Porting PAPI to the Cloud
(and Other Places)

Dan Terpstra

with a little help from:
Vince Weaver,

Heike Jagode,

James Ralph,

& Kiran Kasichayanula

icLur

INNOVATIVE

COMPUTING LABORATORY
e UNIVERSITY of TENNESSEE

Center for Scalable Application Development Software
T \_Performan g Tooks Aug 1 -4, 2011



Alphabet Soup

« Component PAPI « PAPI-C

« PAPI in the Cloud « PAPI-V

* PAPI on GPUs « PAPI-G

« PAPI and User Defined « PAPI-U
Events

« PAPI Component « PAPI-R??
Repository

icLur




PAPI Team

HY
James Ralph Piotr Luszczek
Staff Kasichayanula Gadfly

Masters Student

Vince Weaver
Post Doc

Jack Dongarra Shirley Moore Dan Terpstra Phil Mucci

icLur



Piotr Luszczek, Eric Meek, Shirley Moore, Dan Terpstra, Vincent
M.Weaver, Jack Dongarra

Evaluation of the HPC Challenge Benchmarks in Virtualized Environments
VHPC’11, Bordeaux, France August 30, 2011

PAPI in the Cloud

icLor




PAPI and the
Cloud Computing Future

« Much work is being done to investigate the practicality of
moving High Performance Computing to the “cloud”

. Before such a move is made, the tradeoffs of moving to
a cloud environment must be investigated

« PAPI is the ideal tool for making such measurements,
but it will need enhancements before it works in a
virtualized cloud environment

icLd>



Obstacles with PAPI and

Virtualization

. Virtualization makes time measurements difficult;
virtualized time can run faster or slower than wall-clock
time in unpredictable ways

. Hardware performance counter readings require the co-
operation of both the operating system and hypervisor.
Support for this is still under development.

. Virtualized hardware (such as network cards and disk)
may require new PAPI| components to be written

icLd>



Virtual Time vs Wall Clock

VIIVIware —*—
s s s : VirtualBox ---m---
A - o oo Bare metal —e— |+
s s s s KVM ---a---
0 o — —-—- :
T —— e :
] — e :
| | I | |

Percentage difference
o = N W » O O N ©

LOG2 ( Problem size )

Variation in percentage difference between the measured CPU and wall clock times for
MPIRandomAccess test of HPC Challenge. The vertical axis has been split to offer a
better resolution for the majority of data points.

icLd



Accuracy Drift

70 T T T I I
% % % VMware —*—
i | VirtualBox ---m---
KVM ---a---
@
3 | | | |
< | | | |
o s s s s
K I e R o T pr 7
S
o | | | |
(@)] B B B B
£ 3 3 3 3
§ B0 S R A A A 7
o ! 3 | |
o I | | |
o / 3 ; |
I A — — — A ! .
| A |
L A Taen T S S -
: : A : _ A
| AT
/.j\ e | u -
T e S ‘ - . .
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

Matrix size

Variation in percentage difference between the measured wall clock times for HPL (a
computationally intensive problem) for ascending and descending orders of problem sizes

during execution.
icLd



% Of Bare Metal Performance

HPL: Compute Intensive

—e— VMware Player

_-_-:-_-.\Iéi\;tl\tjlalBox l ; w w T w I

100

- R ~~ -4 ——

80

60

40

20

o 8000 10000 15000
Problem Size

icLur




MPIRandomAccess:
Communication Intensive

—e— VMware Player
...... VirtualBox
-+ KVM

e

3
S
£
O
)
o 60
8
()
= SRS QI S
P S s et g
: T e Ty
- o
® 20
0 g I u T y T T T T T
18 20 22 24 26 28

Log of Problem Size

icLur




PAPI-V Future Plans

« Support for enhanced timing support, including access to
real wall-clock time (if available)

« Provide components for collecting performance of

virtualized hardware, such as virtual network, infiniband,
GPU, and disk devices

« Provide transparent access to virtualized hardware
performance counters

Perfctr-Xen: a framework for performance counter virtualization.

Ruslan Nikolaev and Godmar Back.

