Compiler-based Autotuning of
MPI

Martin Swany

Application Transformation

Parallel application performance depends on
efficient data movement

Programming methodologies for good message-
passing performance can be difficult to program
and maintain

— Asynchronous and one-sided messaging

— Specifics of network interfaces change

This work focuses on automatic program
transformations to reduce the overhead of
communication (and programmer effort)

This approach will be critical for petascale
systems!

Autotuning Position

* Question: Suppose all layers of the
software stack (e.g., OS, middleware,
MPI, libraries, apps) are "autotuned.” Wil
we need to integrate these multiple
layers, and if so, how?

e Position: There are certainly interactions
between autotuned libraries. Compute
kernels and message-passing code
should be tuned together.

Time Flow

Overlapping Computation and
Communication

(b)
Asynchronous, RDMA-based 1/0

(a)
Non-blocking, CPU-based 1/0
CPU
Application
RAM
P user
§ +—» > space
E IR p—— S
oé kernel
OS Kernel { space
o
a NIC
__z’_‘A___:'-')_ —ﬁ_»_.______
I/ \}
I AN P LN ™ _

..

--

CPU

Application

Overlapping Details

e Minimize overhead of data movement by
overlapping it with useful work

e An well-known idea

 What does it mean for parallel application
structure?
e Post a send as soon as the data is ready (without
copying, if possible)
e Do useful work
o Check status after completion (with minimal polling,

sleeping or busy-waiting)

 Difficult to optimize, difficult to maintain
* Not portable across platforms

D

Basic Approaches

 Compiler-based application transformation

— Previously only source-to-source, now to binary
e Transform MPI| communication

— Collectives — Point-to-point

— Blocking = Non-blocking

— Non-blocking — One-sided

— Send fission and fusion

« Strip-mining

° Separate costs of communication

— Hoist

lf) — Overlap

Overlapping Transformation -
Simple Example

Original
code

Tiled
code

integer, dimension(M,N):: array

doi=1,N
/* computation kernel */
subroutine(array(1,i))
enddo

size = M*N
DataTransferCall(array(1,1), size, ...)

Other Computation()

integer, dimension(M,N):: array
doi=1,N,K

doj =i, i+K-1
[* computation kernel */
subroutine(array(1,j))
enddo
if(i > K) then
/* block for the arrival of the data */
MFI_WAITALL(request(i-K))
endi

size = M'K

[* asynchronous network transfer */

MPI_ISEND(array(1,i), size, ...)

MPI_IRECV(destn(...), request(i), ...)
enddo

MPI_WAITALL(request(i-K))

Time Flow
. >
P1
P2
Overlapped
Communication

P1

P2

, oy Transfer Initialization
E-Compulatlon J}Communncatlon Ovethead

Waiting
Delay :

ASPhALT

- Automatic System for Parallel AppLication
Transformation

| Transtormed Conventional
‘ Source Code | Ly . ‘ Compiler

Opimized
Application

Code Generation

Transiormer Backend
3
Application
Profile
Data
Cluster
Parameaters
f Empincal Optimizaton /

Cluster Test Harness

l ! Benchmarks

Transformer Structure

asphalt_transformer

AST
Manipulation

N

A
(Unpg:se@

Open64

Transformed Application Original Application

N_C,C++ F95_A

D

Evaluation of Automatic Transformation -

Execution Time Normalized to Computation Time

1.90
1.85
1.80
1.75
1.70
1.65
1.60
1.55
1.50
1.45
1.40
1.35
1.30
1.25
1.20

1.15.

