
GPU Computing with CUDA

CScADS Workshop on Automatic Tuning
Richard Johnson

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 2

Parallel Computing on a GPU

NVIDIA GPU Computing Architecture
is a highly parallel computing platform

In laptops, desktops, workstations, servers

8-series GPUs deliver 50 to 200 GFLOPS
on compiled parallel C applications

GeForce 8800 has 128 processor cores
Driven by the insatiable demands of PC game
market, the number of cores double each year

Programmable in C with CUDA tools
Multithreaded SPMD model uses application
data parallelism and thread parallelism

GeForce 8800

Tesla R870

Tesla D870

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 3

Outline

NVIDIA GPU Computing Architecture

GPU Computing with CUDA

Tuning for Performance

GPU Computing and Cuda: Real-world Experiences

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 4

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

TEX L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

L2

Memory

Work DistributionHost

L2

Memory

L2

Memory

L2

Memory

L2

Memory

L2

Memory

NVIDIA GPU Computing Architecture
Massively multithreaded parallel computing platform
128 Stream Processors at 1.35 GHz, 518 GFLOPS peak
12,288 concurrent threads, hardware managed
GPU Computing mode enables C on Graphics Processing Unit

SP

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 5

Streaming Multiprocessor

Each SM has 8 Streaming Processors
32 GFLOPS peak at 1.35 GHz

Scalar ISA
load/store architecture
32-bit integer instructions
IEEE 754 32-bit floating point
Branch, call, return, predication
Barrier synchronization instruction

768 Threads, hardware multithreaded
24 SIMD warps of 32 threads
Independent MIMD thread execution
Hardware thread scheduling

8K registers, distributed among threads
16KB Shared Memory

Concurrent threads share data
Very low latency access

Texture L1

SP

Shared
Memory

IU

SP

Shared
Memory

IU

TF

SP

Shared
Memory

MT IU

SM

TPC

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 6

How to Scale GPU Computing?

GPU parallelism scales widely
Ranges from 8 to many 100s of cores
Ranges from 100 to many 1000s of threads

Graphics performance scales with GPU parallelism
Data parallel mapping of pixels to threads
Unlimited demand for parallel pixel shader threads and cores

Challenge:
Scale Computing performance with GPU parallelism

Program must be insensitive to the number of cores
Write one program for any number of SM cores
Program runs on any size GPU without recompiling

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 7

Scalability Solution

Programmer uses multi-level data parallel decomposition
Decomposes problem into a sequence of steps (Grids)
Decomposes Grid into independent parallel Blocks (thread blocks)
Decomposes Block into cooperating parallel elements (threads)

GPU hardware distributes thread blocks to available SM cores
GPU balances work load across any number of SM cores
SM core executes program that computes Block

Each thread block computes independently of others
Enables parallel computing of Blocks of a Grid
No communication among Blocks of same Grid
Scales one program across any number of parallel SM cores

Programmer writes one program for all GPU sizes
Program does not know how many cores it uses
Program executes on GPU with any number of cores

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 8

Outline

NVIDIA GPU Computing Architecture

GPU Computing with CUDA

Tuning Performance

GPU Computing and Cuda: Real-world Experiences

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 9

CUDA Programming Model:
Parallel Multithreaded Kernels

View GPU as a computing device that:
Acts as a coprocessor to the CPU host
Has its own memory hierarchy
Runs many lightweight threads in parallel

Integrated CPU + GPU application C program
Partitions problem into a sequence of kernels
Kernel C code executes on GPU
Sequential C code executes on CPU

Kernels execute in parallel using multiple
levels of parallelism

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 10

CUDA Terminology:
Grids, Blocks, and Threads

CPU

Kernel 1

Kernel 2

GPU device
Grid 1
Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Sequence

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Programmer partitions problem
into a sequence of kernels.

