
Characterizing the Performance of Big Memory on Blue Gene Linux ∗

Kazutomo Yoshii1 Kamil Iskra1 P. Chris Broekema3 Harish Naik1 Pete Beckman2

Argonne National Laboratory 3ASTRON
1 Mathematics and Computer Science Division Netherlands Institute for Radio Astronomy

2 Leadership Computing Facility Oude Hoogeveensedijk 4

9700 South Cass Avenue 7991 PD Dwingeloo, The Netherlands

Argonne, IL 60439, USA

E-mail: {kazutomo,iskra,hnaik,beckman}@mcs.anl.gov, broekema@astron.nl

Abstract

Using Linux for high-performance applications on the

compute nodes of IBM Blue Gene/P is challenging because

of TLB misses and difficulties with programming the net-

work DMA engine. We present a design and implementa-

tion of “big memory”—an alternative, transparent memory

space for computational processes, which addresses these

difficulties. The big memory uses extremely large memory

pages available on PowerPC CPUs to create a TLB-miss-

free, flat memory area that can be used for application code

and data and is easier to use for DMA operations. Single-

node benchmarks show that the performance gap narrows

from more than a factor of 3 observed with a standard Linux

kernel to just 0.03–0.2% with the big memory. We verify this

at the scale of 1024 nodes using the NAS Parallel Bench-

marks suite, finding the performance under Linux with the

big memory support to fluctuate within 0.7% of the ven-

dor microkernel. Originally intended exclusively for com-

pute node tasks, our new memory subsystem turns out to

dramatically improve the performance of certain applica-

tions on the I/O nodes as well, as demonstrated by LOFAR.

Keywords: petascale, Blue Gene, OS kernel, Linux, com-

pute node, I/O node, memory performance, TLB, NAS Par-

allel Benchmarks, LOFAR

∗This work was supported by the Office of Advanced Scientific Com-

puting Research, Office of Science, U.S. Department of Energy, under

Contract DE-AC02-06CH11357.

LOFAR is funded by the Dutch government in the BSIK programme for

interdisciplinary research for improvements of the knowledge infrastruc-

ture. Additional funding is provided by the European Union, European

Regional Development Fund (EFRO) and by the “Samenwerkingsverband

Noord-Nederland,” EZ/KOMPAS.

1 Introduction

The Blue Gene architecture [8, 11], developed by IBM, is

one of the most successful contemporary massively parallel

computer architectures, thanks to a high-speed interconnect,

a highly scalable design, and a very low power consumption

compared to other supercomputers.

Blue Gene machines normally run a dedicated compute

node kernel (CNK) [12] on the compute nodes. CNK is es-

sentially a microkernel that supports only one user thread

per CPU core and provides a simplified, offset-based map-

ping from physical memory to the virtual address space.

This design keeps the kernel small and simple; more im-

portant, it maximizes the memory access performance as

well as the floating-point performance. It also simplifies the

programming of hardware devices, in particular the DMA

engine discussed later.

Unfortunately, the simplicity of the design is also an ob-

stacle; it brings an inflexibility and a lack of features that are

generally taken for granted in more general-purpose operat-

ing system kernels, such as multitasking and time sharing.

This situation prompted us to replace the CNK with a Linux

kernel as a part of the ZeptoOS project [16], in an effort

to create a fully open software stack to enable independent

computer science research on massively parallel architec-

tures, enhance community collaboration, and foster innova-

tion.

In previous publications related to ZeptoOS, we focused

on operating system jitter [2,4] and on I/O forwarding [10].

This paper focuses on the performance of our Linux-based

ZeptoOS compute node kernel, with an emphasis on the

memory management. A comprehensive discussion of the

whole ZeptoOS environment will be published in the future.

1

1.1 System Architecture

In this section, we outline the key characteristics of the Blue

Gene hardware design and their consequences for the soft-

ware stack (both the default one and the ZeptoOS one).

We focus on the Blue Gene/P (BG/P) architecture [9] in-

troduced in 2007 to replace the original Blue Gene/L de-

sign [11].

Blue Gene racks consist of two kinds of nodes: the com-

pute nodes running the application code, and the I/O nodes

responsible for system services such as file I/O. The two

kinds of nodes feature the same hardware; however, the

available interconnects are different. The primary intercon-

nect available on the compute nodes is a 3D torus network,

used for high-performance point-to-point communication.

