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Positions and Thoughts
 Autotuning definition

 Search over space of alternatives and

 Parameter-based tuning are very important

 but fails to address some key problems; we need to think about

 Raising the level of abstraction: Enables
 Use of domain knowledge

 Difficult optimizations: parallelization, vectorization, etc.

 Faster porting to new platforms and platform paradigms

 Possibly automatic software development

 We need coarse platform abstractions

 We need more interdisciplinary collaborations

 Metrics
 Time for code development, porting to new platforms

 Performance
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DFT Plot: Analysis

Memory hierarchy: 5x

Vector instructions: 3x

Multiple threads: 2x

High performance library development has become a nightmare
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Spiral
 Research Goal: “Teach” computers to write fast libraries

 Complete automation of implementation and optimization
 Including vectorization, parallelization

 Functionality:
 Linear transforms (discrete Fourier transform, filters, wavelets)
 BLAS
 SAR imaging
 En/decoding (Viterbi, Ebcot in JPEG2000)
 … more

 Platforms:
 Desktop (vector, SMP), FPGAs, GPUs, distributed, hybrid

 Collaboration with Intel (Kuck, Tang, Sabanin)
 Parts of MKL/IPP generated with Spiral
 IPP 6.0: ippg domain for Spiral generated code
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Vision Behind Spiral

Numerical problem

Computing platform

algorithm selection

compilation
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Current Future

 C code a singularity: Compiler has
no access to high level information

 Challenge: conquer the high abstraction 
level  for complete automation
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Organization

 Spiral’s framework: Example transforms
 Complete automation achieved

 Beyond transforms

 Conclusions and thoughts
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Linear Transforms

 Mathematically: Matrix-vector multiplication

 Example: Discrete Fourier transform (DFT)

Transform 
= matrix

Input vectorOutput vector
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Transform Algorithms: Example 4-point FFT
Cooley/Tukey fast Fourier transform (FFT):

 Algorithms are divide-and-conquer: Breakdown rules
 Mathematical, declarative representation: SPL (signal processing language)
 SPL describes the structure of the dataflow

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1
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j j
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Fourier transform

Identity Permutation

Diagonal matrix (twiddles)

Kronecker product
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Breakdown Rules (>200 for >50 Transforms)

Combining these rules yields many algorithms for every given transform
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SPL to Sequential Code

Example: tensor product

Correct code: easy fast code: very difficult
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Program Generation in Spiral (Sketched)

Transform
user specified

C Code:

Fast algorithm
in SPL
many choices

∑-SPL:
[PLDI 05]

Iteration of this process 
to search for the fastest

But that’s not all …

parallelization
vectorization

loop 
optimizations

constant folding
scheduling
……

Optimization at all
abstraction levels
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SPL to Shared Memory Code: Basic Idea [SC 06]

 Governing construct: tensor product

p-way embarrassingly parallel, load-balanced

A

A
A

A

x y

Processor 0

Processor 1

Processor 2

Processor 3

 Problematic construct: permutations produce false sharing

Task: Rewrite formulas to 
extract tensor product + keep contiguous blocks

x y
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Parallelization by Rewriting

Load-balanced
No false sharing

coarse
platform

model
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Same Approach for Other Parallel Paradigms

VectorizationMessage Passing

Cg/OpenGL for GPUs: Verilog for FPGAs:

MPI
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Example Results

CPU + GPU

CPU

CPU+FPGA

CELL GPU
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Summary: Complete Automation for Transforms

 Platform: Off-the-shelf desktop

 Often: generated code faster than competition (if exists)

• Memory hierarchy optimization
Rewriting and search for algorithm selection
Rewriting for loop optimizations

• Vectorization
Rewriting

• Parallelization
Rewriting

• Derivation of library structure
Rewriting
Other methods

fixed input size code

general input size library



Carnegie Mellon

Generated Libraries

• 2-way vectorized, 2-threaded
• Most are faster than hand-written libs
• Recursion steps: 4–17
• Code size: 8–120 kloc or 0.5–5 MB
• Generation time: 1–3 hours

DFT

RDFT DHT

DCT2 DCT3 DCT4

Filter Wavelet
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Organization

 Spiral’s framework: Example transforms
 Complete automation achieved

 Beyond transforms
 Operator language

 BLAS, Viterbi decoding, SAR imaging, Ebcot encoding

 Conclusions and thoughts
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Going Beyond Transforms

 Transform = 
linear operator with one vector input and one vector output

 Key ideas: 
 Generalize to (possibly nonlinear) operators with several inputs and 

several outputs

 Generalize SPL (including tensor product) to OL (operator language)

 Generalize rewriting systems for parallelizations

linear
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Operator Language
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Example: Matrix Multiplication (MMM)

Breakdown rules = algorithm knowledge:
capture various forms of blocking
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Parallelization through rewriting

Load-balanced
No false sharing
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Speed-up (m x k) times (k x n)
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 Comparison to GotoBLAS similar
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1.5–2.0x
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Viterbi Decoding in OL

 Operator for Viterbi decoder

 Breakdown rules

http://www.ece.unb.ca/tervo/ee4253/convolution3.htm
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Results

Karn

16-way

8-way

4-way

scalar

Spiral

16-way

8-way

4-way

scalar

Karn’s implementation: hand-written assembly for 4 Viterbi codes
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EBCOT Coding in OL
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Organization

 Spiral’s framework: Example transforms
 Complete automation achieved

 Beyond transforms

 Conclusions and thoughts
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Raising the Abstraction Level
 Formally describe and structure algorithms/applications

eternally valid

 In Spiral
 Domain-specific, declarative, mathematical language OL

 Difficult optimizations/transformations by rewriting

 What it enables

 Vectorization, parallelization using 
domain knowledge

 Efficient retargeting to new platforms and 
new platform paradigms

 Complete automation in some cases

 Other examples
 Libraries

 Identification and definition of BLAS

 Parameter tuning
 Indispensable tool but cannot achieve the above
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Interdisciplinary Research Needed

Programming languages
Program generation Symbolic Computation

Rewriting

Compilers

Software
Scientific Computing

Algorithms
Mathematics

Automating
High-Performance

Parallel Library
Development

We Need to Work Together