1.10
1.05
1.00

Synthetic Kernel

Slowdown VS. Tile Size

« == MPI_ALLTOALL
B --8 Tiled Code (ASPhALT)

N et I M USRI SRR W
R T e S e A F

0

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Tile Size (K) (send buffer size = K*720 bytes)

interconnect:Ammasso, NP:16, size:1440x1440x48x16 Bytes

Evaluation of Automatic Transformation -
Synthetic Kernel

Slowdown VS. Tile Size

2.80 :
= o 1 P I |
' ' 14 . -
2.60 ‘l \
2.50 12
7';10 10 |

\ 8 “
2.30 4 .I
\ I N
2.20 ¢ i ~ - I;
2.10 ¥ 5 T l
\ HE EE N EE " - ————

2.00 ! 0 5 10 5 D0
1.90 \

1.80 A
[.70 \
.60 \ RARN
1.50 | § / 3
.40 "\i" ey S "
1.30 T~

.20 = MPL ALLTOALL L
1.10 |{ - -4 Tiled Code (ASPhALT)

L0510 15 20 25 30 35 40 45 50 55 60
Tile Size (K) (send buffer size = K*240 bytes)

[b interconnect:Myrinet-MX, NP:48, size:1440x1440x48x16 Bytes

Execution Time Normalized to Computation Time

Evaluation of Automatic Transformation -

Synthetic Kernel
Slowdown VS. Tile Size

o
S

« = « MPL ALLITOALL
B - Tiled Code (ASPhALT) ;.II‘I

=
O

(S
oo

bk
-

i

|

|

i

|

i

i

i

i

i

i

24

L B
Ty,
I

|

1.4

1.3

Execution Time Normalized to Computation Time
=

0 5 10 15 20 25 30 35 40 45 S0
[b Tile Size (K) (send buffer size = K*720 bytes)

interconnect:SCI from Dolphin, NP:8, size:1440x1440x48x16 Bytes

Evaluation of Automatic Transformation -

Application “visco”

Slowdown VS. Tile Size

= == MPI ALLTOALL
@—® Tiled Code (ASPhALT)

g
o

g
o

p—
oze]

<

,_.
~

p—
(\)

Execution Time Normalized to Computation Time
(@)Y

—
o
—

10 100 1000
Tile Size (K) (send buffer size = K*1536)

[b interconnect:Myrinet-MX, NP:48, size:9216x2305x48x16 Bytes

Evaluation of Automatic Transformation -

Application “visco”
Slowdown VS. Tile Size

Y
)

2
o

b
o)
[
[
[
[
[
[
[
[
[
[
[
[
[
l
[
[
]
[

g
(@)}
T

N

N
b

g
o

[a—
oo

—
(@)

—
~

= = Application: Original Code
@—@ Application: ASPhALT Optimized

10 100 1000
Tile Size (K) (send buffer size = K*3072)

[b interconnect:Myrinet-GM, NP:24, size:9216x2305x48x16 Bytes

Execution Time Normalized to Computation Time
i

[a—
S
[

D

Autotuning of Tile size

The tile size is an obvious choice for autotuning

— Though not covered here, another parameter we
have investigated is how many tiles should be
outstanding in the pipeline

These results were for MPI_ALLTOALL but other work
has considered single send/recv pairs and scatter
/gather

— Matching done with pragma

Clearly there is an interaction between our
transformation and the loop transformations performed
for compute kernels

We're limiting ourselves if we have an optimized
compute phase followed by an optimized
communication phase!

ASPhALT and Gravel

Original Transformed
Application Code Application
Fortran, C, C++
Transformed
Code]

// ASPhALT

\
Linker

|
I Code Transformer
- Open64 based compiler transformation phase

Gravel
Communication Library
System Knowledge
Surveyor
. Throughput, Latency,
Synthetic Benphmarks CPU speed, CPU count,
for System Discovery Memory registration cost

Gravel — An MPI Companion
Library

 Decompose messaging components

— Memory registration (for DMA)

— Message metadata, or header
* Rendezvous or handshake if no message buffering

— Message data

* Implement a lightweight system library atop
uDAPL from OpenFabrics

— Possibly still too high level

e Build up abstractions that facilitate replacement
of performance-critical MPI calls

lf) — Not a replacement for MPI

Gravel

o Explicit memory registration

— Rather than custom memory allocator
 No message buffering

— No unexpected message queue

— No “eager” mode
 Message metadata and completion

indication also use RDMA to specific
locations in peer memory called “ledgers”

