

  Running MPI only on a node will not work well
•  Too much memory used, even if on-node shared communication is

available
•  As the number of MPI ranks increases, more off-node communication

can result, creating a network injection issue

  Focus on where MPI starts leveling off

  Address by adding additional levels of parallelism, reducing
MPI ranks per node
•  MPI -> MPI + OpenMP
•  MPI + OpenMP -> MPI + OpenMP GPU extensions

CScADS, Aug 2011 Cray Inc. 2

 Maximize on-node communication if MPI point-to-point
communication is dominant in the program
•  Auto-grid detection and placement suggestions

  Determine where to add additional levels of parallelism
•  Find top time consuming loops with enough work for GPU

  Loop statistics

  Do parallel analysis and restructuring on targeted high level
loops
•  Scoping assistance

CScADS, Aug 2011 Cray Inc. 3

  Add parallel directives and acceleration extensions
•  OpenMP extensions

  Run on X86 + GPU and get performance feedback
  Optimize for data locality and copies to the GPU
  Optimize kernel on GPU

  Cray performance tools statistics

CScADS, Aug 2011 Cray Inc. 4

  Analyze runtime performance data to identify grids in a
program to maximize on-node communication
•  Example: nearest neighbor exchange in 2 dimensions

  Sweep3d uses a 2-D grid for communication

  Determine whether or not a custom MPI rank order will
produce a significant performance benefit

  Grid detection is helpful for programs with significant point-to-
point communication

  Produce a custom rank order if it’s beneficial based on grid
size, grid order and cost metric

CScADS, Aug 2011 Cray Inc. 5

 Example summary for sweep3d (pat_report table Notes)

 This application appears to use point-to-point MPI communication at least
 partly organized into a 8 X 6 grid pattern. Time spent in MPI routines
 accounted for over 63.1% of the execution time. A portion of this time
 could potentially be saved by utilizing a rank order that maximizes
 the fraction of communication that is between ranks on the same node.
 The following table estimates this fraction for several rank orders.

 An MPICH_RANK_ORDER file was generated along with this report
 and contains the Custom rank order from the following table. This
 file also contains usage instructions and a table of alternative rank orders.

CScADS, Aug 2011 Cray Inc. 6

!

Table 4: Sent Message Stats for Selected MPI Rank Orders!

!

 Rank | On-Node | On-Node | Options for grid_order utility!

 Order | Bytes/PE | Bytes/PE% |!

 | | of Total |!

 | | Bytes/PE |!

--!

 Custom | 1.30e+07 | 50.00% | -R -P -m 48 -n 4 -g 8,6 -c 2,1!

 SMP | 8.10e+06 | 31.25% |!

 Fold | 6.75e+05 | 2.60% |!

 RoundRobin | 0.00e+00 | 0.00% |!

==!

CScADS, Aug 2011 Cray Inc. 7

The 'Custom' rank order in this file targets nodes with multi-core
processors, based on Sent Msg Total Bytes collected for:

Program: /lus/nid00030/heidi/sweep3d/mod/sweep3d.mpi
Ap2 File: sweep3d.mpi+pat+27054-89t.ap2
Number PEs: 48
Max PEs/Node: 4

To use this file, set the environment variable
MPICH_RANK_REORDER_METHOD to 3 prior to executing the program.

The following table lists rank order alternatives and the grid_order
command-line options that can be used to generate a new order.
…

CScADS, Aug 2011 Cray Inc. 8

  Helps identify loops to move to GPU:
•  Loop timings approximate how much work exists within a loop
•  Trip counts can be used to help carve up loop on GPU

  Enabled with CCE –h profile_generate option

  Loop statistics reported by default in pat_report table

CScADS, Aug 2011 Cray Inc. 9

Notes for table 2:

 Table option:

 -O loops

 …

 The Function value for each data item is the avg of the PE values.

 (To specify different aggregations, see: pat_help report options s1)

 This table shows only lines with Loop Incl Time / Total > 0.0095.

 (To set thresholds to zero, specify: -T)

 Loop data version: L.12.2:B.3.1

 Loop instrumentation can interfere with optimizations, so time

 reported here may not reflect time in a fully optimized program.

 Loop stats can safely be used in the compiler directives:

 !PGO$ loop_info est_trips(Avg) min_trips(Min) max_trips(Max)

 #pragma pgo loop_info est_trips(Avg) min_trips(Min) max_trips(Max)

 Explanation of Loop Notes (P=1 is highest priority, P=0 is lowest):

 novec (P=0.5): Loop not vectorized (see compiler messages for reason).

 sunwind (P=1): Loop could be vectorized and unwound.

 vector (P=0.1): Already a vector loop.

