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Questions/Propositions

• Disagree
– "Parameter tuning" is the wrong focus for our area, and will 

lead only to incremental improvements
– Simple performance models (e.g., a cache-oblivious  model) 

will be the right models in the future and will obviate the 
need for empirical search.

– The focus on specialized tuning systems is too narrow,  and 
so only compilers, which apply most broadly, are the most 
sensible investment [One does not preclude the other]

• What other technologies should we investigate to find 
application-specific,  platform-specific improvement?
– High-level languages and libraries may be the only effective 

way to achieve high performance on peta/exascale systems



Automatic Parallelization of Sequential Code

• Automatic parallelization has been a long-sought 
goal
– Large body of compiler optimization research
– Heightened interest now with ubiquity of multi-core 

processors

• Several vendor compilers offer an automatic 
parallelization feature for SMP/multi-core systems
– Limited use in practice; users do explicit parallelization
– From ORNL website: “The automatic parallelization 

performed by the compiler is of limited utility, however. 
Performance may increase little or may even decrease.”

• Polyhedral compiler framework holds promise
– Prototype automatic parallelization system for regular 

(affine) computations: PLuTo



Polyhedral Compiler Framework

• Powerful abstraction for data dependences and 
program transformation

• Unified treatment of many loop transforms
• Effective handling of imperfectly nested loops
• Natural handling of parametric loop bounds
• Proposed in the early 90’s; initially considered 

impractical for production optimizing compilers
• Recent advances have addressed many issues of 

compilation overhead as well as quality of 
generated code



Polyhedral Model 
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Polyhedral Model - 2
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Previous Related Work

• Tiling has been widely studied: Schreiber ’90, Wolf-Lam 
’91, Ramanujam et al. ’92, Boulet et al. ’94, Darte et al. ’97, 
Xue ’97, Hogstedt et al. ’99, Wonnacott et al. ’00, Song-Li 
’99, Hodzic ’02, Andonov-Rajopadhye ’03, Yi et al. ’04, 
Renganarayana et al. ’04, . . . 

• Polyhedral loop transformation and code generation: 
Feautrier 1991, Kelly-Pugh ’95,’98, Lim-Lam ’97,’99,’01, 
Quillere et al. ’00, Ahmed-Pingali ’00, Griebl ’04, Bastoul  
’04, Cohen et al. ’05, Girbal et al. ’06, Pouchet et al. ’07, ’08

• But no practical and effective approach to tiling of general 
(affine) imperfectly nested loops for parallelism and locality 



Polyhedral Transformation and Tiling
• Tiling is a key loop transformation for efficient coarse-

grained parallel execution, and for data locality optimization

• Previously, tiling was treated as a post-processing step on 
permutable loop-nests in polyhedral transformation 
frameworks: no practically effective tiling algorithm

• Our recent work (CC ’08, PLDI ’08) has developed a model-
driven approach to automatically tile imperfectly nested 
(affine) loops for parallelism and data locality

for i=1,N
for j = 1,N

{ S(i,j) }

for it=1,N,T
for jt = 1,N,T
for ii = it,min(it+T-1,N)
for jj = jt,min(jt+T-1,N)
{ S(ii,jj) }



Polyhedral Model 

• Each stmt in arbitrarily imperfectly nested loop viewed as a polyhedron
• Dependences modeled as polyhedra in higher-dim space
• Stmt. instances  mapped to multi-dim time via affine scheduling function
• Tiling hyperplanes are equiv. to scheduling functions with some properties
• Use parametric ILP machinery to optimize hyperplanes for //sm & locality



Communication Volume & Reuse Distance

• represents the component of a dependence 
along the hyperplane
– Communication volume (per unit area) at processor tile          

boundaries
– Cache misses at local tile edges



PLuTo Automatic Parallelizer

• Fully automatic transformation of sequential input C or 
Fortran code (affine) into tiled OpenMP-parallel code

• Available at http://sourceforge.net/projects/pluto-compiler



PLuTo and Orio

Orio
(Argonne Natl. Lab.)

Annotation-Based 
Syntactic Transforms

& 
Empirical Tuning of

Unroll-factor/Tile-size

PLuTo
(Ohio State Univ.)

Model-Driven Polyhedral
Program Transformation

&
Auto Parallelization

Affine Sequential C/Fortran Code

OpenMP Parallel C/Fortran Code

Annotations in Any Code

Optimized Code via Replacement

http://sourceforge.net/projects/pluto-compiler
https://trac.mcs.anl.gov/projects/performance/wiki/Orio



Experimental Results

• Intel Core2 Quad Q6600 2.4 GHz (quad core with shared 
L2 cache), FSB 1066 MHz, DDR2 667 RAM

• 32 KB L1 cache, 8 MB L2 cache (4MB per core pair)
• ICC 10.1 (-oparallel -fast)
• Linux 2.6.18 x86-64



ADI Kernel: Multi-core 
ADI with T=512, N=1024

.0

.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

1 2 3 4

Number of cores

G
FL

O
Ps

icc pluto pluto+orio



2-D FDTD: Multi-core 
2D-FDTD with T=500, N=2000
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LU Decomposition: Multi-core
LU Decomposition with N=4096
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3-D Gauss Seidel: Multi-core
3-D Gauss Seidel with T=1024, N=1024
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TRMM (Triangular MatMult): Multi-Core
TRMM with N=4096
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How prevalent are affine codes?
• Innermost core computations in many codes

– Dense linear algebra
– Image and signal processing
– Computational Electromagnetics (FDTD)
– Explicit PDE solvers (e.g. SWIM, SWEEP3D)
– Integral transforms in quantum chemistry (AO-to-MO)

• May increase in the future (esp. scientific apps)
– Codes with direct data access significantly better than 

indirect-data access: power & performance
– Structured-sparse (block sparse) is better than arbitrary 

sparse (e.g. OSKI)
– RINO (Regular-Inner-Nonregular-Outer) algorithms should 

be attractive for many-core processors



Summary

• Polyhedral compiler optimization framework
– New approach to effective tiling for parallelism and data 

locality (CC-08, PLDI-08)
• Automatic parallelization tool for multi-cores

– http://sourceforge.net/projects/pluto-compiler/
• Promising basis for model-driven empirical tuning

– Has been coupled with Orio annotation-based syntactic 
transformation & tuning tool

• Many extensions under exploration
• Generate CUDA code for GPGPUs (next talk by Ram)
• Dynamic scheduling with self-extracted inter-tile dependences
• Iterative opt. with  dynamic trace analysis, user feedback 

http://sourceforge.net/projects/pluto-compiler/
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