A collective network is also available for more sophisticated

operations; it doubles as a file I/O backbone connecting

compute nodes with I/O nodes. Unlike the compute nodes,

which normally run the CNK, I/O nodes run a Linux ker-

nel. I/O nodes also have a 10GbE links to connect them to

file servers, login nodes, the service node, and the like. The

only practical means of communication between the com-

pute nodes and the outside world is through the I/O nodes,

using I/O forwarding.

We chose Linux as the foundation of our ZeptoOS kernel

for the compute nodes because of its openness and popular-

ity, but our decision was made easier by the fact that Linux

already ran on the nearly identical I/O nodes. Only minor

changes to the I/O node kernel itself were needed to boot it

on the compute nodes. However, a number of far-reaching

changes were required to make it useful. For example, we

had to replace the CNK-specific IBM I/O forwarding and

job control software with ZOID [10]. ZOID enables ac-

cess to remote filesystems from the compute nodes running

Linux, but it also provides an interactive login capability to

the compute nodes from the outside, which proved invalu-

able in further software development.

Internally, BG/P nodes use PowerPC 450 CPUs—a

quad-core, 32-bit design with SMP support, running at 850

MHz. Each processor core has a dual-pipeline floating-

point unit with fused multiply and add (FMA) instructions.

The peak floating-point performance of the whole CPU is

13.6Gflops. Each core has a 32KB1 L1 instruction cache

and a 32KB L1 data cache (the latter with support for cache

coherency protocol). The peak fill rate is 6.8GB/s. The L2

cache is smaller than the L1 and serves as a stream prefetch-

ing buffer. The CPU has a common 8MB L3 cache. Nodes

have either 2GB or 4GB of main memory. The main store

bandwidth is 13.6GB/s.

At the time of writing, PowerPC 450 is not a compo-

nent available separately on the market; it can be purchased

1Throughout this paper, we use KB, MB or GB in the context of mem-

ory size; 1 KB equals 1,024 bytes.

only as part of a Blue Gene/P system. Consequently, a stock

Linux kernel does not have the support needed to make

Linux boot on that CPU. However, IBM provides necessary

patches to enable Linux to work on this processor. Regular

32-bit PowerPC executables run well on a BG/P Linux ker-

nel; however, executables compiled specifically for BG/P

using a patched GNU C compiler might not work on other

32-bit PowerPC processors because of the custom BG/P

FMA instruction set.

Because of its embedded systems origins, the processor

has only 64 TLB entries per core. Even worse, TLB misses

must be handled in software, inside the Linux kernel, with

an average cost of approximately 0.3 µs. This means that,

with the default PowerPC Linux page size of 4KB, if the

memory is accessed randomly, the working set of the pro-

gram must not be larger than 256KB before the perfor-

mance significantly degrades. The processor itself supports

various page sizes, ranging from 1KB to 1GB. Pages of dif-

ferent sizes can be used simultaneously; unfortunately, the

Linux kernel lacks the flexibility needed to take advantage

of this feature. We have experimented with increasing the

system page size to 64KB; we show the results later in the

paper. Unfortunately, this approach is not really an option

on the I/O nodes because the legacy software running there

(in particular, the GPFS filesystem client code) works only

with 4KB pages. CNK takes full advantage of the hardware

and statically maps all the system memory using large TLB

entries, thereby eliminating TLB misses.

Unlike its predecessor used in Blue Gene/L, PowerPC

450 has a coherent L1 data cache; the PowerPC load and

reserve instruction works, and coherent pages are available.

However, the tlbsync instruction is not supported, so

the Linux kernel has to use an interprocess-interrupt (IPI)

to synchronize the software TLB management. The BG/P

Linux kernel is configured for 3/1GB user/kernel split, with

HIGHMEM enabled by default. BG/P-specific additions in-

clude primarily various network drivers.

The torus network between the compute nodes has been

enhanced on BG/P with a DMA engine. The engine can

deal only with physical addresses; a software layer has to

translate virtual addresses to physical ones. This is sim-

ple with IBM’s CNK, where contiguous virtual addresses

are also contiguous in physical space. Unfortunately, with

paged memory used in Linux, this is not the case—the trans-

lation is a lot more complex, and fragmented physical ad-

dress space seriously limits the size of DMA operations,

hurting the performance.

