
Workshop on Performance Tools for Petascale Computing
9:30 – 10:30am, Tuesday, July 17, 2007, Snowbird, UT

Sameer S. Shende
 sameer@cs.uoregon.edu

http://www.cs.uoregon.edu/research/tau

Performance Research Laboratory
University of Oregon

Parallel Performance Evaluation using the
TAU Performance System Project

Performance Tools for Petascale Computing 2TAU Performance System

Acknowledgements
 Dr. Allen D. Malony, Professor
 Alan Morris, Senior software engineer
 Wyatt Spear, Software engineer
 Scott Biersdorff, Software engineer
 Kevin Huck, Ph.D. student
 Aroon Nataraj, Ph.D. student
 Brad Davidson, Systems administrator

Performance Tools for Petascale Computing 3TAU Performance System

Outline
 Overview of features
 Instrumentation
 Measurement
 Analysis tools

 Parallel profile analysis (ParaProf)
 Performance data management (PerfDMF)
 Performance data mining (PerfExplorer)

 Application examples
 Kernel monitoring and KTAU

Performance Tools for Petascale Computing 4TAU Performance System

TAU Performance System
 Tuning and Analysis Utilities (15+ year project effort)
 Performance system framework for HPC systems

 Integrated, scalable, flexible, and parallel
 Targets a general complex system computation model

 Entities: nodes / contexts / threads
 Multi-level: system / software / parallelism
 Measurement and analysis abstraction

 Integrated toolkit for performance problem solving
 Instrumentation, measurement, analysis, and visualization
 Portable performance profiling and tracing facility
 Performance data management and data mining

 Partners: LLNL, ANL, LANL, Research Center Jülich

Performance Tools for Petascale Computing 5TAU Performance System

TAU Parallel Performance System Goals
 Portable (open source) parallel performance system

 Computer system architectures and operating systems
 Different programming languages and compilers

 Multi-level, multi-language performance instrumentation
 Flexible and configurable performance measurement
 Support for multiple parallel programming paradigms

 Multi-threading, message passing, mixed-mode, hybrid,
object oriented (generic), component-based

 Support for performance mapping
 Integration of leading performance technology
 Scalable (very large) parallel performance analysis

Performance Tools for Petascale Computing 6TAU Performance System

TAU Performance System Architecture

Performance Tools for Petascale Computing 7TAU Performance System

TAU Performance System Architecture

Performance Tools for Petascale Computing 8TAU Performance System

Building Bridges to Other Tools: TAU

Performance Tools for Petascale Computing 9TAU Performance System

TAU Instrumentation Approach
 Support for standard program events

 Routines, classes and templates
 Statement-level blocks

 Support for user-defined events
 Begin/End events (“user-defined timers”)
 Atomic events (e.g., size of memory allocated/freed)
 Selection of event statistics
 Support for hardware performance counters (PAPI)

 Support definition of “semantic” entities for mapping
 Support for event groups (aggregation, selection)
 Instrumentation optimization

 Eliminate instrumentation in lightweight routines

Performance Tools for Petascale Computing 10TAU Performance System

PAPI

 Performance Application Programming Interface
 The purpose of the PAPI project is to design,

standardize and implement a portable and efficient
API to access the hardware performance monitor
counters found on most modern microprocessors.

 Parallel Tools Consortium project started in 1998
 Developed by University of Tennessee, Knoxville
 http://icl.cs.utk.edu/papi/

Performance Tools for Petascale Computing 11TAU Performance System

TAU Instrumentation Mechanisms
 Source code

 Manual (TAU API, TAU component API)
 Automatic (robust)

C, C++, F77/90/95 (Program Database Toolkit (PDT))
OpenMP (directive rewriting (Opari), POMP2 spec)

 Object code
 Pre-instrumented libraries (e.g., MPI using PMPI)
 Statically-linked and dynamically-linked