In Proceedings of the 7th ACM SIGPLAN/SIGOPS international conference on Virtual
execution environments (VEE '11). ACM, New York, NY, USA, 15-26.
http://portal.acm.org/citation.cfm?doid=1952682.1952687

icLd



Parallel Performance Measurement of Heterogeneous Parallel Systems with GPUs
Allen Malony, Scoftt Biersdorff, Sameer Shende, Heike Jagode, Stanimire Tomov, Guido
Juckeland, Robert Dietrich, Duncan Poole and Christopher Lamb

ICPP 2011, Taipei, Taiwan, 2011.

PAPIl on GPUs




€% PAPI CUDA Component
B NVIDIA.

 HW performance counter measurement technology for
NVIDIA CUDA platform

 Access to HW counters inside the GPUs

« Based on CUPTI (CUDA Performance Tool Interface)
in CUDA 4.0

* In any environment with CUPTI, PAPI CUDA component can
provide detailed performance counter info regarding execution
of GPU kernel

 Initialization, device management and context management is
enabled by CUDA driver API

 Domain and event management is enabled by CUPTI

 Name of events is established by the following hierarchy:
Component.Device.Domain.Event

icLd



PAPI CUDA Component

S

NVIDIA.

Portion of CUDA events available on |G (GeForce GTX, Tesla C870)

Event Code | Symbol

| Long Description

0x44000000 | CUDA.GeForce_GTX_480.gpc0.local_load # executed local load instructions per warp on a multiprocessor
0x44000001 CUDA.GeForce_GTX_480.gpc0.local_store # executed local store instructions per warp on a multiprocessor
0x44000002 | CUDA.GeForce_GTX_480.gpc0.gld_request # executed global load instructions per warp on a multiprocessor
0x44000003 | CUDA.GeForce_GTX_480.gpc0.gst_request # executed global store instructions per warp on a multiprocessor
0x44000004 | CUDA.GeForce_GTX_480.gpc0.shared_load # executed shared load instructions per warp on a multiprocessor
0x44000005 | CUDA.GeForce_GTX_480.gpc0.shared_store # executed shared store instructions per warp on a multiprocessor
0x44000006 | CUDA.GeForce_GTX_480.gpcO.branch # branches taken by threads executing a kernel

0x44000007 CUDA.GeForce_GTX_480.gpc0.divergent_branch # divergent branches within a warp

0x4400000b | CUDA.GeForce_GTX_480.gpc0.active_cycles # cycles a multiprocessor has at least one active warp
0x4400000c | CUDA.GeForce_GTX_480.gpc0.sm_cta_launched # thread blocks launched on a multiprocessor

0x4400000d | CUDA.GeForce_GTX_480.gpc0.11_local_load_hit # local load hits in L1 cache

0x4400000e CUDA.GeForce_GTX_480.gpc0.11_local_load_miss | # local load misses in L1 cache

0x44000011 CUDA.GeForce_GTX_480.gpc0.11_global_load_hit # global load hits in L1 cache

0x4400002e CUDA.Tesla_C870.domain_a.tex cache_hit # texture cache misses

0x4400002f | CUDA.Tesla_C870.domain_a.tex_ cache_miss # texture cache hits

0x44000034 | CUDA.Tesla_C870.domain_b.local_load # local memory load transactions

0x44000037 | CUDA.Tesla_C870.domain_b.branch # branches taken by threads executing a kernel

0x44000038 | CUDA.Tesla_C870.domain_b.divergent_branch # divergent branches within a warp

0x44000039 CUDA.Tesla_C870.domain_b.instructions # instructions executed

icLor




Tool interoperability

nVIDIA

nmm
IIIIIIIIII
DDDDDDDDDD
DDDDDDDDDD

DDDDDDDD
DDDDDDDDDDDDDD
DDDDDDDDDDDDDDDD

DDDDDDDDDDDD
uuuuuuuuuuuuuu

DDDDDDDD

CUDA OpenCL] D [CUDA OpenCL
CcUPTI

| |
TAU — PAPI —  VampirTrace

parallel parallel
profile 4’ frace
— Event queue
ParaProf — Callback

icLur




MAGMA versus CUBLAS:
SYMV

Symmetry exploitation more challenging
- computation would involve irregular data access

How well is symmetry exploited?
What about bank conflicts and branching?