Given the problems caused by paged memory on BG/P,

we decided to investigate an alternative memory manage-

ment scheme.

2

2 Related Work

Linux does provide support for large memory pages,

through the hugetlbfs [6] mechanism. Using these pages

dramatically reduces the number of TLB misses, improving

the performance. However, this feature is not transparent—

applications need to explicitly invoke the mmap system call

to make that memory available, and by then it is too late to

use the memory for segments such as application text, heap,

or stack.

Shmueli et al. [15] evaluated Linux on the compute

nodes of Blue Gene/L and identified TLB misses as a ma-

jor source of node-level performance degradation. To miti-

gate the problem, they used hugetlbfs. They also employed

libhugetlbfs [7], a wrapper library that semi-transparently

maps application’s text, data, and heap to a memory area

backed by hugetlbfs. Their approach allowed Linux to

achieve a performance comparable to the CNK, both at the

node level and systemwide. However, hugetlbfs does not

eliminate the TLB misses completely, so they can still be a

performance problem for some applications. This approach

also does not help with programming the DMA engine on

BG/P. Moreover, the approach requires dynamic linking,

while on BG/P almost all executables are statically linked,

since that is the compiler default on that platform. The au-

thors also found that dynamic linking introduced an over-

head on accessing floating-point constants.

Navarro et al. [13] designed an effective transparent su-

perpage management system that utilizes larger physical

pages to reduce TLBmisses and implemented it in FreeBSD

on the Alpha processor. At the page fault time, the size of

the superpage is chosen, and a set of contiguous page frames

that covers the superpage is allocated from the buddy allo-

cator. Fragmentation control and superpage promotion are

part of their design. They evaluated their implementation

with both benchmarks and realistic workloads and observed

a 30% to 60% performance improvement. They targeted a

relatively general-purpose usage, however, whereas we are

focusing on high-performance applications on massive par-

allel machines.

3 Early Performance Evaluation

In this section, we present the results of a number of per-

formance measurements we made on a mostly unmodified

BG/P Linux kernel.

A popular misconception is that Linux would not be suit-

able as a compute node kernel because of a high level of

operating system noise. We extensively covered this topic

in [2, 4], where we disproved this notion on several older

platforms. Figure 1 shows the result obtained using our

OS noise measurement benchmark Selfish [3] on BG/P. Es-

sentially, the benchmark is a tight, busy loop that records

anomalies in its execution time caused by OS interrupts

(i.e., system noise). In this case, the Linux kernel used only

0.027% of the CPU time, leaving 99.963% of the cycles to

the benchmark. The interruptions are small and predictable,

making them fairly easy to control.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 0.1 0.2 0.3 0.4 0.5 0.6

D
u
ra

ti
o
n
 (

µ
s
e
c
)

Execution time (sec)

detour

Figure 1. Noise on BG/P Linux

Table 1 also shows that Linux OS noise is low. The FPU

benchmark is basically a tight loop of FMA instructions.

The benchmark kernel easily fits in the L1 instruction cache.

On IBM’s CNK, the result matches the theoretical peak per-

formance of BG/P floating-point unit per core (4 flops ×

850MHz yields 3.4Gflops). Linux is only 0.03% slower—

this number matches what we saw in our noise experiment.

Table 1. Linux vs CNK: FPU benchmark

Gflops % of peak

CNK 3.400 100.00

Linux 3.397 99.97

Table 2 presents the results of one of our memory bench-

marks. This benchmark reads data from a 128MB memory

region in a random fashion. Because of the earlier discussed

problems with the TLBmisses, Linux performs almost three

times slower than the TLB-miss-free CNK. Increasing the

system page size from 4KB to 64KB does improve the

performance, but it is still a long way off the CNK result.

Clearly, a more radical solution is needed.

Table 2. Random memory access benchmark

MB/s

CNK 44.70

Linux 4KB 14.39

Linux 64KB 16.40

3

4 Big Memory

We first briefly discuss standard paged memory manage-

ment. We then explain our approach using “big memory.”

4.1 Standard Linux Memory Management

The Linux kernel is a virtual memory operating system. The

main purpose of virtual memory is the process isolation, but

virtual memory also provides other optimizations or func-

tionality such as copy-on-write (COW), file caching, and

memory swapping. Nowadays, virtual memory is consid-

ered mandatory on general-purpose operating systems.

