PerfctrPerfctr TimelineTimeline

♦Steady development
1999 – 2004

♦Concerted effort for kernel inclusion
May 2004 – May 2005

♦ Ported to Cray Catamount; Power Linux
~ 2005

♦Maintenance only
2005

CScADS Autotuning

PerfmonPerfmon

♦Written by Stephane Eranian @ HP
♦Originally Itanium only

Built-in to the Linux-ia64 kernel since
2.4.0

♦System call interface
♦ libpfm helper library for bookkeeping

CScADS Autotuning

Perfmon2*Perfmon2*
♦ Provides a generic interface to access PMU

Not dedicated to one app, avoid fragmentation
♦ Must be portable across all PMU models:

Almost all PMU-specific knowledge in user level libraries
♦ Supports per-thread monitoring

Self-monitoring, unmodified binaries, attach/detach
multi-threaded and multi-process workloads

♦ Supports system-wide monitoring
♦ Supports counting and sampling
♦ No modification to applications or system
♦ Built-in, efficient, robust, secure, simple,

documented

* Slide contents courtesy Stephane Eranian* Slide contents courtesy Stephane Eranian

CScADS Autotuning

Perfmon2Perfmon2
♦ Setup done through external support library
♦ Uses a system call for counting operations

More flexibility, ties with ctxsw, exit, fork
Kernel compile-time option on Linux

♦ Perfmon2 context encapsulates all PMU state
Each context uniquely identified by file descriptor

♦ int perfmonctl(int fd, int cmd, void *arg, int narg)

PFM_GET_CONFIG
PFM_GETINFO_PMCS
PFM_CREATE_EVTSET
PFM_WRITE_PMDS
PFM_WRITE_PMCS
PFM_CREATE_CONTEXT

PFM_SET_CONFIG
PFM_GETINFO_PMDS
PFM_DELETE_EVTSET
PFM_UNLOAD_CONTEXT
PFM_LOAD_CONTEXT
PFM_READ_PMDS

PFM_GETINFO_EVTSET
PFM_RESTART
PFM_STOP
PFM_START

CScADS Autotuning

Perfmon2 FeaturesPerfmon2 Features

♦ Support today for:
Intel Itanium, P6, M, Core, Pentium4, AMD
Opteron, IBM Power, MIPS, SiCortex

♦ Full native event tables for supported
processors

♦ Kernel based Multiplexing
Event set chaining

♦ Kernel based Sampling/Overflow
Time or event based
Custom sampling buffers

CScADS Autotuning

Next StepsNext Steps

♦ Kernel integration
‘Final’ integration testing underway
Possible inclusion in 2.6.22 kernel

♦ Implemented by Cray in CNK, X2
♦ Cell BE

Port with IBM engineers is underway
♦ Leverage libpfm for PAPI native events

Migration completed for P6, Core, P4, Opteron
♦ PAPI testing on perfmon2 patched kernels

Opteron currently being tested
Woodcrest/Clovertown testing planned

CScADS Autotuning

Component PAPI (PAPIComponent PAPI (PAPI--C)C)
♦Goals:

Support simultaneous access to on- and off-
processor counters
Isolate hardware dependent code in a separable
‘component’ module
Extend platform independent framework code to
support multiple simultaneous components
Add or modify API calls to support access to
any of several components
Modify build environment for easy selection and
configuration of multiple available components

♦Will be released (RSN*) as PAPI 4.0

CScADS Autotuning

Current PAPI DesignCurrent PAPI Design

PAPI Framework Layer

Low
Level
API

Hi
Level
API

PAPI Component Layer

Perf Counter Hardware
Operating System

Kernel Patch

Portable

Platform
Dependent

CScADS Autotuning

Component PAPI DesignComponent PAPI Design

PAPI Framework Layer

Low
Level
API

Hi
Level
API

PAPI Component Layer
(network)

Perf Counter Hardware
Operating System

Kernel Patch
PAPI Component Layer
(CPU)

Perf Counter Hardware
Operating System

Kernel Patch

PAPI Component Layer
(thermal)

Perf Counter Hardware
Operating System

Kernel Patch

DevelAPI
Devel

API
Devel
API

CScADS Autotuning

PAPIPAPI--C StatusC Status
♦ PAPI 3.9 pre-release available with documentation
♦ Implemented Myrinet substrate (native counters)
♦ Implemented ACPI temperature sensor substrate
♦ Working on Infiniband and Cray Seastar substrates

(access to Seastar counters not available under
Catamount but expected under CNL)

♦ Asked by Cray engineers for input on desired metrics for
next network switch

♦ Tested on HPC Challenge benchmarks
♦ Tested platforms include Pentium III, Pentium 4,

