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Emerging (Emerged?) Technology I 
• Accelerators (DOE Vancouver, NSF 

Keeneland) 
–  Graphics Processing Units (GPUs) 
–  Manycore (e.g., Intel’s Many Integrated 

Core) 
–  Field Programmable Gate Arrays 

(FPGAs) 
–  Potential for many more threads of 

execution 
•  Great performance, if you can make use of 

them 
•  Many more “events” per walltime unit 

–  Tighter coupling between CPU and 
accelerator (e.g., GPUs/FPGAs in 
HyperTransport sockets, AMD Fusion) 

–  Open architectural questions about 
relative role of host to accelerator 
•  Reduced role of host (CPU) – e.g., NVIDIA 

project Denver 
•  NIC integrated with the GPU? 
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Emerging (Emerged?) Technology II 
•  Memory Hierarchy 

–  NVRAM (e.g., flash, Phase Change Memory) (DOE Blackcomb project) 
–  Solid State Drives (SSDs) 
–  Higher performance (but smaller capacity) storage, close to the processor 
–  Open questions in programmability (as memory or as disk? Memory mapped?) 
–  Potential uses: 

•  Burst buffers (e.g., for checkpoints, event traces) 
•  Out-of-core algorithms 

•  Networking 
–  High bandwidth traditional networking technologies (e.g., FDR InfiniBand), 

smart (programmable) NICS 
–  Photonics – High throughput, low latency increases effectiveness of in situ 

analysis 

•  Programming Models 
–  CUDA, OpenCL, OpenACC, OpenMP 
–  Domain Specific Languages 
–  Interesting that no one at the workshop talked about the community darling 

programming models (MapReduce) 
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The Scalable HeterOgeneous Computing 
(SHOC) Benchmark Suite 

•  Benchmark suite with a focus on 
scientific computing workloads, 
including common kernels like 
SGEMM, FFT, Stencils 

•  Parallelized with MPI, with support 
for multi-GPU and cluster scale 
comparisons 

•  Implemented in CUDA and OpenCL 
for a 1:1 performance comparison 

–  Will be adding OpenACC versions 
soon 

–  Have contributions from Intel for MIC 

•  Includes stability tests 
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(SHOC) Benchmark Suite 

Parallelized with MPI, with support 

OpenCL

Have contributions from Intel for MIC 
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Data Intensive Computer Science 
•  Usual focus is on data problems 

from science domain 
–  Computational science 

(simulations) 
–  Scientific instruments 

(e.g., particle detectors) 

• System administration and 
monitoring tools can cause 
data-related problems too 

• Event tracing is notorious for causing data collection, 
management, and analysis problems 
–  Similar to that particle detector… 
–  …except that we often want to analyze the data online so we can make 

some change 
–  Emerging architecture (e.g., GPUs) can greatly exacerbate the 

problem 

NOMAD detector 
Image courtesy Dr. Jörg Neuefeind, ORNL 
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Data Intensive Computer Science: Example 
• Example from my past: Paradyn parallel 

performance tool (RIP), Bart Miller, U. Wisconsin 
• Tool used calipers (inserted using Dynamic 

Instrumentation) to generate performance data 
– On-line analysis feeds decisions about what 

instrumentation to insert/remove as program runs 
• Tool daemons sampled that data and sent to 

tool’s front end for analysis 
• Performance data volume could be large, due to: 

–  High sampling rate 
–  Large number of active metrics 
–  Large number of monitored processes 
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Data Intensive Computer Science: Example 
•  Our approach: develop and use a multicast/reduction 

network (MRNet) to reduce data within an overlay network 
before it reaches the tool’s front end 

•  Interesting analogous to in situ analysis 
–  Where to run MRNet internal processes? 
–  What filters are needed?  How to synchronize streaming data in 

filters? 
•  Today: Hadoop (in a separate analysis cluster)? GPU 

accelerated reduction filters?  
•  Another example: Tiwari et al, 

“Quantifying the Potential for 
Program Analysis Peripherals,” 
PACT 09 – shows benefit of 
using FPGAs to accelerate 
valgrind-based analysis tools 

OAK RIDGE NATIONAL LABORATORY 
U. S. DEPARTMENT OF ENERGY 
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MRNet-based Parallel Tool Organization 
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Visualizing Performance Data 
• Machines have long been large enough to 

motivate research into scalable performance data 
visualization 

• Architectures with GPUs, manycore exacerbate 
the problem (greater data volume) 

TAU images courtesy Allen Malony, U. Oregon, http://tau.uoregon.edu 
Managed by UT-Battelle 
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Visualizing Performance Data 
• How well do traditional science visualization 

techniques apply to performance data? 

VisIt images courtesy Jeremy Meredith, ORNL 
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Summary 

•  Emerging technology in compute, memory hierarchy, and interconnect 
–  Promise of increased performance, larger opportunities for online analysis like in situ 

visualization 
–  But: can make performance data analysis and visualization much more difficult 

•  Don’t forget: there are data problems in computer science domain too 
–  Do same techniques apply? 

•  For more information: 
–  rothpc@ornl.gov 
–  http://ft.ornl.gov 

–  Keeneland (NSF Track 2D): http://keeneland.gatech.edu 
–  Vancouver (DOE X-Stack): http://ft.ornl.gov/trac/vancouver 
–  Institute for Sustained Performance, Energy, and Resilience (SUPER, DOE SciDAC-3): 

http://super-scidac.org 


