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Emerging (Emerged?) Technology |

* Accelerators (DOE Vancouver, NSF
Keeneland)

— Graphics Processing Units (GPUs)

— Manycore (e.g., Intel’s Many Integrated
Core%
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— Potential for many more threads of ..'.....

execution LS Sy [ ] o B

« Great performance, if you can make use of
them

 Many more “events” per walltime unit - =
— Tighter coupling between CPU and e BB M i iband

accelerator (e.ﬂ., GPUs/FPGAs in o o1 (U

HyperTransport sockets, AMD Fusion)

— Open architectural questions about —
relative role of host to accelerator " GPU (6G8)
* Reduced role of host (CPU) — e.g., NVIDIA
project Denver

* NIC integrated with the GPU?




Emerging (Emerged?) Technology I

* Memory Hierarchy
— NVRAM (e.g., flash, Phase Change Memory) (DOE Blackcomb project)
— Solid State Drives (SSDs)
— Higher performance (but smaller capacity) storage, close to the processor
— Open questions in programmability (as memory or as disk? Memory mapped?)
— Potential uses:

- Burst buffers (e.g., for checkpoints, event traces)
« Out-of-core algorithms

* Networking

— High bandwidth traditional networking technologies (e.g., FDR InfiniBand),
smart (programmable) NICS

— Photonics — High throughput, low latency increases effectiveness of in situ
analysis
* Programming Models
— CUDA, OpenCL, OpenACC, OpenMP
— Domain Specific Languages

— Interesting that no one at the workshop talked about the community darling
programming models (MapReduce)



http://keeneland.gatech.edu

Keeneland
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TECHNOLOGIES

J.S. Vetter, R. Glassbrook et al., “Keeneland: Bringing heterogeneous GPU computing to the computational science community,”
IEEE Computing in Science and Engineering, 13(5):90-5, 2011, http://dx.doi.org/10.1109/MCSE.2011.83.
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The Scalable HeterOgeneous Computing
(SHOC) Benchmark Suite

 Benchmark suite with a focus on
scientific computing workloads,
including common kernels like
SGEMM, FFT, Stencils

- Parallelized with MPI, with support
for multi-GPU and cluster scale
comparisons

* Implemented in CUDA and OpenCL
for a 1:1 performance comparison

—  Will be adding OpenACC versions
soon

— Have contributions from Intel for MIC

* Includes stability tests

e Level 0
BusSpeedDownload: measures bandwidth of transferring data across the PCle bus
to a device.
BusSpeedReadback: measures bandwidth of reading data back from a device.

DeviceMemory: measures bandwidth of memory accesses to various types of device
memory 1ncluding global, local, and image memories.

KernelCompile: measures compile time for several OpenCL kernels, which range in
complexity

PeakFlops: measures maximum achievable floating point performance using a combi-
nation of auto-generated and hand coded kernels.

QueuneDelay: measures the overhead of using the OpenCL command queue.

e Level 1
FFT: forward and reverse 1D FFT.
MD: computation of the Lennard-Jones potential from molecular dynamics, a specific
case of the nbody problem.
Reduction: reduction operation on an array of single precision floating point values.
SGEMM: single-precision matrix-matrix multiply.
Scan: scan (also known as parallel prefix sum) on an array of single precision floating
point values.
Sort: sorts an array of key-value pairs using a radix sort algorithm
Stencil2D: a 9-point stencil operation applied to a 2D data set. In the MPI version,
data 1s distributed across MPI processes organized in a 2D Cartesian topology, with
periodic halo exchanges.

Triad: STREAM Triad operations, implemented in OpenCL.
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Software available at https.//github.com/spaffy/shoc/wiki

b m A



Data Intensive Computer Science

H Ty
- Usual focus is on data problems DA -
from science domain SV

— Computational science
(simulations)

— Scientific instruments
(e.g., particle detectors)

« System administration and
monitoring tools can cause L ,
data-related problems too NOMAD detector

Image courtesy Dr. J6rg Neuefeind, ORNL

- Event tracing is notorious for causing data collection,
management, and analysis problems

— Similar to that particle detector...

— ...except that we often want to analyze the data online so we can make
some change

— Emerging architecture (e.g., GPUs) can greatly exacerbate the
problem



Data Intensive Computer Science: Example

 Example from m ast: Paradyn parallel
performance to RIP), Bart Miller, U. Wisconsin

* Tool used calipers (inserted using Dynamic
Instrumentation) to generate performance data

— On-line analysis feeds decisions about what
instrumentation to insert/remove as program runs

* Tool daemons sampled that data and sent to
tool’s front end for analysis

- Performance data volume could be large, due to:
— High sampling rate
— Large number of active metrics ﬁl’ a

— Large number of monitored processes f



Data Intensive Computer Science: Example

» Our approach: develop and use a multicast/reduction
network (MRNet) to reduce data within an overlay network
before it reaches the tool’s front end

* Interesting analogous to in situ analysis
— Where to run MRNet internal processes?
— }I_\Ilpat [)ilters are needed? How to synchronize streaming data in
ilters”

. TodaP/: Hadoop (in a separate analysis cluster)? GPU
accelerated reduction filters?

o Anothe.r exam le: Tiwar.i et al, MRNet-based Parallel Tool Organization
“Quantifying the Potential for 2 Coronen

Program Analysis Peripherals,” peo @
PA_C?T 09 — shgws benel%it of s o
using FPGAs to accelerate EANF A A A
valgrind-based analysis tools
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Visualizing Performance Data

- Machines have long been large enough to
motivate research into scalable performance data

visualization

* Architectures with GPUs, manycore exacerbate
the problem (greater data volume)
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TAU images courtesy Allen Malony, U. Oregon, http://tau.uoregon.edu



Visualizing Performance Data

- How well do traditional science visualization
techniques apply to performance data?

Vislt images courtesy Jeremy Meredith, ORNL



Summary

- Emerging technology in compute, memory hierarchy, and interconnect

— Promise of increased performance, larger opportunities for online analysis like in situ
visualization

— But: can make performance data analysis and visualization much more difficult

- Don’t forget: there are data problems in computer science domain too
— Do same techniques apply?

 For more information:
— rothpc@ornl.gov
— http://ft.ornl.qov

— Keeneland (NSF Track 2D): http://keeneland.gatech.edu
— Vancouver (DOE X-Stack): http://ft.ornl.gov/trac/vancouver

— Institute for Sustained Performance, Energy, and Resilience (SUPER, DOE SciDAC-3):
http://super-scidac.org




