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Outline
 Overview of features
 Instrumentation
 Measurement
 Analysis tools

 Parallel profile analysis (ParaProf)
 Performance data management (PerfDMF)
 Performance data mining (PerfExplorer)

 Application examples
 Kernel monitoring and KTAU
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TAU Performance System
 Tuning and Analysis Utilities (15+ year project effort)
 Performance system framework for HPC systems

 Integrated, scalable, flexible, and parallel
 Targets a general complex system computation model

 Entities: nodes / contexts / threads
 Multi-level: system / software / parallelism
 Measurement and analysis abstraction

 Integrated toolkit for performance problem solving
 Instrumentation, measurement, analysis, and visualization
 Portable performance profiling and tracing facility
 Performance data management and data mining

 Partners: LLNL, ANL, LANL, Research Center Jülich
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TAU Parallel Performance System Goals
 Portable (open source) parallel performance system

 Computer system architectures and operating systems
 Different programming languages and compilers

 Multi-level, multi-language performance instrumentation
 Flexible and configurable performance measurement
 Support for multiple parallel programming paradigms

 Multi-threading, message passing, mixed-mode, hybrid,
object oriented (generic), component-based

 Support for performance mapping
 Integration of leading performance technology
 Scalable (very large) parallel performance analysis



Performance Tools for Petascale Computing 6TAU Performance System

TAU Performance System Architecture
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TAU Performance System Architecture
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Building Bridges to Other Tools: TAU
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TAU Instrumentation Approach
 Support for standard program events

 Routines, classes and templates
 Statement-level blocks

 Support for user-defined events
 Begin/End events (“user-defined timers”)
 Atomic events (e.g., size of memory allocated/freed)
 Selection of event statistics
 Support for hardware performance counters (PAPI)

 Support definition of “semantic” entities for mapping
 Support for event groups (aggregation, selection)
 Instrumentation optimization

 Eliminate instrumentation in lightweight routines
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PAPI

 Performance Application Programming Interface
 The purpose of the PAPI project is to design,

standardize and implement a portable and efficient
API to access the hardware performance monitor
counters found on most modern microprocessors.

 Parallel Tools Consortium project started in 1998
 Developed by University of Tennessee, Knoxville
 http://icl.cs.utk.edu/papi/
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TAU Instrumentation Mechanisms
 Source code

 Manual (TAU API, TAU component API)
 Automatic (robust)

C, C++, F77/90/95 (Program Database Toolkit (PDT))
OpenMP (directive rewriting (Opari), POMP2 spec)

 Object code
 Pre-instrumented libraries (e.g., MPI using PMPI)
 Statically-linked and dynamically-linked

 Executable code
 Dynamic instrumentation (pre-execution) (DynInstAPI)
 Virtual machine instrumentation (e.g., Java using JVMPI)

 TAU_COMPILER to automate instrumentation process
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Using TAU: A brief Introduction
 To instrument source code using PDT

 Choose an appropriate TAU stub makefile in <arch>/lib:
% setenv TAU_MAKEFILE

/usr/tau-2.x/xt3/lib/Makefile.tau-mpi-pdt-pgi
% setenv TAU_OPTIONS ‘-optVerbose …’ (see tau_compiler.sh)
And use tau_f90.sh, tau_cxx.sh or tau_cc.sh as Fortran, C++ or C

compilers:
% mpif90 foo.f90
changes to
% tau_f90.sh foo.f90

 Execute application and analyze performance data:
% pprof   (for text based profile display)
% paraprof  (for GUI)
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    User-level abstractions
    problem domain

source code

source code

object code libraries

instrumentation

instrumentation

executable

runtime image

compiler

linker

OS

VM

instrumentation

instrumentation

instrumentation

instrumentation

instrumentation

instrumentationperformance
data run

preprocessor

Multi-Level Instrumentation and Mapping
 Multiple interfaces
 Information sharing

 Between interfaces
 Event selection

 Within/between
levels

 Mapping
 Associate

performance data
with high-level
semantic abstractions
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TAU Measurement Approach
 Portable and scalable parallel profiling solution

 Multiple profiling types and options
 Event selection and control (enabling/disabling, throttling)
 Online profile access and sampling
 Online performance profile overhead compensation

 Portable and scalable parallel tracing solution
 Trace translation to OTF, EPILOG, Paraver, and SLOG2
 Trace streams (OTF) and hierarchical trace merging

 Robust timing and hardware performance support
 Multiple counters (hardware, user-defined, system)
 Performance measurement for CCA component software



