
Introduction to Parallel GPU Computing
John Owens

Department of Electrical and Computer Engineering
Institute for Data Analysis and Visualization

University of California, Davis

Goals for this Hour

• Why GPU computing?

• Multi-GPU computing

• Single-GPU computing

“If you were plowing a field, which
would you rather use? Two strong

oxen or 1024 chickens?”
—Seymour Cray

Historical Single−/Double−Precision Peak Compute Rates

Date

G
FL

O
PS

101

102

103

!

!

!

!
!

!
!

! ! !

!
!

!

!

! !

!
!

!

2002 2004 2006 2008 2010

Vendor

! AMD (GPU)

! NVIDIA (GPU)

! Intel (CPU)

Precision

! DP

SP

Recent GPU Performance Trends

Early data courtesy Ian Buck; from Owens et al. 2007 [CGF]

$450
gtx480

$390
r5870

$3692
x7560

153.6
GB/s

34 GB/s

177.4
GB/s

What’s new?

• Double precision

• Fast atomics

• Hardware cache
& ECC

• (CUDA) debuggers
& profilers

Intel ISCA Paper (June 2010)
Debunking the 100X GPU vs. CPU Myth:

An Evaluation of Throughput Computing on CPU and GPU

Victor W Lee†, Changkyu Kim†, Jatin Chhugani†, Michael Deisher†,
Daehyun Kim†, Anthony D. Nguyen†, Nadathur Satish†, Mikhail Smelyanskiy†,
Srinivas Chennupaty!, Per Hammarlund!, Ronak Singhal! and Pradeep Dubey†

victor.w.lee@intel.com

†Throughput Computing Lab,
Intel Corporation

!Intel Architecture Group,
Intel Corporation

ABSTRACT
Recent advances in computing have led to an explosion in the amount
of data being generated. Processing the ever-growing data in a
timely manner has made throughput computing an important as-
pect for emerging applications. Our analysis of a set of important
throughput computing kernels shows that there is an ample amount
of parallelism in these kernels which makes them suitable for to-
day’s multi-core CPUs and GPUs. In the past few years there have
been many studies claiming GPUs deliver substantial speedups (be-
tween 10X and 1000X) over multi-core CPUs on these kernels. To
understand where such large performance difference comes from,
we perform a rigorous performance analysis and find that after ap-
plying optimizations appropriate for both CPUs and GPUs the per-
formance gap between an Nvidia GTX280 processor and the Intel
Core i7 960 processor narrows to only 2.5x on average. In this pa-
per, we discuss optimization techniques for both CPU and GPU,
analyze what architecture features contributed to performance dif-
ferences between the two architectures, and recommend a set of
architectural features which provide significant improvement in ar-
chitectural efficiency for throughput kernels.

Categories and Subject Descriptors
C.1.4 [Processor Architecture]: Parallel architectures
; C.4 [Performance of Systems]: Design studies
; D.3.4 [Software]: Processors—Optimization

General Terms
Design, Measurement, Performance

Keywords
CPU architecture, GPU architecture, Performance analysis, Perfor-
mance measurement, Software optimization, Throughput Comput-
ing

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’10, June 19–23, 2010, Saint-Malo, France.
Copyright 2010 ACM 978-1-4503-0053-7/10/06 ...$10.00.

The past decade has seen a huge increase in digital content as
more documents are being created in digital form than ever be-
fore. Moreover, the web has become the medium of choice for
storing and delivering information such as stock market data, per-
sonal records, and news. Soon, the amount of digital data will ex-
ceed exabytes (1018) [31]. The massive amount of data makes stor-
ing, cataloging, processing, and retrieving information challenging.
A new class of applications has emerged across different domains
such as database, games, video, and finance that can process this
huge amount of data to distill and deliver appropriate content to
users. A distinguishing feature of these applications is that they
have plenty of data level parallelism and the data can be processed
independently and in any order on different processing elements
for a similar set of operations such as filtering, aggregating, rank-
ing, etc. This feature together with a processing deadline defines
throughput computing applications. Going forward, as digital data
continues to grow rapidly, throughput computing applications are
essential in delivering appropriate content to users in a reasonable
duration of time.
Twomajor computing platforms are deemed suitable for this new