Core2Duo, Itanium (I and II) and AMD Opteron

CScADS Autotuning

PAPIPAPI--C New RoutinesC New Routines

♦ PAPI_get_component_info()
♦ PAPI_num_cmp_hwctrs()
♦ PAPI_get_cmp_opt()
♦ PAPI_set_cmp_opt()
♦ PAPI_set_cmp_domain()
♦ PAPI_set_cmp_granularity()

CScADS Autotuning

PAPIPAPI--C Building and LinkingC Building and Linking

♦ CPU components are automatically detected by
configure and included in the build

♦ CPU component assumed to be present and
always configured as component 0

♦ To include additional components, use configure
option

--with-<cmp> = yes
♦ Currently supported components

with-acpi = yes
with-mx = yes
with-net = yes

♦ The make process compiles and links sources for
all requested components into a single library

CScADS Autotuning

MyrinetMyrinet MX CountersMX Counters
ROUTE_DISPERSION
OUT_OF_SEND_HANDLES
OUT_OF_PULL_HANDLES
OUT_OF_PUSH_HANDLES
MEDIUM_CONT_RACE
CMD_TYPE_UNKNOWN
UREQ_TYPE_UNKNOWN
INTERRUPTS_OVERRUN
WAITING_FOR_INTERRUPT_DMA
WAITING_FOR_INTERRUPT_ACK
WAITING_FOR_INTERRUPT_TIM

ER
SLABS_RECYCLING
SLABS_PRESSURE
SLABS_STARVATION
OUT_OF_RDMA_HANDLES
EVENTQ_FULL
BUFFER_DROP
MEMORY_DROP
HARDWARE_FLOW_CONTROL
SIMULATED_PACKETS_LOST
LOGGING_FRAMES_DUMPED
WAKE_INTERRUPTS
AVERTED_WAKEUP_RACE
DMA_METADATA_RACE

REPLY_SEND
REPLY_RECV
QUERY_UNKNOWN
DATA_SEND_NULL
DATA_SEND_SMALL
DATA_SEND_MEDIUM
DATA_SEND_RNDV
DATA_SEND_PULL
DATA_RECV_NULL
DATA_RECV_SMALL_INLINE
DATA_RECV_SMALL_COPY
DATA_RECV_MEDIUM
DATA_RECV_RNDV
DATA_RECV_PULL
ETHER_SEND_UNICAST_CNT
ETHER_SEND_MULTICAST_C

NT
ETHER_RECV_SMALL_CNT
ETHER_RECV_BIG_CNT
ETHER_OVERRUN
ETHER_OVERSIZED
DATA_RECV_NO_CREDITS
PACKETS_RESENT
PACKETS_DROPPED
MAPPER_ROUTES_UPDATE

ACK_NACK_FRAMES_IN_PIPE
NACK_BAD_ENDPT
NACK_ENDPT_CLOSED
NACK_BAD_SESSION
NACK_BAD_RDMAWIN
NACK_EVENTQ_FULL
SEND_BAD_RDMAWIN
CONNECT_TIMEOUT
CONNECT_SRC_UNKNOWN
QUERY_BAD_MAGIC
QUERY_TIMED_OUT
QUERY_SRC_UNKNOWN
RAW_SENDS
RAW_RECEIVES
RAW_OVERSIZED_PACKETS
RAW_RECV_OVERRUN
RAW_DISABLED
CONNECT_SEND
CONNECT_RECV
ACK_SEND
ACK_RECV
PUSH_SEND
PUSH_RECV
QUERY_SEND
QUERY_RECV

LANAI_UPTIME
COUNTERS_UPTIME
BAD_CRC8
BAD_CRC32
UNSTRIPPED_ROUTE
PKT_DESC_INVALID
RECV_PKT_ERRORS
PKT_MISROUTED
DATA_SRC_UNKNOWN
DATA_BAD_ENDPT
DATA_ENDPT_CLOSED
DATA_BAD_SESSION
PUSH_BAD_WINDOW
PUSH_DUPLICATE
PUSH_OBSOLETE
PUSH_RACE_DRIVER
PUSH_BAD_SEND_HANDLE

_MAGIC
PUSH_BAD_SRC_MAGIC
PULL_OBSOLETE
PULL_NOTIFY_OBSOLETE
PULL_RACE_DRIVER
ACK_BAD_TYPE
ACK_BAD_MAGIC
ACK_RESEND_RACE
LATE_ACK

CScADS Autotuning

MyrinetMyrinet MX CountersMX Counters
ROUTE_DISPERSION
OUT_OF_SEND_HANDLES
OUT_OF_PULL_HANDLES
OUT_OF_PUSH_HANDLES
MEDIUM_CONT_RACE
CMD_TYPE_UNKNOWN
UREQ_TYPE_UNKNOWN
INTERRUPTS_OVERRUN
WAITING_FOR_INTERRUPT_DMA
WAITING_FOR_INTERRUPT_ACK
WAITING_FOR_INTERRUPT_TIM