A kernel executes as a grid of
thread blocks

A thread block is an array of
threads that can cooperate

Threads within the same block
synchronize and share data in
Shared Memory

Execute thread blocks on
multithreaded multiprocessor SM
cores

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 11

CUDA Programming Model:
Thread Memory Spaces

Each kernel thread can read:
Thread Id per thread
Block Id per block
Constants per grid
Texture per grid

Each thread can read and write:
Registers per thread
Local memory per thread
Shared memory per block
Global memory per grid

Host CPU can read and write:
Constants per grid
Texture per grid
Global memory per grid

Thread Id, Block Id

Registers

Constants

Texture

Global Memory

Shared
Memory

Kernel
Thread

Program
Written in C

Local Memory

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 12

CUDA: C on the GPU

Single-Program Multiple-Data programming model
C program for a thread of a thread block in a grid
Extend C only where necessary
Simple, explicit language mapping to parallel threads

Declare C kernel functions and variables on GPU:
__global__ void KernelFunc(...);
__device__ int GlobalVar;

__shared__ int SharedVar;

Call kernel function as Grid of 500 blocks with 128 threads per block:
KernelFunc<<< 500, 128 >>>(...);

Explicit GPU memory allocation, CPU-GPU memory transfers
cudaMalloc(), cudaFree()
cudaMemcpy(), cudaMemcpy2D(), …

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 13

CUDA C Example: Add Arrays

__global__ void addMatrixG
(float *a, float *b, float *c, int N)

{
int i = blockIdx.x * dimBlock.x + threadIdx.x;
int j = blockIdx.y * dimBlock.y + threadIdx.y;
int idx = i + j*N;
if (i < N && j < N)

c[idx] = a[idx] + b[idx];
}

void main()
{

dim3 dimBlock (blocksize, blocksize);
dim3 dimGrid (N/dimBlock.x, N/dimBlock.y);
addMatrixG<<<dimGrid, dimBlock>>>(a, b, c, N);

}

void addMatrix
(float *a, float *b, float *c, int N)

{
int i, j, idx;
for (i = 0; i < N; i++) {

for (j = 0; j < N; j++) {
idx = i + j*N;
c[idx] = a[idx] + b[idx];

}
}

}
void main()
{

.....
addMatrix(a, b, c, N);

}

CUDA C programC program

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 14

CUDA Software Development Kit

NVIDIA C Compiler

NVIDIA Assembly
for Computing (PTX) CPU Host Code

Integrated CPU + GPU
C Source Code

CUDA Optimized Libraries:
FFT, BLAS, …

CUDA
Driver

Debugger
Profiler Standard C Compiler

GPU CPU

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 15

Compiling CUDA

NVCC

C/C++ CUDA
Application

PTX to Target
Translator

GPU … GPU

Target code

PTX CodeVirtual

Target

CPU Code

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 16

Virtual to Target ISA Translation

PTX to Target
Translator

GPU … GPU

Target code

PTX Code

ld.global.v4.f32 {$f1,$f3,$f5,$f7},[$r9+0];
mad.f32 $f1,$f5,$f3,$f1;

0x103c8009 0x0fffffff
0xd00e0609 0xa0c00780
0x100c8009 0x00000003
0x21000409 0x07800780

Parallel Thread eXecution (PTX)
Virtual Machine and ISA
Distribution format for applications
Install-time translation
“fat binary” caches target-specific
versions

Target-specific translation optimizes
for:

ISA diffences
Resource allocation
Performance

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 17

Outline

NVIDIA GPU Computing Architecture

GPU Computing with CUDA

Tuning for Performance

GPU Computing and Cuda: Real-world Experiences

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 18

Typical Programming Paradigms

Load; Process; Store; Repeat
Thread block reads global data into shared memory
Threads compute using shared memory
Threads store results in global memory
Repeat

Big impact when data is used multiple times

Within a grid, blocks execute independently
Enables manycore scalability

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 19

Balancing Resources

Fully utilizing each SM requires balancing and coordinating
resources shared among the SM’s threads.