class of applications. The first one is the general-purpose CPU
(central processing unit) that is capable of running many types of
applications and has recently provided multiple cores to process
data in parallel. The second one is the GPU (graphics process-
ing unit) that is designed for graphics processing with many small
processing elements. The massive processing capability of GPU
allures some programmers to start exploring general purpose com-
puting with GPU. This gives rise to the GPGPU field [3, 33].
Fundamentally, CPUs and GPUs are built based on very different

philosophies. CPUs are designed for a wide variety of applications
and to provide fast response times to a single task. Architectural
advances such as branch prediction, out-of-order execution, and
super-scalar (in addition to frequency scaling) have been responsi-
ble for performance improvement. However, these advances come
at the price of increasing complexity/area and power consumption.
As a result, main stream CPUs today can pack only a small number
of processing cores on the same die to stay within the power and
thermal envelopes. GPUs on the other hand are built specifically
for rendering and other graphics applications that have a large de-
gree of data parallelism (each pixel on the screen can be processed
independently). Graphics applications are also latency tolerant (the
processing of each pixel can be delayed as long as frames are pro-
cessed at interactive rates). As a result, GPUs can trade off single-
thread performance for increased parallel processing. For instance,
GPUs can switch from processing one pixel to another when long

Top-Level Results

Num. Frequency Num. BW SP SIMD DP SIMD Peak SP Scalar Peak SP SIMD Peak DP SIMD
PE (GHz) Transistors (GB/sec) width width FLOPS (GFLOPS) Flops (GFLOPS) Flops (GFLOPS)

Core i7-960 4 3.2 0.7B 32 4 2 25.6 102.4 51.2
GTX280 30 1.3 1.4B 141 8 1 116.6 311.1/933.1 77.8

Table 2: Core i7 andGTX280 specifications. BW: local DRAM bandwidth, SP: Single-Precision Floating Point, DP: Double-Precision
Floating Point.

of the local shared buffer is just 16KB, and much smaller than the
cache sizes on CPUs.
Bandwidth Difference: Core i7 provides a peak external mem-
ory bandwidth of 32 GB/sec, while GTX280 provides a bandwidth
of around 141 GB/sec. Although the ratio of peak bandwidth is
pretty large (∼4.7X), the ratio of bytes per flop is comparatively
smaller (∼1.6X) for applications not utilizing fused multiply add
in the SFU.
Other Differences: CPUs provide for fast synchronization op-
erations, something that is not efficiently implemented on GPUs.
CPUs also provide for efficient in-register cross-lane SIMD oper-
ations, like general shuffle and swizzle instructions. On the other
hand, such operations are emulated on GPUs by storing the data
into the shared buffer, and loading it with the appropriate shuffle
pattern. This incurs large overheads for some throughput comput-
ing applications. In contrast, GPUs provide support for gather/s-
catter instructions from memory, something that is not efficiently
implemented on CPUs. Gather/Scatter operations are important
to increase SIMD utilization for applications requiring access to
non-contiguous regions of memory to be operated upon in a SIMD
fashion. Furthermore, the availability of special function units like
texture sampling unit and math units for fast transcendental helps
speedup throughput computing applications that spend a substan-
tial amount of time in these operations.

4. PERFORMANCE EVALUATIONS ON
CORE I7 AND GTX280

This section evaluates the performance of the throughput com-
puting kernels on the Core i7-960 and GTX280 processors and an-
alyzes the measured results.