Performance Tools for Petascale Computing 15TAU Performance System

TAU Measurement Mechanisms
 Parallel profiling

 Function-level, block-level, statement-level
 Supports user-defined events and mapping events
 TAU parallel profile stored (dumped) during execution
 Support for flat, callgraph/callpath, phase profiling
 Support for memory profiling (headroom, malloc/leaks)
 Support for tracking I/O (wrappers, Fortran

instrumentation of read/write/print calls)
 Tracing

 All profile-level events
 Inter-process communication events
 Inclusion of multiple counter data in traced events
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Types of Parallel Performance Profiling
 Flat profiles

 Metric (e.g., time) spent in an event (callgraph nodes)
 Exclusive/inclusive, # of calls, child calls

 Callpath profiles (Calldepth profiles)
 Time spent along a calling path (edges in callgraph)
 “main=> f1 => f2 => MPI_Send” (event name)
 TAU_CALLPATH_DEPTH environment variable

 Phase profiles
 Flat profiles under a phase (nested phases are allowed)
 Default “main” phase
 Supports static or dynamic (per-iteration) phases
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Performance Analysis and Visualization
 Analysis of parallel profile and trace measurement
 Parallel profile analysis

 ParaProf: parallel profile analysis and presentation
 ParaVis: parallel performance visualization package
 Profile generation from trace data (tau2profile)

 Performance data management framework (PerfDMF)
 Parallel trace analysis

 Translation to VTF (V3.0), EPILOG, OTF formats
 Integration with VNG (Technical University of Dresden)

 Online parallel analysis and visualization
 Integration with CUBE browser (KOJAK, UTK, FZJ)
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ParaProf Parallel Performance Profile Analysis

HPMToolkit

MpiP

TAU

Raw files

PerfDMF
managed
(database)

Metadata

Application

Experiment

Trial
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ParaProf – Flat Profile (Miranda, BG/L)

8K processorsnode, context, thread

Miranda
 hydrodynamics
 Fortran + MPI
 LLNL

Run to 64K



Performance Tools for Petascale Computing 20TAU Performance System

ParaProf – Stacked View (Miranda)
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ParaProf – Callpath Profile (Flash)

Flash
 thermonuclear
      flashes
 Fortran + MPI
 Argonne
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Comparing Effects of MultiCore Processors

 AORSA2D on 4k cores
 PAPI resource stalls
 Blue is single node
 Red  is dual core
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Comparing FLOPS: MultiCore Processors

 AORSA2D on 4k cores
 Floating pt ins/second
 Blue is dual core
 Red  is single node
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ParaProf  – Scalable Histogram View (Miranda)

8k processors

16k processors
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ParaProf – 3D Full Profile (Miranda)

16k processors
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ParaProf – 3D Scatterplot (S3D – XT4 only)
 Each point

is a “thread”
of execution

 A total of
four metrics
shown in
relation

 ParaVis 3D
profile
visualization
library
 JOGL

6400 cores

I/O takes less time on
one node (rank 0)

 Events (exclusive time metric)
 MPI_Barrier(), two loops
 write operation
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6400 cores

S3D Scatter Plot: Visualizing Hybrid XT3+XT4

 Red nodes are XT4, blue are XT3
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S3D: 6400 cores on XT3+XT4 System (Jaguar)

 Gap represents XT3 nodes
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Visualizing S3D Profiles in ParaProf

  Gap represents XT3 nodes
 MPI_Wait takes less time, other routines take more time
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Profile Snapshots in ParaProf

Initialization

Checkpointing

Finalization

 Profile snapshots are parallel profiles recorded at runtime
 Used to highlight profile changes during execution
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Profile Snapshots in ParaProf
 Filter snapshots (only show main loop iterations)
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Profile Snapshots in ParaProf
 Breakdown as a percentage
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Snapshot replay in ParaProf

All windows dynamically update
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Profile Snapshots in ParaProf
 Follow progression of various displays through time
 3D scatter plot shown below

T = 0s T = 11s
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New automated metadata collection

Multiple PerfDMF DBs
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Performance Data Management: Motivation
 Need for robust processing and storage of multiple profile

performance data sets
 Avoid developing independent data management solutions

 Waste of resources
 Incompatibility among analysis tools

 Goals:
 Foster multi-experiment performance evaluation
 Develop a common, reusable foundation of performance

data storage, access and sharing
 A core module in an analysis system, and/or as a central

repository of performance data
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PerfDMF Approach
 Performance Data Management Framework
 Originally designed to address critical TAU requirements
 Broader goal is to provide an open, flexible framework to

support common data management tasks
 Extensible toolkit to promote integration and reuse across

available performance tools
 Supported profile formats:

TAU, CUBE, Dynaprof, HPC Toolkit, HPM Toolkit,
gprof, mpiP, psrun (PerfSuite), others in development