CScADS, Aug 2011 Cray Inc. 10

Table 2: Loop Stats from -hprofile_generate

 Loop |Loop Incl |Loop Incl | Loop | Loop | Loop |Function=/.LOOP\.

 Incl | Time | Time / | Hit | Trips | Notes | PE='HIDE'

 Time / | | Hit | | Avg | |

 Total | | | | | |

|---

| 24.6% | 0.057045 | 0.000570 | 100 | 64.1 | novec |calc2_.LOOP.0.li.614

| 24.0% | 0.055725 | 0.000009 | 6413 | 512.0 | vector |calc2_.LOOP.1.li.615

| 18.9% | 0.043875 | 0.000439 | 100 | 64.1 | novec |calc1_.LOOP.0.li.442

| 18.3% | 0.042549 | 0.000007 | 6413 | 512.0 | vector |calc1_.LOOP.1.li.443

| 17.1% | 0.039822 | 0.000406 | 98 | 64.1 | novec |calc3_.LOOP.0.li.787

| 16.7% | 0.038883 | 0.000006 | 6284 | 512.0 | vector |calc3_.LOOP.1.li.788

| 9.7% | 0.022493 | 0.000230 | 98 | 512.0 | vector |calc3_.LOOP.2.li.805

| 4.2% | 0.009837 | 0.000098 | 100 | 512.0 | vector |calc2_.LOOP.2.li.640

|===

CScADS, Aug 2011 Cray Inc. 11

CScADS, Aug 2011 Cray Inc. 12

CScADS, Aug 2011 Cray Inc. 13

CScADS, Aug 2011 Cray Inc. 14

!

Table 1: Profile by Function Group and Function!

!

 Time% | Time | Imb. | Imb. | Calls |Group !

 | | Time | Time% | | Function !

 | | | | | PE=HIDE !

 | | | | | Thread=HIDE !

!

 100.0% | 18.113521 | -- | -- | 6.0 |Total!

|--!

| 100.0% | 18.113443 | -- | -- | 5.0 |USER!

||---!

|| 90.6% | 18.113000 | 0.000000 | 0.0% | 1.0 |acc_sample_.ACC_DATA_REGION@li.23!

|| 9.4% | 0.000443 | 0.000000 | 0.0% | 1.0 |acc_sample_.ACC_REGION@li.24!

||===!

| 0.0% | 0.000078 | 0.000000 | 0.0% | 1.0 |ETC!

||---!

| 0.0% | 0.000078 | 0.000000 | 0.0% | 1.0 | exit!

|==!

CScADS, Aug 2011 Cray Inc. 15

!

!

Table 2: Time and Bytes Transferred for Accelerator Regions!

!

 Host | Host | Acc | Acc Copy | Acc Copy | Calls |Calltree !

 Time% | Time | Time | In | Out | |!

 | | | (MBytes) | (MBytes) | |!

 100.0% | 18.113 | 18.112 | 209.808 | 209.808 | 4 |Total!

|--!

| 100.0% | 18.113 | 18.112 | 209.808 | 209.808 | 4 |acc_sample_!

| | | | | | | acc_sample_.ACC_DATA_REGION@li.23!

|||--!

3|| 90.6% | 16.418 | --- | --- | --- | 1 |sync!

3|| 9.4% | 1.695 | 1.695 | 209.808 | 209.808 | 2 |transfer!

3|| 0.0% | 0.000 | 16.418 | 0.000 | 0.000 | 1 |acc_sample_.ACC_REGION@li.24!

4|| | | | | | | async_kernel!

|==!

CScADS, Aug 2011 Cray Inc. 16

  Systems with hundreds of thousands of threads of execution
need a new debugging paradigm
•  Innovative techniques for productivity and scalability

  Scalable Solutions based on MRNet from University of Wisconsin
 STAT - Stack Trace Analysis Tool

»  Scalable generation of a single, merged, stack backtrace tree
  running	
 at	
 216K	
 back-­‐end	
 processes	
 	

ATP - Abnormal Termination Processing
»  Scalable analysis of a sick application, delivering a STAT tree and a minimal,

comprehensive, core file set.

  Comparative debugging
o  A data-centric paradigm instead of the traditional control-centric paradigm
o  Collaboration with Monash University and University of Wisconsin for scalability

  Fast Track Debugging
o  Debugging optimized applications
o  Added to Allinea's DDT 2.6 (June 2010)

August 2011 17 © Cray Inc.