Figure 2 provides the overview of the memory manage-

ment in Linux. The address space of each process con-

sists of a set of virtual address ranges called virtual mem-

ory areas (VMAs). VMAs are created when a new pro-

cess is started; the mmap system call can also create a new

VMA. Creating a VMA is not equivalent to physical mem-

ory allocation; this takes place only on the first memory ac-

cess within the VMA. Memory access attempts outside the

VMAs result in a memory fault. VMAs have access permis-

sions associated with them; incorrect access attempts result

in memory faults as well.

Kernel

stack

Heap

Text

Process Address

stack

Heap

Text

VMAs

PTEs

TLB

Figure 2. Memory management in Linux

On most modern processors, user programs run inside

virtual address spaces. In other words, user programs can-

not address physical memory directly—the processor al-

ways has to convert a virtual address to the correspond-

ing physical address. Page table entries (PTEs) are used for

that purpose. The operating system kernel is responsible for

creating PTEs based on the VMAs and for storing them in

memory in advance or upon request. PTEs are stored in the

kernel space (in main memory), so accessing a PTE is sim-

ply an overhead. To alleviate this overhead, modern pro-

cessors cache recent address conversions in the translation

lookaside buffer (TLB). TLB definitely improves memory

access speed, but it is not a complete solution because the

TLB resource is scarce. When a TLB miss takes place, a

TLB entry needs to be loaded from a PTE.

The TLB entries are flushed by the Linux kernel when

the kernel switches to another process or when an associated

VMA is removed.

4.2 Our Approach

Our basic idea is to provide applications with special mem-

ory regions that are covered by larger pages; we refer to

these regions as the big memory. Unlike the hugetlbfs re-

gions discussed in Section 2, which use pages of intermedi-

ate size (2–4MB) and only reduce the probability of TLB

misses, the big memory uses pages so large that the TLB

misses are eliminated while the process is scheduled in.

We focus on the compute node environment here; we do

not consider a general-purpose solution. The compute node

environment has unique characteristics: a computational

process tends to seize the CPU execution unit, floating-

point unit, memory, network, and other resources. In order

to achieve peak performance, a single computational thread

per core is preferable, since context switching seriously af-

fects performance. Our approach is to let the Linux kernel

pin down TLB entries on the first access after the compu-

tational process has been scheduled in and to remove them

when that process gets scheduled out (to keep the memory

mapping private to the computational process). Other, ordi-

nary Linux processes run on regular, paged memory.

Physical memory needed for the big memory area is re-

served at boot time and is thus not available for use by the

kernel as a regular, paged memory. It can be used only by

a special computational process. This dramatically reduces

the complexity of the implementation.

Unlike the hugetlbfs-based solutions, our approach is

fully transparent, requires no code changes to the applica-

tion, works with static executables, and covers all the nec-

essary application segments.

The Linux kernel automatically prepares the big memory

region for a computational application. How does the kernel

determine which process should use the big memory? Our

solution is to alter the application’s executable file; we use

the e_flags field in the ELF header, which is reserved for

processor-specific data. We defined a custom flag and wrote

a tool that toggles it. We refer to the executables with the

flag set as Zepto compute binaries, or ZCBs.

4.3 ELF Binary Interpreter

To load a ZCB into the big memory, we have modified

the Linux kernel ELF binary interpreter, in particular, the

load_elf_binary function, which is invoked from the

execve system call.

First, the ELF header is examined to see whether the bi-

nary being loaded is a ZCB. If it is, the kernel sets a bit in

the personality field in the task structure so that other

4

kernel functions can easily determine that the process is a

ZCB by accessing the current variable.

Then the kernel creates a virtual memory range for the

big memory, using a simple offset mapping. We currently

use 256MB pages to cover the application memory; in the

future we will improve the granularity of the big memory

area by using a combination of different page sizes.

Once the big memory mapping is initialized, the kernel

temporarily installs the big memory TLB entries to copy the

command-line arguments and the environment variables to

the application stack. The kernel also loads the application’s

text and data sections to the big memory instead of using

the usual file mapping; the big memory mapping cannot be

used for file mappings because it bypasses the Linux page

allocator (see below). In other words, the entire big memory

area is populated when the application binary is loaded.