 Supported DBMS:
PostgreSQL, MySQL, Oracle, DB2, Derby/Cloudscape
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PerfDMF Architecture

K. Huck, A. Malony, R. Bell, A. Morris,  “Design and Implementation of
a Parallel Performance Data Management Framework,” ICPP 2005.
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Recent PerfDMF Development
 Integration of XML metadata for each profile

 Common Profile Attributes
 Thread/process specific Profile Attributes
 Automatic collection of runtime information
 Any other data the user wants to collect can be added

Build information
 Job submission information

 Two methods for acquiring metadata:
TAU_METADATA() call from application
Optional XML file added when saving profile to PerfDMF

 TAU Metadata XML schema is simple, easy to generate
from scripting tools (no XML libraries required)
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Performance Data Mining (Objectives)
 Conduct parallel performance analysis process

 In a systematic, collaborative and reusable manner
 Manage performance complexity
 Discover performance relationship and properties
 Automate process

 Multi-experiment performance analysis
 Large-scale performance data reduction

 Summarize characteristics of large processor runs
 Implement extensible analysis framework

 Abstraction / automation of data mining operations
 Interface to existing analysis and data mining tools
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Performance Data Mining (PerfExplorer)
 Performance knowledge discovery framework

 Data mining analysis applied to parallel performance data
 comparative, clustering, correlation, dimension reduction, …

 Use the existing TAU infrastructure
TAU performance profiles, PerfDMF

 Client-server based system architecture
 Technology integration

 Java API and toolkit for portability
 PerfDMF
 R-project/Omegahat, Octave/Matlab statistical analysis
 WEKA data mining package
 JFreeChart for visualization, vector output (EPS, SVG)
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Performance Data Mining (PerfExplorer)

K. Huck and A. Malony,  “PerfExplorer: A Performance Data
Mining Framework For Large-Scale Parallel Computing,” SC 2005.
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PerfExplorer Analysis Methods
 Data summaries, distributions, scatterplots
 Clustering

 k-means
 Hierarchical

 Correlation analysis
 Dimension reduction

 PCA
 Random linear projection
 Thresholds

 Comparative analysis
 Data management views
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PerfDMF and the TAU Portal
 Development of the TAU portal

 Common repository for collaborative data sharing
 Profile uploading, downloading, user management
 Paraprof, PerfExplorer can be launched from the portal

using Java Web Start (no TAU installation required)
 Portal URL

http://tau.nic.uoregon.edu
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PerfExplorer: Cross Experiment Analysis for S3D
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PerfExplorer: S3D Total Runtime Breakdown

MPI_Wait

WRITE_
SAVEFILE

12,000 
cores!
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TAU Plug-Ins for Eclipse: Motivation
 High performance software development environments

 Tools may be complicated to use
 Interfaces and mechanisms differ between platforms / OS

 Integrated development environments
 Consistent development environment
 Numerous enhancements to development process
 Standard in industrial software development

 Integrated performance analysis
 Tools limited to single platform or programming language
 Rarely compatible with 3rd  party analysis tools
 Little or no support for parallel projects
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Adding TAU to Eclipse
 Provide an interface for configuring TAU’s automatic

instrumentation within Eclipse’s build system
 Manage runtime configuration settings and environment

variables for execution of TAU instrumented programs

C/C++/Fortran
Project in Eclipse

Add or modify
an Eclipse build

configuration w/ TAU

Temporary copy
of instrumented code

Compilation/linking
with TAU libraries

TAU instrumented
libraries

Program
execution

Performance
data

Program
output
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TAU Eclipse Plug-In Features
 Performance data collection

 Graphical selection of TAU stub makefiles and compiler options
 Automatic instrumentation, compilation and execution of target C,

C++ or Fortran projects
 Selective instrumentation via source editor and source outline views
 Full integration with the Parallel Tools Platform (PTP) parallel

launch system for performance data collection from parallel jobs
launched within Eclipse

 Performance data management
 Automatically place profile output in a PerfDMF database or upload

to TAU-Portal
 Launch ParaProf on profile data collected in Eclipse, with

performance counters linked back to the Eclipse source editor
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TAU Eclipse Plug-In Features

 PerfDMF



Performance Tools for Petascale Computing 51TAU Performance System

Choosing PAPI Counters with TAU’s  in Eclipse
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Future Plug-In Development
 Integration of additional TAU components

 Automatic selective instrumentation based on previous
experimental results

 Trace format conversion from within Eclipse
 Trace and profile visualization within Eclipse
 Scalability testing interface
 Additional user interface enhancements
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KTAU Project
 Trend toward Extremely Large Scales

 System-level influences are increasingly dominant performance
bottleneck contributors

 Application sensitivity at scale to the system (e.g., OS noise)
 Complex I/O path and subsystems another example
 Isolating system-level factors non-trivial

 OS Kernel instrumentation and measurement is important to
understanding system-level influences

 But can we closely correlate observed application and OS
performance?

