
A polyhedral loop transformation
framework for parallelization and tuning

Ohio State University
Uday Bondhugula, Muthu Baskaran, Albert
Hartono, Sriram Krishnamoorthy, P. Sadayappan

Argonne National Laboratory
Boyana Norris

Louisiana State University
J. Ramanujam

Supported by the National Science Foundation

Questions/Propositions

• Disagree
– "Parameter tuning" is the wrong focus for our area, and will

lead only to incremental improvements
– Simple performance models (e.g., a cache-oblivious model)

will be the right models in the future and will obviate the
need for empirical search.

– The focus on specialized tuning systems is too narrow, and
so only compilers, which apply most broadly, are the most
sensible investment [One does not preclude the other]

• What other technologies should we investigate to find
application-specific, platform-specific improvement?
– High-level languages and libraries may be the only effective

way to achieve high performance on peta/exascale systems

Automatic Parallelization of Sequential Code

• Automatic parallelization has been a long-sought
goal
– Large body of compiler optimization research
– Heightened interest now with ubiquity of multi-core

processors

• Several vendor compilers offer an automatic
parallelization feature for SMP/multi-core systems
– Limited use in practice; users do explicit parallelization
– From ORNL website: “The automatic parallelization

performed by the compiler is of limited utility, however.
Performance may increase little or may even decrease.”

• Polyhedral compiler framework holds promise
– Prototype automatic parallelization system for regular

(affine) computations: PLuTo

Polyhedral Compiler Framework

• Powerful abstraction for data dependences and
program transformation

• Unified treatment of many loop transforms
• Effective handling of imperfectly nested loops
• Natural handling of parametric loop bounds
• Proposed in the early 90’s; initially considered

impractical for production optimizing compilers
• Recent advances have addressed many issues of

compilation overhead as well as quality of
generated code

Polyhedral Model

for (i=1; i<n; i++)
for (j=2; j<n; j++)

S1: a[i][j] = a[j][i] + a[i][j-1];

j

i

i≥1

i≤n-1

j≥2 j≤n-1
i
j

xS1 =

.
0 -1 1 -1

IS1 =
xS1

n
1

≥ 0
-1 0 1 -1
0 1 0 -2

1 0 0 -1

Stmt instances integer points in polyhedra systems of linear inequalities

Polyhedral Model - 2

.
0 -1 1 -1

IS1 =
xS1

n
1

≥ 0
-1 0 1 -1
0 1 0 -2

1 0 0 -1for (i=1; i<n; i++)
for (j=2; j<n; j++)

S1: a[i][j] = a[j][i] + a[i][j-1] ;

1 0 0 0
0 1 0 0₣1a (xS1) = . xS1

n
1

DS1a = ₣1a IS1DS2a = ₣2a IS1DS3a = ₣3a IS1

(0,0)

(m,m)

0 1 0 0
1 0 0 0₣2a (xS1) = . xS1

n
1

1 0 0 0
0 1 0 -1₣3a (xS1) = . xS1

n
1

Footprint of Array Reference integer points in data space polyhedra

Previous Related Work

• Tiling has been widely studied: Schreiber ’90, Wolf-Lam
’91, Ramanujam et al. ’92, Boulet et al. ’94, Darte et al. ’97,
Xue ’97, Hogstedt et al. ’99, Wonnacott et al. ’00, Song-Li
’99, Hodzic ’02, Andonov-Rajopadhye ’03, Yi et al. ’04,
Renganarayana et al. ’04, . . .

• Polyhedral loop transformation and code generation:
Feautrier 1991, Kelly-Pugh ’95,’98, Lim-Lam ’97,’99,’01,
Quillere et al. ’00, Ahmed-Pingali ’00, Griebl ’04, Bastoul
’04, Cohen et al. ’05, Girbal et al. ’06, Pouchet et al. ’07, ’08

• But no practical and effective approach to tiling of general
(affine) imperfectly nested loops for parallelism and locality

Polyhedral Transformation and Tiling
• Tiling is a key loop transformation for efficient coarse-

grained parallel execution, and for data locality optimization

• Previously, tiling was treated as a post-processing step on
permutable loop-nests in polyhedral transformation
frameworks: no practically effective tiling algorithm

• Our recent work (CC ’08, PLDI ’08) has developed a model-
driven approach to automatically tile imperfectly nested
(affine) loops for parallelism and data locality

for i=1,N
for j = 1,N

{ S(i,j) }

for it=1,N,T
for jt = 1,N,T
for ii = it,min(it+T-1,N)
for jj = jt,min(jt+T-1,N)
{ S(ii,jj) }