4.4 Memory Manager for the Big Memory

Our kernel reserves one VMA to cover the big memory, and

memory chunks within the big memory area (heap, stack,

etc.) are taken care of by our internal memory manager.

To keep track of the memory chunks, the manager utilizes

the kernel’s red-black tree—a structure normally used for

managing the whole VMAs. The red-black tree is a self-

balancing search tree, which can be searched in O(logn)
time, where n is the total number of elements in the tree.

The ZCB process address space is actually hybrid; it

contains both regular paged memory and the big memory

(see Figure 3). Note that the big memory VMA does not

have any associated PTEs, since the physical addresses of

memory in that region are fixed. The behavior of the mmap

system call varies depending on the request type. Anony-

mous, private requests, as used for large C library malloc

calls, go to the big memory and are tracked by our internal

memory manager. On the other hand, file-backed mapping

requests—used, for example, to support shared libraries—

simply go to the regular Linux paged memory manager be-

cause the big memory cannot be used for file mappings.

Kernel

ZCB Process Address

shared

VMAs

PTEs

TLB

shared

Big Memory

Big Memory

Figure 3. ZCB process address space

4.5 Page Fault Handler

While we did not need to modify the TLB handler to imple-

ment the big memory, we have added a hook to the Linux

page fault handler. The added code first checks whether the

current task is a ZCB. If it is, the code checks whether the

faulting address is within the big memory area; if so, it in-

stalls the big memory TLB entries. Essentially, we get a sin-

gle TLB miss on the first access after the process has been

scheduled in; the entries normally remain in place until the

process is scheduled out again. With context switches being

fairly rare on the compute nodes, the entries are semi-static.

As shown in Figure 4, our Linux kernel partitions TLB

entries in four groups: kernel mapping, paged memory, big

memory, and device mappings. The last two groups are spe-

cific to our implementation. Currently, the number of TLB

entries required by the big memory is proportional to the

area size; for example, seven entries are needed to cover

1792MB. Three entries are used to cover the kernel mem-

ory (kernel low memory, to be precise). For efficiency, we

also pin down some entries to cover BG/P-specific memory-

mapped I/O devices: collective network, torus DMA, lock-

box, Universal Performance Counter, and Blue Gene In-

terrupt Controller. The Blue Gene Common Node Services

code segment is also pinned.

Kernel mapping

Paged memory

Big memory

Device TLB

Static TLB
(boot time)

TLB updated
by TLB handler

TLB installed
at context switch

Static TLB
(boot time)

Figure 4. TLB partitioning in the Zepto kernel

4.6 Other Kernel Modifications

Introducing a new concept invariably causes issues; the big

memory implementation is no exception. The big mem-

ory breaks a number of assumptions in the Linux memory

management. A ZCB process cannot call fork, since fork

code apparently depends on the COW technique. But lack-

ing a fork might be acceptable when we focus on a high-

performance compute node environment. Another issue is

that the big memory mapping is strictly private and can-

not be addressed from other processes’ context. The Linux

5

kernel function access_process_vm did not work for

ZCB processes; this was an important issue, because that

function is used by the ptrace system call, which debug-

ging tools like strace and gdb depend on. Luckily, the prob-

lem was relatively easy to fix; basically, we now temporarily

install the big memory mapping while the function is run-

ning, to allow other processes to access the address space of

the ZCB process.

5 Performance Evaluation

To evaluate the single-node performance, we ran our mem-

ory microbenchmarks and an FFTW benchmark. For par-

allel performance evaluation, we used the NAS Parallel

Benchmarks (NPB) suite [1]. The experiments were per-

formed on BG/P compute nodes with four different kernels:

IBM CNK, standard Linux with 4KB pages, Linux with

64KB pages, and our enhanced Linux with the big memory

support. We used the GNU compiler toolchain that supports

PowerPC 450 instructions to compile the benchmarks. Pro-

gram binaries are compatible between the kernels, with the

exception of the NPB suite. For NPB, we could run only on

the CNK and Linux with the big memory because we do

not have MPI support for paged memory. Slight differences

between the CNK and Linux also exist in BG/P communi-

cation libraries, but program object files are the same.

5.1 Memory Benchmarks

We evaluated the memory performance using two bench-

marks: a streaming copy benchmark and the random mem-

ory access benchmark from Section 3.