 KTAU / TAU (Part of the ANL/UO ZeptoOS Project)
 Integrated methodology and framework to measure whole-system

performance
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Applying KTAU+TAU
 How does real OS-noise affect real applications on target

platforms?
 Requires a tightly coupled performance measurement &

analysis approach provided by KTAU+TAU
 Provides an estimate of application slowdown due to Noise

(and in particular, different noise-components - IRQ,
scheduling, etc)

 Can empower both application and the middleware and OS
communities.

 A. Nataraj, A. Morris, A. Malony, M. Sottile, P. Beckman,
“The Ghost in the Machine : Observing the Effects of Kernel
Operation on Parallel Application Performance”, SC’07.

 Measuring and analyzing complex, multi-component I/O
subsystems in systems like BG(L/P) (work in progress).
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KTAU System Architecture

A. Nataraj, A. Malony, S. Shende, and A. Morris, “Kernel-level Measurement for
Integrated Performance Views: the KTAU Project,” Cluster 2006, distinguished paper.
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TAU: Interoperability
 What we can offer other tools:

 Automated source-level instrumentation (tau_instrumentor, PDT)
 ParaProf 3D profile browser
 PerfDMF database, PerfExplorer cross-experiment analysis tool
 Eclipse/PTP plugins for performance evaluation tools
 Conversion of trace and profile formats
 Kernel-level performance tracking using KTAU
 Support for most HPC platforms, compilers, MPI-1,2 wrappers

 What help we need from other projects:
 Common API for compiler instrumentation

 Scalasca/Kojak and VampirTrace compiler wrappers
 Intel, Sun, GNU, Hitachi, PGI, …

 Support for sampling for hybrid instrumentation/sampling measurement
 HPCToolkit, PerfSuite

 Portable, robust binary rewriting system that requires no root previleges
 DyninstAPI

 Scalable communication framework for runtime data analysis
 MRNet, Supermon
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TAU Transport Substrate - Motivations
 Transport Substrate

 Enables movement of measurement-related data
 TAU, in the past, has relied on shared file-system

 Some Modes of Performance Observation
 Offline / Post-mortem observation and analysis

 least requirements for a specialized transport
 Online observation

 long running applications, especially at scale
 dumping to file-system can be suboptimal

 Online observation with feedback into application
 in addition, requires that the transport is bi-directional

 Performance observation problems and requirements are
a function of the mode
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Requirements
 Improve performance of transport

 NFS can be slow and variable
 Specialization and remoting of FS-operations to front-end

 Data Reduction
 At scale, cost of moving data too high
 Sample in different domain (node-wise, event-wise)

 Control
 Selection of events, measurement technique, target nodes
 What data to output, how often and in what form?
 Feedback into the measurement system, feedback into application

 Online, distributed processing of generated performance data
 Use compute resource of transport nodes
 Global performance analyses within the topology
 Distribute statistical analyses

 Scalability, most important - All of above at very large scales
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Approach and Prototypes
 Measurement and measured data transport de-coupled

 Earlier, no such clear distinction in TAU
 Created abstraction to separate and hide transport

 TauOutput
 Did not create a custom transport for TAU(as yet)

 Use existing monitoring/transport capabilities
 TAUover: Supermon (Sottile and Minnich, LANL) and

MRNET (Arnold and Miller, UWisc)
 A. Nataraj, M.Sottile, A. Morris, A. Malony, S. Shende

“TAUoverSupermon: Low-overhead Online Parallel
Performance Monitoring”, Europar’07.
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Rationale
 Moved away from NFS
 Separation of concerns

 Scalability, portability, robustness
 Addressed independent of TAU

 Re-use existing technologies where appropriate
 Multiple bindings

 Use different solutions best suited to particular platform
 Implementation speed

 Easy, fast to create adapter that binds to existing transport
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Substrate Architecture - High-level
 Components

 Front-End (FE)
 Intermediate Nodes
 Back-End (BE)

 NFS, Supermon, MRNet
API

 Push-Pull model of data
retrieval

 Figure shows ToS high-
level view



Performance Tools for Petascale Computing 63TAU Performance System

Substrate Architecture - Back-End
 Application calls into TAU

 Per-Iteration explicit call to output
routine

 Periodic calls using alarm
 TauOutput object invoked

 Configuration specific:
compile or runtime

 One per thread
 TauOutput mimics subset of FS-style

operations
 Avoids changes to TAU code
 If required rest of TAU can be

made aware of output type
 Non-blocking recv for control
 Back-end pushes, Sink pulls