Polyhedral Model

• Each stmt in arbitrarily imperfectly nested loop viewed as a polyhedron
• Dependences modeled as polyhedra in higher-dim space
• Stmt. instances mapped to multi-dim time via affine scheduling function
• Tiling hyperplanes are equiv. to scheduling functions with some properties
• Use parametric ILP machinery to optimize hyperplanes for //sm & locality

Communication Volume & Reuse Distance

• represents the component of a dependence
along the hyperplane
– Communication volume (per unit area) at processor tile

boundaries
– Cache misses at local tile edges

PLuTo Automatic Parallelizer

• Fully automatic transformation of sequential input C or
Fortran code (affine) into tiled OpenMP-parallel code

• Available at http://sourceforge.net/projects/pluto-compiler

PLuTo and Orio

Orio
(Argonne Natl. Lab.)

Annotation-Based
Syntactic Transforms

&
Empirical Tuning of

Unroll-factor/Tile-size

PLuTo
(Ohio State Univ.)

Model-Driven Polyhedral
Program Transformation

&
Auto Parallelization

Affine Sequential C/Fortran Code

OpenMP Parallel C/Fortran Code

Annotations in Any Code

Optimized Code via Replacement

http://sourceforge.net/projects/pluto-compiler
https://trac.mcs.anl.gov/projects/performance/wiki/Orio

Experimental Results

• Intel Core2 Quad Q6600 2.4 GHz (quad core with shared
L2 cache), FSB 1066 MHz, DDR2 667 RAM

• 32 KB L1 cache, 8 MB L2 cache (4MB per core pair)
• ICC 10.1 (-oparallel -fast)
• Linux 2.6.18 x86-64

ADI Kernel: Multi-core
ADI with T=512, N=1024

.0

.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 2 3 4

Number of cores

G
FL

O
Ps

icc pluto pluto+orio

2-D FDTD: Multi-core
2D-FDTD with T=500, N=2000

0

1

2

3

4

5

6

7

8

1 2 3 4

Number of cores

G
FL

O
Ps

icc pluto pluto+orio

LU Decomposition: Multi-core
LU Decomposition with N=4096

0

2

4

6

8

10

12

14

1 2 3 4

Number of cores

G
FL

O
Ps

icc pluto pluto+orio

3-D Gauss Seidel: Multi-core
3-D Gauss Seidel with T=1024, N=1024

0

1

2

3

4

5

6

1 2 3 4

Number of cores

G
FL

O
Ps

icc pluto pluto+orio

TRMM (Triangular MatMult): Multi-Core
TRMM with N=4096

0

10

20

30

40

50

60

1 2 3 4

Number of cores

G
FL

O
Ps

icc pluto pluto+orio mkl

How prevalent are affine codes?
• Innermost core computations in many codes

– Dense linear algebra
– Image and signal processing
– Computational Electromagnetics (FDTD)
– Explicit PDE solvers (e.g. SWIM, SWEEP3D)
– Integral transforms in quantum chemistry (AO-to-MO)

• May increase in the future (esp. scientific apps)
– Codes with direct data access significantly better than

indirect-data access: power & performance
– Structured-sparse (block sparse) is better than arbitrary

sparse (e.g. OSKI)
– RINO (Regular-Inner-Nonregular-Outer) algorithms should

be attractive for many-core processors

Summary

• Polyhedral compiler optimization framework
– New approach to effective tiling for parallelism and data

locality (CC-08, PLDI-08)
• Automatic parallelization tool for multi-cores

– http://sourceforge.net/projects/pluto-compiler/
• Promising basis for model-driven empirical tuning

– Has been coupled with Orio annotation-based syntactic
transformation & tuning tool

• Many extensions under exploration
• Generate CUDA code for GPGPUs (next talk by Ram)
• Dynamic scheduling with self-extracted inter-tile dependences
• Iterative opt. with dynamic trace analysis, user feedback

http://sourceforge.net/projects/pluto-compiler/

	A polyhedral loop transformation framework for parallelization and tuning
	Questions/Propositions
	Automatic Parallelization of Sequential Code
	Polyhedral Compiler Framework
	Polyhedral Model
	Polyhedral Model - 2
	Previous Related Work
	Polyhedral Transformation and Tiling
	Communication Volume & Reuse Distance
	PLuTo Automatic Parallelizer
	PLuTo and Orio
	Experimental Results
	ADI Kernel: Multi-core
	2-D FDTD: Multi-core
	LU Decomposition: Multi-core
	3-D Gauss Seidel: Multi-core
	TRMM (Triangular MatMult): Multi-Core
	How prevalent are affine codes?
	Summary