4.1 Methodology
We measured the performance of our kernels on (1) a 3.2GHz

Core i7-960 processor running the SUSE Enterprise Server 11 op-
erating system with 6GB of PC1333 DDR3 memory on an Intel
DX58SO motherboard, and (2) a 1.3GHz GTX280 processor (an
eVGA GeForce GTX280 card with 1GB GDDR3 memory) in the
same Core i7 system with Nvidia driver version 19.180 and the
CUDA 2.3 toolkit.
Since we are interested in comparing the CPU and the GPU ar-

chitectures at the chip level to see if any specific architecture fea-
tures are responsible for the performance difference, we did not in-
clude the data transfer time for GPUmeasurements. We assume the
throughput computing kernels are executed in the middle of other
computations that create data in GPUmemory before the kernel ex-
ecution and use data generated by the kernel in GPU memory. For
applications that do not meet our assumption, transfer time can sig-
nificantly degrade performance as reported by Datta in [16]. The
GPU results as presented here are an upper bound of what will be
seen in actual applications for these algorithms.
For both CPU and GPU performance measurements, we have

optimized most of the kernels individually for each platform. For
some of the kernels, we have used the best available implemen-
tation that already existed. Specifically, evaluations of SGEMM,
SpMV, FFT andMC on GTX280 have been done using code from

Figure 1: Comparison between Core i7 and GTX280 Perfor-
mance.

[1, 8, 2, 34], respectively. For the evaluations of SGEMM, SpMV
and FFT on Core i7, we used Intel MKL 10.0. Table 3 shows
the performance of throughput computing kernels on Core i7 and
GTX280 processor with the appropriate performance metric shown
in the caption. To the best of our knowledge, our performance num-
bers are at least on par and often better than the best published
data. We typically find that the highest performance is achieved
when multiple threads are used per core. For Core i7, the best per-
formance comes from running 8 threads on 4 cores. For GTX280,
while the maximum number of warps that can be executed on one
GPU SM is 32, a judicious choice is required to balance the ben-
efit of multithreading with the increased pressure on registers and
on-chip memory resources. Kernels are often run with 4 to 8 warps
per core for best GPU performance.

4.2 Performance Comparison
Figure 1 shows the relative performance between GTX280 and

Core i7 processors when data transfer time for GTX280 is not con-
sidered. Our data shows that GTX280 only has an average of 2.5X
performance advantage over Core i7 in the 14 kernels tested. Only
GJK achieves a greater than 10X performance gap due to the use of
the texture sampler. Sort and Solv actually perform better on Core
i7 . Our results are far less than previous claims like the 50X dif-
ference in pricing European options using Monte Carlo method [9],
the 114X difference in LBM [45], the 40X difference in FFT [21],
the 50X difference in sparse matrix vector multiplication [47] and
the 40X difference in histogram computation [53], etc.
There are many factors that contributed to the big difference be-

tween previous reported results and ours. One factor is what CPU
and GPU are used in the comparison. Comparing a high perfor-
mance GPU to a mobile CPU is not an optimal comparison as their
considerations for operating power, thermal envelop and reliability
are totally different. Another factor is how much optimization is
performed on the CPU and GPU. Many studies compare optimized
GPU code to unoptimized CPU code and resulted in large differ-
ence. Other studies which perform careful optimizations to CPU
and GPU such as [27, 39, 40, 43, 49] report much lower speedup
similar to ours. Section 5.1 discusses the necessary software opti-
mizations for improving performance for both CPU and GPU plat-
forms.

100X

Astrophysics
RIKEN

30X

Gene Sequencing
U of Maryland

Matlab Computing
AccelerEyes

Video Transcoding
Elemental Tech

Medical Imaging
U of Utah

146X

CUDA Successes

18X 50X

149X

Financial simulation
Oxford

36X

Molecular Dynamics
U of Illinois

47X

Linear Algebra
Universidad Jaime

20X

3D Ultrasound
Techniscan

130X

Quantum Chemistry
U of Illinois

[courtesy David Luebke, NVIDIA](c) 2010 NVIDIA Corporation

Intensity (flop : byte)

G
flo

p/
s

4

8

16

32

64

128

256

512

1024

(1.7, 43)

(1.7, 86)