 Executable code
 Dynamic instrumentation (pre-execution) (DynInstAPI)
 Virtual machine instrumentation (e.g., Java using JVMPI)

 TAU_COMPILER to automate instrumentation process

Performance Tools for Petascale Computing 12TAU Performance System

Using TAU: A brief Introduction
 To instrument source code using PDT

 Choose an appropriate TAU stub makefile in <arch>/lib:
% setenv TAU_MAKEFILE

/usr/tau-2.x/xt3/lib/Makefile.tau-mpi-pdt-pgi
% setenv TAU_OPTIONS ‘-optVerbose …’ (see tau_compiler.sh)
And use tau_f90.sh, tau_cxx.sh or tau_cc.sh as Fortran, C++ or C

compilers:
% mpif90 foo.f90
changes to
% tau_f90.sh foo.f90

 Execute application and analyze performance data:
% pprof (for text based profile display)
% paraprof (for GUI)

Performance Tools for Petascale Computing 13TAU Performance System

 User-level abstractions
 problem domain

source code

source code

object code libraries

instrumentation

instrumentation

executable

runtime image

compiler

linker

OS

VM

instrumentation

instrumentation

instrumentation

instrumentation

instrumentation

instrumentationperformance
data run

preprocessor

Multi-Level Instrumentation and Mapping
 Multiple interfaces
 Information sharing

 Between interfaces
 Event selection

 Within/between
levels

 Mapping
 Associate

performance data
with high-level
semantic abstractions

Performance Tools for Petascale Computing 14TAU Performance System

TAU Measurement Approach
 Portable and scalable parallel profiling solution

 Multiple profiling types and options
 Event selection and control (enabling/disabling, throttling)
 Online profile access and sampling
 Online performance profile overhead compensation

 Portable and scalable parallel tracing solution
 Trace translation to OTF, EPILOG, Paraver, and SLOG2
 Trace streams (OTF) and hierarchical trace merging

 Robust timing and hardware performance support
 Multiple counters (hardware, user-defined, system)
 Performance measurement for CCA component software

Performance Tools for Petascale Computing 15TAU Performance System

TAU Measurement Mechanisms
 Parallel profiling

 Function-level, block-level, statement-level
 Supports user-defined events and mapping events
 TAU parallel profile stored (dumped) during execution
 Support for flat, callgraph/callpath, phase profiling
 Support for memory profiling (headroom, malloc/leaks)
 Support for tracking I/O (wrappers, Fortran

instrumentation of read/write/print calls)
 Tracing

 All profile-level events
 Inter-process communication events
 Inclusion of multiple counter data in traced events

Performance Tools for Petascale Computing 16TAU Performance System

Types of Parallel Performance Profiling
 Flat profiles

 Metric (e.g., time) spent in an event (callgraph nodes)
 Exclusive/inclusive, # of calls, child calls

 Callpath profiles (Calldepth profiles)
 Time spent along a calling path (edges in callgraph)
 “main=> f1 => f2 => MPI_Send” (event name)
 TAU_CALLPATH_DEPTH environment variable

 Phase profiles
 Flat profiles under a phase (nested phases are allowed)
 Default “main” phase
 Supports static or dynamic (per-iteration) phases

Performance Tools for Petascale Computing 17TAU Performance System

Performance Analysis and Visualization
 Analysis of parallel profile and trace measurement
 Parallel profile analysis

 ParaProf: parallel profile analysis and presentation
 ParaVis: parallel performance visualization package
 Profile generation from trace data (tau2profile)

 Performance data management framework (PerfDMF)
 Parallel trace analysis

 Translation to VTF (V3.0), EPILOG, OTF formats
 Integration with VNG (Technical University of Dresden)

 Online parallel analysis and visualization
 Integration with CUBE browser (KOJAK, UTK, FZJ)