The streaming copy benchmark is simple: it allocates a

memory buffer, divides it in two, and copies data from one

region to the other using PowerPC 450 parallel load/store

instructions. The benchmark reports the theoretical peak

memory performance if it is run in a noise-free environ-

ment. The results for several different buffer sizes can be

found in Table 3. With a 16KB buffer size, which fits well

in the L1 cache, all kernels perform equally well, because

no TLB misses are caused by the benchmark even under

standard Linux with 4KB pages. With larger buffers, such

as 4MB (which fit in the L3 cache) and 256MB (which do

not fit), we see that memory performance under a standard

Linux kernel is significantly lower than under the CNK.

Linux with the big memory shows a 0.2% loss. This is

close to the CNK but is still larger than expected, given

that the noise level has been measured at just 0.03% (see

Section 3). We have not performed a detailed investigation

of this phenomenon, but we suspect that instruction cache

thrashing at context switch time caused by the OS tick up-

date might be responsible; the benchmark issues a series of

parallel load/store instructions, and the cost of cache thrash-

ing might be higher than for an FPU benchmark.

Table 3. Streaming copy benchmark (GB/s)

16KB 4MB 256MB

CNK 6.74 4.60 3.85

Linux 4KB 6.73 3.85 3.35

Linux 64KB 6.74 4.51 3.82

Linux big memory 6.74 4.59 3.84

In Section 3, we have shown the results of the random

memory access benchmark on the CNK and on Linux with

paged memory; there was a large difference in performance.

Table 4 adds the result for Linux with the big memory sup-

port; the gap to the CNK is narrowed to 0.04%, or within

the system noise level.

Table 4. Random memory access benchmark

MB/s

CNK 44.70

Linux 4KB 14.39

Linux 64KB 16.40

Linux big memory 44.68

5.2 FFT Benchmark

To obtain more realistic performance numbers, we ran a

simple FFT benchmark linked to the standard FFTW li-

brary (version 3.1.2). The benchmark uses a 2D array 5000

× 5000 in size, which consumes approx. 763MB of mem-

ory. Table 5 shows the results of executing a forward FFT

on the array. Clearly, standard Linux does not perform well;

64KB pages improve the performance by only 9%. On the

other hand, Linux with the big memory shows just a 0.08%

performance loss compared to the CNK.

Table 5. FFT benchmark

Elapsed Time (s)

CNK 11.25

Linux 4KB 21.43

Linux 64KB 19.61

Linux big memory 11.24

5.3 NAS Parallel Benchmarks

So far we have shown that the big memory implementation

definitely improves memory performance of applications on

a single node. To evaluate the parallel performance, we ran

the NPB benchmark suite [1] version 3.3 on both the CNK

and Linux with the big memory support. We ran the experi-

ments on 1024 nodes, in SMP mode (one process per node),

6

using class C problem size. The results are shown in Ta-

ble 6. The performance is close: Linux runs were slower on

most benchmarks than those of the CNK by approx. 0.1% to

0.7%, with the exception of the IS benchmark, where Linux

was 0.5% faster.

Table 6. NPB benchmark

Type CNK (Mop/s) Linux (Mop/s) Linux/CNK

IS 3991 4010 1.005

CG 15749 15707 0.997

MG 134955 134380 0.996

FT 96594 96385 0.998

LU 40890 40617 0.993

EP 2503 2500 0.999

SP 106009 105709 0.997

BT 165240 164777 0.997

5.4 LOFAR Online Central Processing

We had the opportunity to observe the performance of the

big memory in a real-life application. LOFAR is a radio

telescope being built in the Netherlands [5]. In contrast to

current radio telescopes that employ custom-built hardware

as a correlator, LOFAR uses a Blue Gene/P supercomputer.

The LOFAR central processor is discussed in [10, 14].

LOFAR stations stream UDP/IP data directly into the

Blue Gene/P I/O nodes at a rate of slightly more than

3Gbps. These I/O nodes store the data in a main memory

ring buffer, which is used to absorb network delays or tem-

porary hiccups in the processing pipeline. From here the

data is transported to the compute nodes, where the infor-

mation is correlated.

Poor main memory performance of the I/O node running

the default Linux kernel proved to be one of the major bot-

tlenecks in trying to achieve optimum data throughput.