SYMV implementation: Access each element of lower (or
upper) trian%ular part of the matrix only once = N?/2 element
reads (vs. N¢)

Since SYMV is memory-bound, exploiting symmetry is
expected to be twice as fast

To accomplish this, additional global memory workspace is
used to store intermediate results

We ran experiments using CUBLAS dsymv (general) and
MAGMA dsymv (exploits symmetry) to observe the effects of
cache behavior on Tesla S2050 (Fermi) GPU

icLd



CUDA performance counters for read behavior
(as measured by PAPI)

2,500,000 ——— CUBLAS_dsymv 2,500,000 ——— MAGMA_dsymv ———
: B fb_subp0_read_sectors - | ®fb_subpO_read_sectors

2,000,000 | ™12 _subp0_read_sector_misses 2,000,000 | ®12_subp0_read_sector_misses

I2_subpO_read_sector_queries ' 12_subpO_read_sector_queries

1,500,000 1,500,000

1,000,000 1,000,000

500,000 500,000

‘2 2

: :

8 0 g 0 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
© N > D H OO AD LA © © N XD H O O A PN
N V0 A9 0 27 AT AT LT AN N QA N V00 A7 Q7 AT AV LAY DD
R RN N PN AR ST oN SN NP SRS

Matrix Size Matrix Size

# of read requests from L1 to L2 (green), which is equal to # of read misses in
L2 (orange); number of read requests from L2 to DRAM (black) for

CUBLAS dsymv (left) and MAGMA dsymv (right)

icLw



CUDA performance counters for write behavior
(as measured by PAPI)

100,000

10,000 +

Counts

100

10

1

1,000 ¢

CuBLAS_dsymv

B fb_subp0_write_sectors

M12_subp0_write_sector_misses |

12_subpO_write_sector_queries |

_

© 5 DO O H D (o > A»
q)'\/ Q (,)Q) /\<’) 00 g?) /\cb ’\ © b’\v A

PNCEPNARPN P v’” 62 AY
Matrix Size

100,000

10,000

Counts

100 ¢

10

MAGMA_dsymv

-1 W 12_subpO_write_sector_misses

1,000 ¢

B fb_subp0_write_sectors

12_subpO_write_sector_queries

1
Y

rrrrrr T rrTT

w&»%’"o"%"’%'\@é’é”«%
&Y A \0 ,\, ,\/’\ » ,,) v’\, <,,<° ,\v
Matrle|ze

# of write requests from L1 to L2 (green), which is equal to # of
write misses in L2 (orange); # of write requests from L2 to DRAM
(black) for CUBLAS dsymv (left) and MAGMA dsymv (right)

icL>



CUDA performance counter for L1 behavior
(as measured by PAPI)

35 ¢ dsymv kernel —
33 ¢ -
31 ¢ L

g Fd

E ‘/

1,000,000

T MAGMA_dsymv

100,000
10,000 29 % //
7] w 27 [ 4
5 =
3 1,000 - Q25 |
© C = = *MAGMA

23
21 ¢
19 +

100 - e \IAGMA /w padding |

10 |1 shared_bank_conflict E
17 +
1 15
> V) ] D o \e) D \e)
NN N A S > o
Y
Matrix Size Matrix Size >

# of L1 shared bank conflicts in the MAGMA dsymv kernel
for medium to large matrix sizes (left); Performance of
MAGMA dsymv kernel with and without shared bank