Performance Tools for Petascale Computing 18TAU Performance System

ParaProf Parallel Performance Profile Analysis

HPMToolkit

MpiP

TAU

Raw files

PerfDMF
managed
(database)

Metadata

Application

Experiment

Trial

Performance Tools for Petascale Computing 19TAU Performance System

ParaProf – Flat Profile (Miranda, BG/L)

8K processorsnode, context, thread

Miranda
 hydrodynamics
 Fortran + MPI
 LLNL

Run to 64K

Performance Tools for Petascale Computing 20TAU Performance System

ParaProf – Stacked View (Miranda)

Performance Tools for Petascale Computing 21TAU Performance System

ParaProf – Callpath Profile (Flash)

Flash
 thermonuclear
 flashes
 Fortran + MPI
 Argonne

Performance Tools for Petascale Computing 22TAU Performance System

Comparing Effects of MultiCore Processors

 AORSA2D on 4k cores
 PAPI resource stalls
 Blue is single node
 Red is dual core

Performance Tools for Petascale Computing 23TAU Performance System

Comparing FLOPS: MultiCore Processors

 AORSA2D on 4k cores
 Floating pt ins/second
 Blue is dual core
 Red is single node

Performance Tools for Petascale Computing 24TAU Performance System

ParaProf – Scalable Histogram View (Miranda)

8k processors

16k processors

Performance Tools for Petascale Computing 25TAU Performance System

ParaProf – 3D Full Profile (Miranda)

16k processors

Performance Tools for Petascale Computing 26TAU Performance System

ParaProf – 3D Scatterplot (S3D – XT4 only)
 Each point

is a “thread”
of execution

 A total of
four metrics
shown in
relation

 ParaVis 3D
profile
visualization
library
 JOGL

6400 cores

I/O takes less time on
one node (rank 0)

 Events (exclusive time metric)
 MPI_Barrier(), two loops
 write operation

Performance Tools for Petascale Computing 27TAU Performance System

6400 cores

S3D Scatter Plot: Visualizing Hybrid XT3+XT4

 Red nodes are XT4, blue are XT3

Performance Tools for Petascale Computing 28TAU Performance System

S3D: 6400 cores on XT3+XT4 System (Jaguar)

 Gap represents XT3 nodes

Performance Tools for Petascale Computing 29TAU Performance System

Visualizing S3D Profiles in ParaProf

 Gap represents XT3 nodes
 MPI_Wait takes less time, other routines take more time

Performance Tools for Petascale Computing 30TAU Performance System

Profile Snapshots in ParaProf

Initialization

Checkpointing

Finalization

 Profile snapshots are parallel profiles recorded at runtime
 Used to highlight profile changes during execution

Performance Tools for Petascale Computing 31TAU Performance System

Profile Snapshots in ParaProf
 Filter snapshots (only show main loop iterations)

Performance Tools for Petascale Computing 32TAU Performance System

Profile Snapshots in ParaProf
 Breakdown as a percentage

Performance Tools for Petascale Computing 33TAU Performance System

Snapshot replay in ParaProf

All windows dynamically update

Performance Tools for Petascale Computing 34TAU Performance System

Profile Snapshots in ParaProf
 Follow progression of various displays through time
 3D scatter plot shown below

T = 0s T = 11s

Performance Tools for Petascale Computing 35TAU Performance System

New automated metadata collection

Multiple PerfDMF DBs

Performance Tools for Petascale Computing 36TAU Performance System

Performance Data Management: Motivation
 Need for robust processing and storage of multiple profile

performance data sets
 Avoid developing independent data management solutions

 Waste of resources
 Incompatibility among analysis tools

 Goals:
 Foster multi-experiment performance evaluation
 Develop a common, reusable foundation of performance

data storage, access and sharing
 A core module in an analysis system, and/or as a central

repository of performance data

Performance Tools for Petascale Computing 37TAU Performance System

PerfDMF Approach
 Performance Data Management Framework
 Originally designed to address critical TAU requirements
 Broader goal is to provide an open, flexible framework to

support common data management tasks
 Extensible toolkit to promote integration and reuse across

available performance tools
 Supported profile formats:

TAU, CUBE, Dynaprof, HPC Toolkit, HPM Toolkit,
gprof, mpiP, psrun (PerfSuite), others in development

 Supported DBMS:
PostgreSQL, MySQL, Oracle, DB2, Derby/Cloudscape

Performance Tools for Petascale Computing 38TAU Performance System

PerfDMF Architecture

K. Huck, A. Malony, R. Bell, A. Morris, “Design and Implementation of
a Parallel Performance Data Management Framework,” ICPP 2005.

Performance Tools for Petascale Computing 39TAU Performance System

Recent PerfDMF Development
 Integration of XML metadata for each profile

 Common Profile Attributes
 Thread/process specific Profile Attributes
 Automatic collection of runtime information
 Any other data the user wants to collect can be added

Build information
 Job submission information

 Two methods for acquiring metadata:
TAU_METADATA() call from application
Optional XML file added when saving profile to PerfDMF

 TAU Metadata XML schema is simple, easy to generate
from scripting tools (no XML libraries required)

Performance Tools for Petascale Computing 40TAU Performance System

Performance Data Mining (Objectives)
 Conduct parallel performance analysis process

 In a systematic, collaborative and reusable manner
 Manage performance complexity
 Discover performance relationship and properties
 Automate process

 Multi-experiment performance analysis
 Large-scale performance data reduction

 Summarize characteristics of large processor runs
 Implement extensible analysis framework

 Abstraction / automation of data mining operations
 Interface to existing analysis and data mining tools

Performance Tools for Petascale Computing 41TAU Performance System

Performance Data Mining (PerfExplorer)
 Performance knowledge discovery framework

 Data mining analysis applied to parallel performance data
 comparative, clustering, correlation, dimension reduction, …

 Use the existing TAU infrastructure
TAU performance profiles, PerfDMF

 Client-server based system architecture
 Technology integration

 Java API and toolkit for portability
 PerfDMF
 R-project/Omegahat, Octave/Matlab statistical analysis
 WEKA data mining package
 JFreeChart for visualization, vector output (EPS, SVG)

Performance Tools for Petascale Computing 42TAU Performance System

Performance Data Mining (PerfExplorer)

K. Huck and A. Malony, “PerfExplorer: A Performance Data
Mining Framework For Large-Scale Parallel Computing,” SC 2005.

Performance Tools for Petascale Computing 43TAU Performance System

PerfExplorer Analysis Methods
 Data summaries, distributions, scatterplots
 Clustering

 k-means
 Hierarchical

 Correlation analysis
 Dimension reduction

 PCA
 Random linear projection
 Thresholds

 Comparative analysis
 Data management views

Performance Tools for Petascale Computing 44TAU Performance System

PerfDMF and the TAU Portal
 Development of the TAU portal

 Common repository for collaborative data sharing
 Profile uploading, downloading, user management
 Paraprof, PerfExplorer can be launched from the portal

using Java Web Start (no TAU installation required)
 Portal URL

http://tau.nic.uoregon.edu

Performance Tools for Petascale Computing 45TAU Performance System

PerfExplorer: Cross Experiment Analysis for S3D

Performance Tools for Petascale Computing 46TAU Performance System

PerfExplorer: S3D Total Runtime Breakdown

MPI_Wait

WRITE_
SAVEFILE

12,000
cores!