Limit on number of threads per SM
Limit on number of thread blocks per SM
Shared memory
Shared register file
Coordinating memory accesses to minimize bank conflicts

Parameterize application to allow exploration of trade-offs
Thread block size – degree of thread parallelism
Data tile size
Number of results computed by each thread
Degree of unrolling
Prefetching
...

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 20

Manual Tuning of Matrix Multiply

Multiply two 4096 x 4096 element matrices
Let’s consider several versions of the kernel…

Naïve implementation
each thread computes one result, no collaboration

Tiled implementation
Increase compute-to-load ratio
Reuse data in shared memory

Tiled and unrolled implementation
Further increases compute-to-load ratio

Expanded tiled implementation
Each thread computes multiple result values
Data tile 4x larger than thread array
Further increases compute-to-load ratio, decreases SM
utilization

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 21

Naïve Implementation

C = A * B of size WIDTH x WIDTH
Each thread handles one element of C
A and B are loaded WIDTH times from
global memory
Thread parallelism hides pipeline latency
Block parallelism hides memory latency

C

Psub

A

B

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

BLOCK_SIZE

B
L

O
C

K
_S

IZ
E

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 22

Naïve Kernel

Tx = threadIdx.x; Ty = threadIdx.y;
Bx = blockIdx.x; By = blockIdx.y;

X = Bx * BLOCK_SIZE + Tx;
Y = By * BLOCK_SIZE + Ty;

idxA = Y * WIDTH; idxB = X;
idxC = Y * WIDTH + X;

Csub = 0.0;
for (i=0; I < WIDTH; i++) {

Csub += A[idxA] * B[idxB];
idxA += 1;
idxB += WIDTH;

}
C[idxC] = Csub;

Inner loop:
ld; ld; fmad; add; add; add; cmp; bra;
1/4 are loads, 1/8 are fmad

Compute-to-memory ratio is 1:1

Required bandwidth: 172.8 GB/s
128 * 1.35GHz * 4 bytes/ld * ¼ instr

Peak available bandwidth: 86.4 GB/s
only half of required bandwidth

Measured perf: up to 17.2 GFLOPS

Performance limited by available
memory bandwidth

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 23

Tiled Implementation

C = A * B

With tiling:
Each thread block handles one
BLK_SIZE x BLK_SIZE sub-matrix
A and B are loaded WIDTH / BLK_SIZE
times from global memory

Substantial reduction
in memory traffic

A

B

C

Psub

BLOCK_SIZEBLOCK_SIZE BLOCK_SIZE BLOCK_SIZE

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

B
L

O
C

K
_S

IZ
E

W
ID

T
H

W
ID

T
H

WIDTH WIDTH

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 24

Tiled Kernel

__shared__ float As[16][16];
__shared__ float Bs[16][16];

Csub = 0.0;
for (…) { // iterate across tiles

As[ty][tx] = A[idxA];
Bs[ty][tx] = B[idxB];
idxA += 16; idxB += 16 * WIDTH;
__syncthreads();

for (i=0; i < 16; i++) {
Csub += As[ty][i] * Bs[i][tx];

}
__syncthreads();

}
C[idxC] = Csub;

16x16 block allows 3 blocks/SM
hides sync latency
16 regs/thread limits us to 2
blocks/SM

Each threads loads 2 values from
global mem, uses 32 values from
shared mem

Measured perf: 47.5 GFLOPS

Performance limited by inner-loop
overhead

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 25

Tiled and Unrolled Kernel

Csub = 0.0;
for (…) { // iterate across blocks

As[ty][tx] = A[idxA];
Bs[ty][tx] = B[idxB];
idxA += 16; idxB += 16 * WIDTH;
__syncthreads();

// completely unroll inner loop
Csub += As[0][i] * Bs[i][0];
Csub += As[1][i] * Bs[i][1];
…
Csub += As[15][i] * Bs[i][15];
}
__syncthreads();

}
C[idxC] = Csub;