ER
SLABS_RECYCLING
SLABS_PRESSURE
SLABS_STARVATION
OUT_OF_RDMA_HANDLES
EVENTQ_FULL
BUFFER_DROP
MEMORY_DROP
HARDWARE_FLOW_CONTROL
SIMULATED_PACKETS_LOST
LOGGING_FRAMES_DUMPED
WAKE_INTERRUPTS
AVERTED_WAKEUP_RACE
DMA_METADATA_RACE

REPLY_SEND
REPLY_RECV
QUERY_UNKNOWN
DATA_SEND_NULL
DATA_SEND_SMALL
DATA_SEND_MEDIUM
DATA_SEND_RNDV
DATA_SEND_PULL
DATA_RECV_NULL
DATA_RECV_SMALL_INLINE
DATA_RECV_SMALL_COPY
DATA_RECV_MEDIUM
DATA_RECV_RNDV
DATA_RECV_PULL
ETHER_SEND_UNICAST_CNT
ETHER_SEND_MULTICAST_C

NT
ETHER_RECV_SMALL_CNT
ETHER_RECV_BIG_CNT
ETHER_OVERRUN
ETHER_OVERSIZED
DATA_RECV_NO_CREDITS
PACKETS_RESENT
PACKETS_DROPPED
MAPPER_ROUTES_UPDATE

ACK_NACK_FRAMES_IN_PIPE
NACK_BAD_ENDPT
NACK_ENDPT_CLOSED
NACK_BAD_SESSION
NACK_BAD_RDMAWIN
NACK_EVENTQ_FULL
SEND_BAD_RDMAWIN
CONNECT_TIMEOUT
CONNECT_SRC_UNKNOWN
QUERY_BAD_MAGIC
QUERY_TIMED_OUT
QUERY_SRC_UNKNOWN
RAW_SENDS
RAW_RECEIVES
RAW_OVERSIZED_PACKETS
RAW_RECV_OVERRUN
RAW_DISABLED
CONNECT_SEND
CONNECT_RECV
ACK_SEND
ACK_RECV
PUSH_SEND
PUSH_RECV
QUERY_SEND
QUERY_RECV

LANAI_UPTIME
COUNTERS_UPTIME
BAD_CRC8
BAD_CRC32
UNSTRIPPED_ROUTE
PKT_DESC_INVALID
RECV_PKT_ERRORS
PKT_MISROUTED
DATA_SRC_UNKNOWN
DATA_BAD_ENDPT
DATA_ENDPT_CLOSED
DATA_BAD_SESSION
PUSH_BAD_WINDOW
PUSH_DUPLICATE
PUSH_OBSOLETE
PUSH_RACE_DRIVER
PUSH_BAD_SEND_HANDLE

_MAGIC
PUSH_BAD_SRC_MAGIC
PULL_OBSOLETE
PULL_NOTIFY_OBSOLETE
PULL_RACE_DRIVER
ACK_BAD_TYPE
ACK_BAD_MAGIC
ACK_RESEND_RACE
LATE_ACK

CScADS Autotuning

Multiple MeasurementsMultiple Measurements
♦ The HPCC HPL benchmark with 3 performance metrics:

FLOPS; Temperature; Network Sends/Receives
– Temperature is from an on-chip thermal diode

CScADS Autotuning

Multiple Measurements (2)Multiple Measurements (2)
♦ The HPCC HPL benchmark with 3 performance metrics:

FLOPS; Temperature; Network Sends/Receives
– Temperature is from an on-chip thermal diode

CScADS Autotuning

Eclipse PTP IDEEclipse PTP IDE

CScADS Autotuning

Performance Evaluation within Eclipse PTPPerformance Evaluation within Eclipse PTP

CScADS Autotuning

TAU and PAPI TAU and PAPI PluginsPlugins for Eclipse PTPfor Eclipse PTP

CScADS Autotuning

Potential Potential AutotuningAutotuning OpportunitiesOpportunities

♦ Provide feedback to compilers or
search engines

♦Run-time monitoring for dynamic
tuning or selection

♦Minimally intrusive collection of
algorithm/application statistics

♦How little data do we need?
How can we find the needle in the
haystack?

♦Other suggestions?

CScADS Autotuning

Conclusions Conclusions

♦ PAPI has a long track record of
successful adoption and use.

♦New architectures pose a challenge
for off-processor hardware
monitoring as well as interpretation
of counter values.

♦Integration of perfmon2 into the
Linux kernel will broaden the base of
PAPI users still further.

Hardware Performance Hardware Performance
Monitoring with PAPIMonitoring with PAPI

Dan Terpstra
terpstra@cs.utk.edu

CScADS Autotuning Workshop
July 2007