Table 7 shows a breakdown of the tasks on the Blue

Gene/P I/O nodes running the LOFAR online processing

application in a fairly standard 16-bit observation mode.

The required CPU resources, in processor cores, are shown

for the stock IBM I/O node kernel and for a ZeptoOS com-

pute node kernel, modified to run on the I/O nodes. We see

that using the original I/O node kernel would require almost

two entire I/O node cores to handle the ring buffer.

We used a slightly modified ZeptoOS compute node ker-

nel, including support for the Ethernet device and exclud-

ing compute node specific devices like the torus network,

on the I/O node. We reserved 1536MB of main memory as

the big memory area and used it for the ring buffer using

six 256MB TLB entries. The I/O node application was also

adapted to copy 128 UDP/IP packets into the ring buffer at

once, instead of one at a time. These two optimizations re-

duce the resources required to copy data into the ring buffer

by more than 600%, about half of which can be attributed

to the lack of TLB misses in the big memory area.

We also did experiments using the more challenging 4-

bit observation mode. This significantly increases the poten-

tial number of TLB misses. A more than 500% reduction in

required CPU cycles was observed using the big memory

when copying UDP/IP packets one by one.

Clearly, the access pattern of the LOFAR I/O node appli-

cation is very susceptible to performance hits due to TLB

misses. With the stock I/O node kernel the processor was

unable to achieve our throughput requirements. Preventing

TLB misses for at least part of the application, combined

with several other optimizations not discussed here, allowed

us to reduce CPU load considerably, increasing I/O node

performance to well beyond our requirements.

Table 7. LOFAR I/O node processing (#cores)

Default ZeptoOS

Receive UDP/IP packets 1.44 1.44

Copy data to ring buffer 1.80 0.27

Send ring buffer to CN 1.40 0.50

Receive result from CN 1.00 0.17

Send results to storage 0.40 0.40

6 Conclusions

This paper presented the implementation of the big mem-

ory support for BG/P Linux—a transparent, flat memory

space for computational processes. The big memory ad-

dresses two major issues encountered when attempting to

run high-performance code on the BG/P Linux: poor mem-

ory performance due to TLB misses handled in software,

and the difficulties of writing an efficient communication

stack due to the limitations of the BG/P torus’ DMA en-

gine.

Our experiments have shown that benchmarks running

under a standard Linux kernel with paged memory can run

even three times slower than under the IBM CNK. With the

big memory support, Linux is slower by only 0.03%–0.2%.

We think that the 0.03% loss is due to the time spent exe-

cuting the OS tick interrupt handler; with some benchmarks

this can grow to 0.2%, presumably because of instruction

cache thrashing. With further kernel tuning, it should be

possible to reduce the noise level to close to zero. Exper-

iments at scale showed a slowdown of well under 1%.

Employing the big memory on the I/O nodes was instru-

mental in reducing the I/O node CPU resources required

for LOFAR online central processing. A 500–600% perfor-

mance increase was observed in key parts of the application,

allowing the I/O nodes to achieve the required throughput.

Our modifications to the Linux kernel are relatively

7

small, principally because we focused exclusively on the

requirements of computational processes, rather than trying

to solve the problem in a generally applicable way, which

would have been far more complicated. We maintain two

versions of Linux kernel, and we found porting the big

memory patches between the kernels to be straightforward.

Contemporary parallel architectures such as Blue

Gene/P, Cray XT5, and Roadrunner use commodity CPUs

such as Intel Xeon, AMD Opteron, or IBM PowerPC, in-

stead of designs dedicated to computational environments.

The memory management units in these processors are es-

sentially designed to support a highly multitasking environ-

ment. It would be interesting if future designs had hardware

support for computational process address space similar to

the big memory area that we implemented, to allow for a

seamless coexistence of high-performance applications and

standard Unix processes on the compute nodes.

Along with the big memory implementation, we con-

ceived the idea of a special process that the kernel treats

differently from other processes. In the case of the big mem-

ory, the kernel creates a different application address space,

and we showed that this idea works for compute nodes. We

have also experimented with other uses of this feature, such

as disabling nonessential interrupts when a computational

process gets scheduled in order to reduce the system noise.