conflicts (right)
icLor




SHOC Benchmarks — Stencil2D

Timeline Function Summary
15.592s 15.594s 15.596s 15.598s 15.600s 15.602 s [ All Processes, Accumulated Exclusive Time per Function...
: s z 1Sms  10ms 5 s Oms
Process 0 . 3.967 ms CUDA_SYNC  [4]
SOCEERAN ATAN 4NN LAWAN AW LAV IET— o
Process 1 ‘ ; i [RZNSEFERNNN CUDA_KERNEL
wotrs [N AN m71N A N U - Eme
: 1 \ [\ /\ Application E
Process 2 ’ A I H
{ : View
ooz 1N 0N 1N U N . =
Process 3 ; : ‘ . - = Mastelr Tl:nellne B8 I -+
. ‘| Property Value =
CUDA[1] 3:1 : : ;
[l ! : : ‘| Function StencilKernel
CUDA[0] 0:1, Values of Counter "l1_shared_bank_conflict" over Time | Function Group CUDA_KERNEL
0k : : H Interval Begin  15.595375s -
30k ll | " ‘ l ) | | 3 Interv.al End ‘115.59586 s =
W0kl f ‘ .................. f I a ! I ‘L Duration SRR —
10k | | | | | .~ Communication Matrix View
| | | | | | | 1 : :
0k - - “Average Bandwidth
CUDA[0] 0:1, Values of Counter "threads_p'erl;;lr(re'r'ﬁ'erl"' over Time : S &
% LSS
1500k f o] Jef ) B B ISESESES
1,000 k | [ \ I EFILTLIER
S00 Koo ! \ ................... ] ‘ .................. I ‘l l l { II Process 0 - . 320 MiB/s
0k - - : CUDA[0] 0:1 280 MiB/s
CUDA[0] 0:1, Values of Counter "threads_per_block" over Time Process 1 ] (© ] 240 MiB/s
250 1 — — - CUDA[1] 1:1 Q | 200 Mig/s
200 ccooeeeed e b i Process 2 - H
200 -] | [ { [ [ — : . 160 MiBs
139 [ [ 1| | © [ CupAlo) 2:1 120 MiB/s
90 e ] - . l l Process 3 ] B somies
0 L1 L | 1| I ] CUDA[1] 3:1 [ | 40 MIB/s
(4] ] ) 0 MiB/s

VAMPIR display of Stencil2D execution on 4 MPI processes with 4 GPUs. Time
synchronized GPU counter rates convey important performance characteristics

of the kernel execution
icLur




PAPI-G Future Goals

. Implement CUPTI callbacks for kernel information

« Provide multiple PAPI GPU component instantiations
through a single PAPI meta component

« Measure performance inside the kernel

icLd>



Shirley Moore and James Ralph
ICCS 2011 Workshop on Tools for Program Development and
Analysis in Computational Science June 1, 2011

PAPI and User Defined Events

icLor




PAPI User Defined Events

 PAPI has a built-in low overhead RPN event parser
 Allow users access to define their own metrics

« Example -- Memory bandwidth on Intel Core2:
« BUS TRANS:SELF |64 | * | core frequency | * | PAPI_TOT_CYC |/

MB/'s STREAM output  Counters % Delta
Copy 2227 2204 1%
Scale 2332 2333 0%
Add 2471 2326 -6%
Triad 2473 2312 -6%

icL>



Specification of User Defined Events

Event specification file

« parsed at PAPI _library_init time with
PAPI_USER _EVENTS FILE environment variable

« anytime afterwards with PAPI_set_opt call
« Static definition at PAPI compile time

Events defined by
 EventName, OPERATION_STRING

Can include predefined constants
« #define Mem_lat 450

Mulitplexing or multiple runs if necessary
PAPI Utilities for enumerating / post-processing

icL>



PerfExpert LCPI

PerfExpert: An easy-to-use performance diagnosis tools
for HPC applications, in SC’10, New Orleans, 2010

HPC Challenge Benchmarks
4
35

3

25

» 55
Poim
"Search Iretnxctions
S0 TLB
1.5
nsTusson TLB
0 - o — L —— L —
. @, LN LN ) N £ ‘5
% ’ L »
h % % Y %, %, “\
= % A «c., e

icLur

N

-

w




PAPI| User Defined Event
Future Work

Official release of user-defined events RealSoonNow™
Power modeling

Detailed cycle accounting
« CPU _CLK UNHALTED.CORE = Retired + Non_retired + Stalls

Runtime Roofline Models
Cross — Component User Events

icLd>



PAPlI Component Repository

icLor




A PAP| Component Repository

« \We want user contributions
« We don’t want to maintain them

« Users want to know what'’s available
 And often want to contribute

« Why not a web-based Repository?
Registration form to submit and track components
Link to a tarball or RCS repository