Inner loop completely unrolled
Eliminates loop overhead
Address arithmetic optimized

Measured perf: 85.6 GFLOPS

Performance again limited by
compute-to-memory ratio

Idea: increase data tile to 32x32
Plenty of shared memory
Each thread computes four
values

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 26

Expanded Tiled Kernel

16x16 thread block, with 32x32 data tile
Each thread computes four result values

Maximizes compute-to-memory ratio
Each thread block uses 4KB of shared memory
Increased register usage limits us to one block/SM

Unrolling experiments:
no unrolling: 70.7 GFLOPS
Fully unrolled: insufficient registers
Unroll-by-2: 86.1 GFLOPS
Unroll-by-4: 118.4 GFLOPS

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 27

Autotuning Opportunities

Balancing shared resources to maximize performance
Requires control over compiler optimizations, program parameters
New GPU applications typically go through multiple revisions to
achieve best performance; intuition not always a reliable guide

Blocking in massively parallel applications
Discovering best tile size for shared memory data reuse
Discovering best degree of thread-level parallelism
Discovering best number of results to compute per thread

GPU Onload
Discovering portions of CPU code to “onload” to GPU

Tuning application performance for new generations of GPUs
Current tools allow programs to scale to future GPUs
But maximum performance requires re-tuning

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 28

Outline

NVIDIA GPU Computing Architecture

GPU Computing with CUDA

Tuning for Performance

GPU Computing and Cuda: Real-world
Experiences

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 29

GPU Computing Application Areas

Computational
Modeling

Computational
Chemistry

Computational
Medicine

Computational
Science

Computational
Biology

Computational
Finance

Computational
Geoscience

Image
Processing

© Haoron Yi and Sam Stone, 2007
ECE 498AL, University of Illinois, Urbana-Champaign

Dynamic Real-Time MRI

Bioengineering Institute, University of Auckland,
IUPS Physiome Project
http://www.bioeng.auckland.ac.nz/movies/database/
cardiovascular_system/textured-heart-beat.mpg

G80 GPU is 245x CPU

Zhi-Pei Liang's Research Group, Beckman Institute, UIUC
Used with permission of Justin Haldar

EM: Cell Phone Simulation

•

Ryan Schneider, CTO

The “Race”

HP xw9400 with 4 core CPU 15 hrs

HP xw9400 with 4 NVIDIA GPUs 20 min

• Overnight becomes over coffee

• Computer-Aided Optimization

• 45X: Supercomputing → Desktop

• More, for same TCO

7/12/2007

– Computational Neuroscience Simulation

– We already achieve 130x acceleration over
current x86 with 1 board of 2 NVIDIA G80 GPUs

– > 1 Tflop / board

– >12 Tflops / rack (4u enclosure)

– 1 rack may soon exceed the Top500 number 19
(which has 4,096 cores)

Paul Rhodes - CEO

NIH Resource for Macromolecular Modeling and Bioinformatics
http://www.ks.uiuc.edu/

Beckman Institute, UIUC

• Key task: placement of ions inside
and around the virus

• 110 CPU-hours on SGI Altix
Itanium2

• Larger viruses could require
thousands of CPU-hours

• 27 GPU-minutes on G80 GPU

• Over 240 times faster - ion
placement can now be done on a
desktop machine!

Preparing Virus for Molecular Simulation

John Stone
Beckman Institute, University of Illinois

© NVIDIA Corporation 2007Workshop on Automatic Tuning: GPU Computing with CUDA 35

Summary
GPU architectures have evolved to be well-suited for solving
data-parallel problems, and they continue to deliver
increasingly higher performance

As a simple extension to the C programming language, CUDA
provides easy access to high performance GPU computing

CUDA and the 8-series GPUs expose a rich environment for
automatic tuning of application performance

Placement: GPU vs. CPU
Hierarchy: memory and processor
Blocking: selecting threads per thread block, results per thread
Balancing shared resources
Target-specific re-tuning for maximum performance

