Compiler-based Autotuning of
MPI

Martin Swany



Application Transformation

Parallel application performance depends on
efficient data movement

Programming methodologies for good message-
passing performance can be difficult to program
and maintain

— Asynchronous and one-sided messaging

— Specifics of network interfaces change

This work focuses on automatic program
transformations to reduce the overhead of
communication (and programmer effort)

This approach will be critical for petascale
systems!



Autotuning Position

* Question: Suppose all layers of the
software stack (e.g., OS, middleware,
MPI, libraries, apps) are "autotuned.” Wil
we need to integrate these multiple
layers, and if so, how?

e Position: There are certainly interactions
between autotuned libraries. Compute
kernels and message-passing code
should be tuned together.
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Overlapping Details

e Minimize overhead of data movement by
overlapping it with useful work

e An well-known idea

 What does it mean for parallel application
structure?
e Post a send as soon as the data is ready (without
copying, if possible)
e Do useful work
o Check status after completion (with minimal polling,

sleeping or busy-waiting)

 Difficult to optimize, difficult to maintain
* Not portable across platforms
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Basic Approaches

 Compiler-based application transformation

— Previously only source-to-source, now to binary
e Transform MPI| communication

— Collectives — Point-to-point

— Blocking = Non-blocking

— Non-blocking — One-sided

— Send fission and fusion

« Strip-mining

° Separate costs of communication

— Hoist

lf) — Overlap




Overlapping Transformation -
Simple Example

Original
code

Tiled
code

integer, dimension(M,N):: array

doi=1,N
/* computation kernel */
subroutine( array(1,i) )
enddo

size = M*N
DataTransferCall( array(1,1), size, ... )

Other Computation()

integer, dimension(M,N):: array
doi=1,N,K

doj =i, i+K-1
[* computation kernel */
subroutine( array(1,j) )
enddo
if( i > K) then
/* block for the arrival of the data */
MFI_WAITALL( request(i-K))
endi

size = M'K

[* asynchronous network transfer */

MPI_ISEND( array(1,i), size, ... )

MPI_IRECV( destn(...), request(i), ... )
enddo

MPI_WAITALL( request(i-K))
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Transformer Structure
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Evaluation of Automatic Transformation -

Execution Time Normalized to Computation Time
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Synthetic Kernel

Slowdown VS. Tile Size
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Evaluation of Automatic Transformation -
Synthetic Kernel

Slowdown VS. Tile Size
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Evaluation of Automatic Transformation -

Synthetic Kernel
Slowdown VS. Tile Size
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Evaluation of Automatic Transformation -

Application “visco”

Slowdown VS. Tile Size
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Evaluation of Automatic Transformation -

Application “visco”
Slowdown VS. Tile Size
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Autotuning of Tile size

The tile size is an obvious choice for autotuning

— Though not covered here, another parameter we
have investigated is how many tiles should be
outstanding in the pipeline

These results were for MPI_ALLTOALL but other work
has considered single send/recv pairs and scatter
/gather

— Matching done with pragma

Clearly there is an interaction between our
transformation and the loop transformations performed
for compute kernels

We're limiting ourselves if we have an optimized
compute phase followed by an optimized
communication phase!



ASPhALT and Gravel
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Gravel — An MPI Companion
Library

 Decompose messaging components

— Memory registration (for DMA)

— Message metadata, or header
* Rendezvous or handshake if no message buffering

— Message data

* Implement a lightweight system library atop
uDAPL from OpenFabrics

— Possibly still too high level

e Build up abstractions that facilitate replacement
of performance-critical MPI calls

lf) — Not a replacement for MPI




Gravel

o Explicit memory registration

— Rather than custom memory allocator
 No message buffering

— No unexpected message queue

— No “eager” mode
 Message metadata and completion

indication also use RDMA to specific
locations in peer memory called “ledgers”

— Can enable true overlap
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Gravel Rendezvous Protocols
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Open64 Implementation

4 Open64 Fortran 90/95 be S
Compilation Stages (backend) [~ \(@ssembler)
mfef95 . -
(front-end) Iniine
-

-




Gravel Performance
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GGravel Performance - 2

A2A_MPI_ASYNCH NP=16 Buff=4MB
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ATSEMS

Automatic Tuning of MPI Software
— Martin Swany, Lori Pollock, U. Delaware
— Jack Dongarra, George Bosilca, U. Tennessee

For real codes, the MPI library must be aware
that MPI calls have been removed

— Only performance critical loops will likely be
optimized

e |nitial work: Optimized packing routines
* Next, make OpenMPI| more “inline-friendly”
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Autotuning

We need to interleave computation and communication and that
means co-tuning

Models are difficult as the maximum bandwidth and minimum
latency may not be the key factors when considering whole
application network overhead -- runtime is the final metric!

— We’ve mentioned reduction in overall communication, but that’s not the only
possible solution either

One of the key arguments for autotuning in this space is that there
are many factors in this space and analytical models are
intractable

— In addition, when this tuning is combined with compute library tuning, it
gets worse

Considering pipelined message-passing is key to performance
improvement

— We don’t want separately optimized phases

— The need to interleave and compose has been mentioned repeatedly



Compiler Support

 We’re using Open64
— Some have talked about everyone rolling their own
transformation infrastructure
e The interaction with the system for loop
transformation suggests that a tight integration
IS necessary
— Subsequent phases shouldn’t undo what we’ve done

e Source to source is good for portability but might
leave opportunities on the table

— We’d like to expand the ledger notion and potentially
eliminate messaging call sites altogether
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