(0.8, 78)

!
(3.6, 515)

1/8 1/4 1/2 1 2 4 8 16

Platform
!a!a!a!a Fermi
aaaa C1060
aaaa Nehalem x 2
aaaa Nehalem

Double-precision

~ 6x
(Case studies 2 &

3)

~ 3x
(Case study 1)

Courtesy Rich Vuduc, Georgia Tech

13 Dwarfs
• 1. Dense Linear Algebra

• 2. Sparse Linear
Algebra

• 3. Spectral Methods

• 4. N-Body Methods

• 5. Structured Grids

• 6. Unstructured Grids

• 7. MapReduce

• 8. Combinational Logic

• 9. Graph Traversal

• 10. Dynamic
Programming

• 11. Backtrack and
Branch-and-Bound

• 12. Graphical Models

• 13. Finite State
Machines

13 Dwarfs
• 1. Dense Linear Algebra

• 2. Sparse Linear
Algebra

• 3. Spectral Methods

• 4. N-Body Methods

• 5. Structured Grids

• 6. Unstructured Grids

• 7. MapReduce

• 8. Combinational Logic

• 9. Graph Traversal

• 10. Dynamic
Programming

• 11. Backtrack and
Branch-and-Bound

• 12. Graphical Models

• 13. Finite State
Machines

Chipset

GPU in system (3 alternatives)

Chip

GPUCPU GPUCPUMem

Discrete

GPU
CPU ChipsetMem

PCI
Express Mem

A Modern Computer

Chipset

CPU GPU

Network

A Modern Computer

Chipset

CPU GPU

Network

Kernel Call

A Modern Computer

Chipset

CPU GPU

Network

Kernel CallMemory Xfer

A Modern Computer

Chipset

CPU GPU

Network

Kernel CallMemory Xfer

Send/Receive

A Modern Computer

Chipset

CPU GPU

Network

Kernel CallMemory Xfer

Send/Receive

A Modern Computer

Chipset

CPU GPU

Network

Kernel CallMemory Xfer

Send/Receive

Mellanox GPUDirect

InfiniBand

InfiniBand

Fast & Flexible Communication

http://www.watch.impress.co.jp/game/docs/20060329/3dps303.jpg

• CPUs are good at creating & manipulating data structures?

• GPUs are good at accessing & updating data structures?

http://www.watch.impress.co.jp/game/docs/20060329/3dps303.jpg
http://www.watch.impress.co.jp/game/docs/20060329/3dps303.jpg
http://www.watch.impress.co.jp/game/docs/20060329/3dps303.jpg

Structuring CPU-GPU Programs
CPU GPU

Marshal data

Send to GPU
Receive from CPU

Call kernel

Execute kernel
Retrieve from GPU

Send to CPU

Structuring Multi-GPU Programs
CPU

GPUGPUGPUGPUGPU

Static division of work
(Global Arrays: Zippy,

CUDASA)

Structuring Multi-GPU Programs
CPU

GPU

Want to run on GPU:
if (foo == true) {
 GPU[x][bar] = baz;
} else {
 bar = GPU[y][baz];
}

GPUGPUGPUGPU

Static division of work
(Global Arrays: Zippy,

CUDASA)

Structuring Multi-GPU Programs
CPU

GPU

Want to run on GPU:
if (foo == true) {
 GPU[x][bar] = baz;
} else {
 bar = GPU[y][baz];
}

GPUGPUGPUGPU

Static division of work
(Global Arrays: Zippy,

CUDASA)

Instead, GPU as slave.
Goal: GPU as first-class citizen.