« Sourceforge, GitHub, Google code, private repository
Public page to view current components & descriptions
Private page for author updates
Admin page to monitor / control submissions

icL>



PAPI

Home
T Performance Application Programming Latest PAPI News

Interface 2011-05-13
News
Software PAPI aims to provide the tool designer and application engineer PAPI 4.1.3 Update
Publications with a consistent interface and methodology for use of the p041.05.12

performance counter hardware found in most major
FAQ PAPI 4.1.3 Now Available

microprocessors. PAP| enables software engineers to see, in near
Links . .

real time, the relation between software performance and 2011-03-12
People

- processor events. PAPI CUDA Component
Partners
Documentation, etc 2011-01-21
Contact PAPI 4.1.2.1 Now Available
Software Archive 2011-01-20
Supported Platforms PAPI 4.1.2 Now Available
Tools
User Forum
Bug Re
< Component Repository
P —
\
icLor
Sponsored By: 0 ‘ @ Industry Support From: AMDZ1 m z%‘,’ @ Microsoft




PAPI

PAPI Component Repository

Navigation

Main page
Help

Search

Toolbox

What links here
Related changes
Upload file
Special pages
Printable version

Permanent link

discussion edit history delete move unprotect refresh

Components for PAPI-C generally consist of a named folder containing source files and various other support files. For
more details on creating a component of your own, see the documentation here & and examples of other components
distributed with PAPI here &.

If you want to view information about other available components, click one of the component names at the bottom of this
page.

Add a Component [edit]

You must be logged into a pre-approved account to add or edit component information.

To contribute a component that you've written, enter a descriptive name for your component in the box below, and press
the button. This will become the name of the page that describes your component. If that page already exists, you will be
directed to a form to edit that page.

For an illustration of what your Component page will look like, visit the Component Example page or other Component

pages.
( Create or edit )
Component Categories [edit]

Networks | GPU | File Systems | Power | System Health | Specialty CPU | Miscellaneous | Experimental




All Component Contributions [edit]

Please refresh the page to see the changes

X

ACPI
CUDA

Component
Example

CoreTemp

Coretemp
freebsd

Example
Infiniband

Lm-sensors

Lustre

M Last
modified

15 June 2010
18 March 2011

26 May 2011

11 March 2011
11 March 2011

23 May 2011
18 June 2010
4 April 2011

4 April 2011

M Component overview

Advanced Configuration and Power Interface Component

Provides access to hardware counters inside NVIDIA GPUs
through the CUDA / CUPTI interface

This is a short description of what your component does.

Access hardware sensors through the coretemp sysf interface

Access hardware temperature sensors on FreeBSD

Example component code with 3 counters
Infiniband Network Component

Component interface for Im-sensors system health
measurement

Measure performance data on a Lustre filesystem

icLor



Contents [hide] | CUDA
1 Description

Author(s) PAPI team

2 Implementation
Version PAPI current
3 Usage

e s Last modified 2011/03/18

Author support Yes

ipti edit ~ -
Descrlptlon [edit] Component Provides access to hardware counters inside
. NVIDIA GPUs through the CUDA / CUPTI
The CUDA component is a hardware overview interface

performance counter measurement
technology for the NVIDIA CUDA Source Code
platform which provides access to the

http:/ficl.cs.utk.edu/viewcvs/viewcvs.cgi/PAPI/papi
Isrc/components/cuda/ &

hardware counters inside the GPU.

PAPI CUDA is based on CUPTI support - shipped with CUDA 4.0rc - in the NVIDIA driver library. In any environment
where the CUPTI-enabled driver is installed, the PAPI CUDA component can provide detailed performance counter
information regarding the execution of GPU kernels.

Implementation [edit]

Use the "Download tarball" link on the provided page to download a tarball of the source code folder to your computer.
Untar the folder and place it in the components directory of your PAPI source tree. Configure using "--with-
component=cuda". Rebuild PAPI.

Usage [edit]
Use as directed :)

Supported Platforms [edit]

Linux platforms with CUDA 4.0 or greater and NVIDIA GPU cards installed.




For more information

« PAPI| Website: http://icl.eecs.utk.edu/papi/
« Software
* Release notes
« Documentation
* Links to tools that use PAPI
« Mailing/discussion list

 |CL Website: htip://icl.eecs.utk.edu/
» Job openings!
* Questions?