— Can enable true overlap

D

Gravel Rendezvous Protocols

Sender / Producer Receiver / Consumer

. . | post_seng_request rdmal) -4
Sender / Progucer Receiver / Consumer bx—h. .
~wait_send_reguest_romal)
‘/,/ - post_recv_bufler_ramaf) 4—”"'/’—‘- post_recv_bufler roma()

wait_recv_buffer_rdmal) - wait_recv_suffer rdmal) =
..~ post_os_put() post 08 putl) —

send_FIN() -\ s sana_FIN{() —\
o n g .
> waill) —- wail() e wait]) = — wait()

(a) Consumer Initiated RDMA write protocol (b) Producer Initiated RDMA write protocol

\

Sender / Producer Receiver / Consumer

| post.recw_bufler_rdma)
post_send bulfer_rdmal) — <

x wail recy bufter rdmal) —

~ wait_send bufter_rdmai) post_os_put]) —

- post oS get) - € \
— Gl |

.- poel_0s_put]) -

- wait() - o sanc_FIN() _‘\
“///’0— sana FING "“qﬂ \
> wait)) = ~ wait])

(c) Producer Initiated RDMA read protocol (d) Advanced RDMA write based protocol

Sender | Producer Receiver / Consumer

waitl) —

Open64 Implementation

4 Open64 Fortran 90/95 be S
Compilation Stages (backend) [~ \(@ssembler)
mfef95 . -
(front-end) Iniine
-

-

Gravel Performance

GATHER_MPI_ASYNCH NP=16 Buff=4MB

GATHER_GRAVEL_ONESIDED NP=16 Buff=4MB

262144

131072

65536

32768

16384

8192

4096

2048

1024

512

(29SN) pEaYISAQ UOHEDIUNWWOD

262144

131072

65536

32768

16384

8192

4096

2048

1024

512

(29SN) pEaYISAQ UOHEDIUNWWOD

GGravel Performance - 2

A2A_MPI_ASYNCH NP=16 Buff=4MB

A2A_GRAVEL_ONESIDED NP=16 Buff=4MB

2097152
10485762?
524288
262144
131072
65536

32768

16334

(29sN) pEaYISAQ UoneIIUNWLW

8192

4096

2097152

[
(=3
-
2]
Vi
~
D

524288

262144

131072

65536

32768

16384

(29sN) peaYISAQ UONEIIUNWILWOY)

8192

4096

ATSEMS

Automatic Tuning of MPI Software
— Martin Swany, Lori Pollock, U. Delaware
— Jack Dongarra, George Bosilca, U. Tennessee

For real codes, the MPI library must be aware
that MPI calls have been removed

— Only performance critical loops will likely be
optimized

e |nitial work: Optimized packing routines
* Next, make OpenMPI| more “inline-friendly”

D

Autotuning

We need to interleave computation and communication and that
means co-tuning

Models are difficult as the maximum bandwidth and minimum
latency may not be the key factors when considering whole
application network overhead -- runtime is the final metric!

— We’ve mentioned reduction in overall communication, but that’s not the only
possible solution either

One of the key arguments for autotuning in this space is that there
are many factors in this space and analytical models are
intractable

— In addition, when this tuning is combined with compute library tuning, it
gets worse

Considering pipelined message-passing is key to performance
improvement

— We don’t want separately optimized phases

— The need to interleave and compose has been mentioned repeatedly

Compiler Support

 We’re using Open64
— Some have talked about everyone rolling their own
transformation infrastructure
e The interaction with the system for loop
transformation suggests that a tight integration
IS necessary
— Subsequent phases shouldn’t undo what we’ve done

e Source to source is good for portability but might
leave opportunities on the table

— We’d like to expand the ledger notion and potentially
eliminate messaging call sites altogether

D

Acknowledgements

e UD Students

— Anthony Danalis, Andrew Gearhart, Aaron
Brown, Magnus Johnsson, Ben Perry, Omer
Arap

* (alumni: Lewis Fishgold, Kiyong Kim)
e co-PI: Lori Pollock
« NSF CSR Program

— CNS-0509170
— CNS-0720712

D