Our Research Program

Programming Models

Abstractions

Mechanisms

Example

Programming Models

Abstractions

Mechanisms

• Abstraction: GPU
initiates network send

• Problems:

• GPU can’t communicate
with NI

• GPU signals CPU

Example

Programming Models

Abstractions

Mechanisms

• Abstraction: GPU
initiates network send

• Solution:

• CPU allocates
“mailbox” in GPU mem

• GPU sets mailbox to
initiate network send

• CPU polls mailbox

Example

Programming Models

Abstractions

Mechanisms

• Abstraction: GPU
initiates network send

• Solution:

• CPU allocates
“mailbox” in GPU mem

• GPU sets mailbox to
initiate network send

• CPU polls mailbox

Take-home: Abstraction
does not change even if

underlying
mechanisms change

DCGN: MPI-Like Programming Model
• Distributed Computing for GPU Networks (DCGN,

pronounced decagon)

• MPI-like interface

• Allows communication between all CPUs and GPUs in
system

• Allow GPU to source/sink communication

• Multithreaded communication via MPI

• Both synchronous and asynchronous (<- overlap!)

• Collectives

• Multiplex MPI addresses (“slots”)

Architecture

!"#$
%#$
&'($

!"#$
%#$
)'($

*+,$-$
'+./+0$

!12"31$-$
'+.//%#$

45#$

6%.7$

&'(8
+#2$
)'(8

&'(9
+#2$
)'(9

:$$:$$:$

63;12"01.$

*+,$-$
'+./+0$

!12"31$-$
'+.//%#$

45#$

6%.7$

63;12"01.$

63;12"01.$ 63;12"01.$

!12"31$!12"31$

• Process data in chunks

• More efficient transmission &
computation

• Also allows out of core

• Overlap computation and
communication

• Accumulate

• Partial Reduce

MapReduce: Keys to Performance

Why is data-parallel computing fast?
• The GPU is specialized for compute-intensive, highly parallel

computation (exactly what graphics rendering is about)

• So, more transistors can be devoted to data processing rather than data
caching and flow control

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU GPU

Programming Model: A Massively Multi-threaded Processor

• Move data-parallel application portions to the GPU

• Differences between GPU and CPU threads

• Lightweight threads

• GPU supports 1000s of threads

• Today:

• GPU hardware

• CUDA programming
environment

Big Idea #1

• One thread per data element.

• Doesn’t this mean that large problems will have
millions of threads?

Big Idea #2

• Write one program.

• That program runs on ALL threads in parallel.

• NVIDIA’s terminology here is “SIMT”: single-instruction,
multiple-thread.

• Roughly: SIMD means many threads run in lockstep; SIMT
means that some divergence is allowed and handled by
the hardware

CUDA Kernels and Threads
• Parallel portions of an application are executed on the

device as kernels

• One SIMT kernel is executed at a time

• Many threads execute each kernel

• Differences between CUDA and CPU threads

• CUDA threads are extremely lightweight

• Very little creation overhead

• Instant switching

• CUDA must use 1000s of threads to achieve efficiency

• Multi-core CPUs can use only a few

Definitions:
Device = GPU; Host = CPU

Kernel = function that
runs on the device

SM Multithreaded Multiprocessor
• Each SM runs a block of threads

• SM has 8 SP Thread Processors

• 32 GFLOPS peak at 1.35 GHz

• IEEE 754 32-bit floating point

• Scalar ISA

• Up to 768 threads,
hardware multithreaded

• 16KB Shared Memory

• Concurrent threads share data

• Low latency load/store

SP

Shared
Memory

IU

SP

Shared
Memory

IU

SP

Shared
Memory

MT IU

SM
This figure is 1 generation old

• Processors execute
computing threads

• Thread Execution
Manager issues threads

• 128 Thread Processors

• Parallel Data Cache
accelerates processing

GPU Computing (G80 GPUs)

Thread Execution Manager

Input Assembler

Host

Parallel
Data

Cache

Global Memory

Load/store

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

NVIDIA Fermi
Performance • !"#$%&'()#*+),-.-%/#%0#1*2.