Our current implementation is suitable for benchmarking

and simple applications. With regards to the quality of im-

plementation, we need to make several improvements, such

as the granularity of the big memory area. So far, we have

had little experience with running large, real-world applica-

tions on the compute nodes under our modified kernel; this

area will be explored as part of our future research.

Acknowledgments

We thank IBM’s Todd Inglett, Thomas Musta, Thomas

Gooding, George Almási, Sameer Kumar, Michael Block-

some, and Robert Wisniewski for their advice on program-

ming the Blue Gene hardware. We also thank our past sum-

mer interns Peter Boonstoppel, Hajime Fujita, Satya Popuri,

and Taku Shimosawa, who contributed to the ZeptoOS ker-

nel. Additionally, we thank Astron’s John W. Romein, who

evaluated the big memory on the I/O nodes.

This research used resources of the Argonne Leadership

Computing Facility at Argonne National Laboratory.

References

[1] D. Bailey et al. The NAS parallel benchmarks. Interna-

tional Journal of High Performance Computing Applica-

tions, 5(3):63–73, 1991.

[2] P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan. The influ-

ence of operating systems on the performance of collective

operations at extreme scale. In Proceedings of the 8th IEEE

International Conference on Cluster Computing, Barcelona,

Spain, Sept. 2006.

[3] P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan. Operating

system issues for petascale systems. ACM SIGOPS Operat-

ing Systems Review, 40(2):29–33, Apr. 2006.

[4] P. Beckman, K. Iskra, K. Yoshii, S. Coghlan, and A. Nataraj.

Benchmarking the effects of operating system interference

on extreme-scale parallel machines. Cluster Computing,

11(1):3–16, Mar. 2008.

[5] H. R. Butcher. LOFAR: First of a new generation of radio

telescopes. In Proceedings of SPIE, volume 548, pages 537–

544, Oct. 2004.

[6] K. Chen, R. Seth, and H. Nueckel. Improving enterprise

database performance on Intel Itanium architecture. In Pro-

ceedings of the Linux Symposium, pages 98–108, Ottawa,

ON, Canada, July 2003.

[7] D. Gibson and A. Litke. libhugetlbfs. http://sourceforge.

net/projects/libhugetlbfs.

[8] IBM Blue Gene. http://www.research.ibm.com/bluegene/.

[9] IBM Blue Gene team. Overview of the IBM Blue Gene/P

project. IBM Journal of Research and Development,

52(1/2):199–220, 2008.

[10] K. Iskra, J. W. Romein, K. Yoshii, and P. Beckman. ZOID:

I/O-forwarding infrastructure for petascale architectures. In

Proceedings of the 13th ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, pages

153–162, Salt Lake City, UT, Feb. 2008.

[11] J. E. Moreira et al. Blue Gene/L programming and operating

environment. IBM Journal of Research and Development,

49(2/3):367–376, Mar. 2005.

[12] J. E. Moreira et al. Designing a highly-scalable operat-

ing system: The Blue Gene/L story. In Proceedings of

the ACM/IEEE Conference on Supercomputing, Tampa, FL,

Nov. 2006.

[13] J. Navarro, S. Iyer, P. Druschel, and A. Cox. Practical, trans-

parent operating system support for superpages. In Proceed-

ings of the 5th ACM Symposium on Operating System De-

sign and Implementation, volume 36 of ACM SIGOPS Op-

erating Systems Review, pages 89–104, Boston, MA, Dec.

2002.

[14] J. W. Romein, P. C. Broekema, E. van Meijeren, K. van der

Schaaf, and W. H. Zwart. Astronomical real-time streaming

signal processing on a Blue Gene/L supercomputer. In Pro-

ceedings of the 18th ACM Symposium on Parallelism in Al-

gorithms and Architectures, pages 59–66, Cambridge, MA,

July 2006.

[15] E. Shmueli, G. Almási, J. Brunheroto, J. Castaños, G. Dózsa,

S. Kumar, and D. Lieber. Evaluating the effect of replacing

CNK with Linux on the compute-nodes of Blue Gene/L. In

Proceedings of the 22nd ACM International Conference on

Supercomputing, pages 165–174, Kos, Greece, July 2008.

[16] ZeptoOS project. http://www.zeptoos.org/.

8

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory

(“Argonne”). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-

06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable

worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly

and display publicly, by or on behalf of the Government.

9