Performance Tools for Petascale Computing 47TAU Performance System

TAU Plug-Ins for Eclipse: Motivation
 High performance software development environments

 Tools may be complicated to use
 Interfaces and mechanisms differ between platforms / OS

 Integrated development environments
 Consistent development environment
 Numerous enhancements to development process
 Standard in industrial software development

 Integrated performance analysis
 Tools limited to single platform or programming language
 Rarely compatible with 3rd party analysis tools
 Little or no support for parallel projects

Performance Tools for Petascale Computing 48TAU Performance System

Adding TAU to Eclipse
 Provide an interface for configuring TAU’s automatic

instrumentation within Eclipse’s build system
 Manage runtime configuration settings and environment

variables for execution of TAU instrumented programs

C/C++/Fortran
Project in Eclipse

Add or modify
an Eclipse build

configuration w/ TAU

Temporary copy
of instrumented code

Compilation/linking
with TAU libraries

TAU instrumented
libraries

Program
execution

Performance
data

Program
output

Performance Tools for Petascale Computing 49TAU Performance System

TAU Eclipse Plug-In Features
 Performance data collection

 Graphical selection of TAU stub makefiles and compiler options
 Automatic instrumentation, compilation and execution of target C,

C++ or Fortran projects
 Selective instrumentation via source editor and source outline views
 Full integration with the Parallel Tools Platform (PTP) parallel

launch system for performance data collection from parallel jobs
launched within Eclipse

 Performance data management
 Automatically place profile output in a PerfDMF database or upload

to TAU-Portal
 Launch ParaProf on profile data collected in Eclipse, with

performance counters linked back to the Eclipse source editor

Performance Tools for Petascale Computing 50TAU Performance System

TAU Eclipse Plug-In Features

 PerfDMF

Performance Tools for Petascale Computing 51TAU Performance System

Choosing PAPI Counters with TAU’s in Eclipse

Performance Tools for Petascale Computing 52TAU Performance System

Future Plug-In Development
 Integration of additional TAU components

 Automatic selective instrumentation based on previous
experimental results

 Trace format conversion from within Eclipse
 Trace and profile visualization within Eclipse
 Scalability testing interface
 Additional user interface enhancements

Performance Tools for Petascale Computing 53TAU Performance System

KTAU Project
 Trend toward Extremely Large Scales

 System-level influences are increasingly dominant performance
bottleneck contributors

 Application sensitivity at scale to the system (e.g., OS noise)
 Complex I/O path and subsystems another example
 Isolating system-level factors non-trivial

 OS Kernel instrumentation and measurement is important to
understanding system-level influences

 But can we closely correlate observed application and OS
performance?

 KTAU / TAU (Part of the ANL/UO ZeptoOS Project)
 Integrated methodology and framework to measure whole-system

performance

Performance Tools for Petascale Computing 54TAU Performance System

Applying KTAU+TAU
 How does real OS-noise affect real applications on target

platforms?
 Requires a tightly coupled performance measurement &

analysis approach provided by KTAU+TAU
 Provides an estimate of application slowdown due to Noise

(and in particular, different noise-components - IRQ,
scheduling, etc)

 Can empower both application and the middleware and OS
communities.

 A. Nataraj, A. Morris, A. Malony, M. Sottile, P. Beckman,
“The Ghost in the Machine : Observing the Effects of Kernel
Operation on Parallel Application Performance”, SC’07.

 Measuring and analyzing complex, multi-component I/O
subsystems in systems like BG(L/P) (work in progress).

Performance Tools for Petascale Computing 55TAU Performance System

KTAU System Architecture

A. Nataraj, A. Malony, S. Shende, and A. Morris, “Kernel-level Measurement for
Integrated Performance Views: the KTAU Project,” Cluster 2006, distinguished paper.

