
Carnegie Mellon

This work was supported by
DARPA, NSF-NGS/ITR,ACR,CPA, Intel, Mercury, National Instruments

Markus Püschel

With:
Srinivas Chellappa
Frédéric de Mesmay
Franz Franchetti
Daniel McFarlin
Yevgen Voronenko

Electrical and
Computer Engineering
Carnegie Mellon University

… and the Spiral team (only part shown)

Spiral
Automating Library Development

Carnegie Mellon

Positions and Thoughts
 Autotuning definition

 Search over space of alternatives and

 Parameter-based tuning are very important

 but fails to address some key problems; we need to think about

 Raising the level of abstraction: Enables
 Use of domain knowledge

 Difficult optimizations: parallelization, vectorization, etc.

 Faster porting to new platforms and platform paradigms

 Possibly automatic software development

 We need coarse platform abstractions

 We need more interdisciplinary collaborations

 Metrics
 Time for code development, porting to new platforms

 Performance

Carnegie Mellon

DFT Plot: Analysis

Memory hierarchy: 5x

Vector instructions: 3x

Multiple threads: 2x

High performance library development has become a nightmare

Carnegie Mellon

Spiral
 Research Goal: “Teach” computers to write fast libraries

 Complete automation of implementation and optimization
 Including vectorization, parallelization

 Functionality:
 Linear transforms (discrete Fourier transform, filters, wavelets)
 BLAS
 SAR imaging
 En/decoding (Viterbi, Ebcot in JPEG2000)
 … more

 Platforms:
 Desktop (vector, SMP), FPGAs, GPUs, distributed, hybrid

 Collaboration with Intel (Kuck, Tang, Sabanin)
 Parts of MKL/IPP generated with Spiral
 IPP 6.0: ippg domain for Spiral generated code

Carnegie Mellon

Vision Behind Spiral

Numerical problem

Computing platform

algorithm selection

compilation

h
u

m
an

 e
ff

o
rt

au
to

m
at

e
d

implementation
C program

au
to

m
at

e
dalgorithm selection

compilation

implementation

Numerical problem

Computing platform

Current Future

 C code a singularity: Compiler has
no access to high level information

 Challenge: conquer the high abstraction
level for complete automation

Carnegie Mellon

Organization

 Spiral’s framework: Example transforms
 Complete automation achieved

 Beyond transforms

 Conclusions and thoughts

Carnegie Mellon

Linear Transforms

 Mathematically: Matrix-vector multiplication

 Example: Discrete Fourier transform (DFT)

Transform
= matrix

Input vectorOutput vector

Carnegie Mellon

Transform Algorithms: Example 4-point FFT
Cooley/Tukey fast Fourier transform (FFT):

 Algorithms are divide-and-conquer: Breakdown rules
 Mathematical, declarative representation: SPL (signal processing language)
 SPL describes the structure of the dataflow

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1

j j

j j j

Fourier transform

Identity Permutation

Diagonal matrix (twiddles)

Kronecker product

Carnegie Mellon

Breakdown Rules (>200 for >50 Transforms)

Combining these rules yields many algorithms for every given transform

Carnegie Mellon

SPL to Sequential Code

Example: tensor product

Correct code: easy fast code: very difficult

Carnegie Mellon

Program Generation in Spiral (Sketched)

Transform
user specified

C Code:

Fast algorithm
in SPL
many choices

∑-SPL:
[PLDI 05]

Iteration of this process
to search for the fastest

But that’s not all …

parallelization
vectorization

loop
optimizations

constant folding
scheduling
……

Optimization at all
abstraction levels

Carnegie Mellon

SPL to Shared Memory Code: Basic Idea [SC 06]

 Governing construct: tensor product

p-way embarrassingly parallel, load-balanced

A

A
A

A

x y

Processor 0

Processor 1

Processor 2

Processor 3

 Problematic construct: permutations produce false sharing

Task: Rewrite formulas to
extract tensor product + keep contiguous blocks

x y

Carnegie Mellon

Parallelization by Rewriting

Load-balanced
No false sharing

coarse
platform

model

Carnegie Mellon

Same Approach for Other Parallel Paradigms

VectorizationMessage Passing

Cg/OpenGL for GPUs: Verilog for FPGAs:

MPI

Carnegie Mellon

Example Results

CPU + GPU

CPU

CPU+FPGA

CELL GPU

Carnegie Mellon

Summary: Complete Automation for Transforms

 Platform: Off-the-shelf desktop

 Often: generated code faster than competition (if exists)

• Memory hierarchy optimization
Rewriting and search for algorithm selection
Rewriting for loop optimizations

• Vectorization
Rewriting

• Parallelization
Rewriting

• Derivation of library structure
Rewriting
Other methods

fixed input size code

general input size library

Carnegie Mellon

Generated Libraries

• 2-way vectorized, 2-threaded
• Most are faster than hand-written libs
• Recursion steps: 4–17
• Code size: 8–120 kloc or 0.5–5 MB
• Generation time: 1–3 hours

DFT

RDFT DHT

DCT2 DCT3 DCT4

Filter Wavelet

Carnegie Mellon

Organization

 Spiral’s framework: Example transforms
 Complete automation achieved

 Beyond transforms
 Operator language

 BLAS, Viterbi decoding, SAR imaging, Ebcot encoding

 Conclusions and thoughts

Carnegie Mellon

Going Beyond Transforms

 Transform =
linear operator with one vector input and one vector output

 Key ideas:
 Generalize to (possibly nonlinear) operators with several inputs and

several outputs

 Generalize SPL (including tensor product) to OL (operator language)

 Generalize rewriting systems for parallelizations

linear

Carnegie Mellon

Operator Language

Carnegie Mellon

Example: Matrix Multiplication (MMM)

Breakdown rules = algorithm knowledge:
capture various forms of blocking

Carnegie Mellon

Parallelization through rewriting

Load-balanced
No false sharing

Carnegie Mellon

Speed-up (m x k) times (k x n)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

'ratio32' u 1:2:3

 0 5 10 15 20 25 30 35

 0

 5

 10

 15

 20

 25

 30

 35

 Comparison to GotoBLAS similar

1.0–1.5x

1.5–2.0x

MMM Speedup over MKL, n = 32, Core 2 Duo

k

m

example:

Carnegie Mellon

Viterbi Decoding in OL

 Operator for Viterbi decoder

 Breakdown rules

http://www.ece.unb.ca/tervo/ee4253/convolution3.htm

Carnegie Mellon

Results

Karn

16-way

8-way

4-way

scalar

Spiral

16-way

8-way

4-way

scalar

Karn’s implementation: hand-written assembly for 4 Viterbi codes

Carnegie Mellon

EBCOT Coding in OL

Carnegie Mellon

Organization

 Spiral’s framework: Example transforms
 Complete automation achieved

 Beyond transforms

 Conclusions and thoughts

Carnegie Mellon

Raising the Abstraction Level
 Formally describe and structure algorithms/applications

eternally valid

 In Spiral
 Domain-specific, declarative, mathematical language OL

 Difficult optimizations/transformations by rewriting

 What it enables

 Vectorization, parallelization using
domain knowledge

 Efficient retargeting to new platforms and
new platform paradigms

 Complete automation in some cases

 Other examples
 Libraries

 Identification and definition of BLAS

 Parameter tuning
 Indispensable tool but cannot achieve the above

Carnegie Mellon

Interdisciplinary Research Needed

Programming languages
Program generation Symbolic Computation

Rewriting

Compilers

Software
Scientific Computing

Algorithms
Mathematics

Automating
High-Performance

Parallel Library
Development

We Need to Work Together