Performance Tools for Petascale Computing 56TAU Performance System

TAU: Interoperability
 What we can offer other tools:

 Automated source-level instrumentation (tau_instrumentor, PDT)
 ParaProf 3D profile browser
 PerfDMF database, PerfExplorer cross-experiment analysis tool
 Eclipse/PTP plugins for performance evaluation tools
 Conversion of trace and profile formats
 Kernel-level performance tracking using KTAU
 Support for most HPC platforms, compilers, MPI-1,2 wrappers

 What help we need from other projects:
 Common API for compiler instrumentation

 Scalasca/Kojak and VampirTrace compiler wrappers
 Intel, Sun, GNU, Hitachi, PGI, …

 Support for sampling for hybrid instrumentation/sampling measurement
 HPCToolkit, PerfSuite

 Portable, robust binary rewriting system that requires no root previleges
 DyninstAPI

 Scalable communication framework for runtime data analysis
 MRNet, Supermon

Performance Tools for Petascale Computing 57TAU Performance System

Support Acknowledgements
 US Department of Energy (DOE)

 Office of Science
 MICS, Argonne National Lab

 ASC/NNSA
 University of Utah ASC/NNSA Level 1
 ASC/NNSA, Lawrence Livermore National Lab

 US Department of Defense (DoD)
 NSF Software and Tools for High-End Computing
 Research Centre Juelich
 TU Dresden
 Los Alamos National Laboratory
 ParaTools, Inc.

Performance Tools for Petascale Computing 58TAU Performance System

TAU Transport Substrate - Motivations
 Transport Substrate

 Enables movement of measurement-related data
 TAU, in the past, has relied on shared file-system

 Some Modes of Performance Observation
 Offline / Post-mortem observation and analysis

 least requirements for a specialized transport
 Online observation

 long running applications, especially at scale
 dumping to file-system can be suboptimal

 Online observation with feedback into application
 in addition, requires that the transport is bi-directional

 Performance observation problems and requirements are
a function of the mode

Performance Tools for Petascale Computing 59TAU Performance System

Requirements
 Improve performance of transport

 NFS can be slow and variable
 Specialization and remoting of FS-operations to front-end

 Data Reduction
 At scale, cost of moving data too high
 Sample in different domain (node-wise, event-wise)

 Control
 Selection of events, measurement technique, target nodes
 What data to output, how often and in what form?
 Feedback into the measurement system, feedback into application

 Online, distributed processing of generated performance data
 Use compute resource of transport nodes
 Global performance analyses within the topology
 Distribute statistical analyses

 Scalability, most important - All of above at very large scales

Performance Tools for Petascale Computing 60TAU Performance System

Approach and Prototypes
 Measurement and measured data transport de-coupled

 Earlier, no such clear distinction in TAU
 Created abstraction to separate and hide transport

 TauOutput
 Did not create a custom transport for TAU(as yet)

 Use existing monitoring/transport capabilities
 TAUover: Supermon (Sottile and Minnich, LANL) and

MRNET (Arnold and Miller, UWisc)
 A. Nataraj, M.Sottile, A. Morris, A. Malony, S. Shende

“TAUoverSupermon: Low-overhead Online Parallel
Performance Monitoring”, Europar’07.

Performance Tools for Petascale Computing 61TAU Performance System

Rationale
 Moved away from NFS
 Separation of concerns

 Scalability, portability, robustness
 Addressed independent of TAU

 Re-use existing technologies where appropriate
 Multiple bindings

 Use different solutions best suited to particular platform
 Implementation speed

 Easy, fast to create adapter that binds to existing transport

Performance Tools for Petascale Computing 62TAU Performance System

Substrate Architecture - High-level
 Components

 Front-End (FE)
 Intermediate Nodes
 Back-End (BE)

 NFS, Supermon, MRNet
API

 Push-Pull model of data
retrieval

 Figure shows ToS high-
level view

Performance Tools for Petascale Computing 63TAU Performance System

Substrate Architecture - Back-End
 Application calls into TAU

 Per-Iteration explicit call to output
routine

 Periodic calls using alarm
 TauOutput object invoked

 Configuration specific:
compile or runtime

 One per thread
 TauOutput mimics subset of FS-style

operations
 Avoids changes to TAU code
 If required rest of TAU can be

made aware of output type
 Non-blocking recv for control
 Back-end pushes, Sink pulls