• 3444#!567899:#;*#<#$*#=(%>?/@#*%-/A

Flexibility

Usability

• 3/,+)>.)B#;C>+)B#D)E%+F#0+%E#GH#IJ#A%#H6#IJ
• KBB)B#LG#>/B#L8#1>,C).
• 411#%/#>((#3/A)+/>(#>/B#4"A)+/>(#D)E%+-).
• 4/>'()#&M#A%#G#N)+>JFA)#%0#O*2#D)E%+-).
• P-@C#;M))B#O$$Q5#D)E%+F#3/A)+0>,)

• D&(?M()#;-E&(A>/)%&.#N>.R.#
%/#O*2

• G9"#=>.A)+#KA%E-,#SM)+>?%/.
• 1TT#;&MM%+A
• ;F.A)E#1>((.U#M+-/V#.&MM%+A

Slide courtesy NVIDIA, image from http://images.anandtech.com/
reviews/video/NVIDIA/GTX460/fullGF100.jpg

Big Idea #3

• Latency hiding.

• It takes a long time to go to memory.

• So while one set of threads is waiting for memory ...

• ... run another set of threads during the wait.

• In practice, 32 threads run in a “warp” and an efficient program
usually has 128–256 threads in a block.

HW Goal: Scalability
• Scalable execution

• Program must be insensitive to the number of cores

• Write one program for any number of SM cores

• Program runs on any size GPU without recompiling

• Hierarchical execution model

• Decompose problem into sequential steps (kernels)

• Decompose kernel into computing parallel blocks

• Decompose block into computing parallel threads

• Hardware distributes independent blocks to SMs as available

This is very
important.

• Same program

• Scalable performance

Scaling the Architecture

Thread Execution Manager

Input Assembler

Host

Parallel
Data

Cache

Global Memory

Load/store

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Thread Execution Manager

Input Assembler

Host

Global Memory

Load/store

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

CUDA Software Development Kit

NVIDIA C Compiler

NVIDIA Assembly
for Computing (PTX) CPU Host Code

Integrated CPU + GPU
C Source Code

CUDA Optimized Libraries:
math.h, FFT, BLAS, …

CUDA
Driver

Debugger
Profiler Standard C Compiler

GPU CPU

Compiling CUDA for GPUs

NVCC

C/C++ CUDA
Application

PTX to Target
Translator

 GPU … GPU
Target device code

PTX CodeGeneric

Specialized

CPU Code

Programming Model (SPMD + SIMD): Thread Batching

• A kernel is executed as a grid of
thread blocks

• A thread block is a batch of
threads that can cooperate with
each other by:

• Efficiently sharing data through
shared memory

• Synchronizing their execution

• For hazard-free shared memory
accesses

• Two threads from two different
blocks cannot cooperate

• Blocks are independent

Host

Kernel 1

Kernel 2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

Blocks must be independent
• Any possible interleaving of blocks should be valid

• presumed to run to completion without pre-emption

• can run in any order

• can run concurrently OR sequentially

• Blocks may coordinate but not synchronize

• shared queue pointer: OK

• shared lock: BAD … can easily deadlock

• Independence requirement gives scalability

Big Idea #4

• Organization into independent blocks allows
scalability / different hardware instantiations

• If you organize your kernels to run over many blocks ...

• ... the same code will be efficient on hardware that runs
one block at once and on hardware that runs many blocks
at once

CUDA: Programming GPU in C
• Philosophy: provide minimal set of extensions necessary to expose power

• Declaration specifiers to indicate where things live

 __global__ void KernelFunc(...); // kernel callable from host

 __device__ void DeviceFunc(...); // function callable on device

 __device__ int GlobalVar; // variable in device memory

 __shared__ int SharedVar; // shared within thread block

• Extend function invocation syntax for parallel kernel launch
 KernelFunc<<<500, 128>>>(...); // launch 500 blocks w/ 128 threads each

• Special variables for thread identification in kernels
 dim3 threadIdx; dim3 blockIdx; dim3 blockDim; dim3 gridDim;

• Intrinsics that expose specific operations in kernel code
 __syncthreads(); // barrier synchronization within kernel

Example: Vector Addition Kernel

• Compute vector sum C = A+B means:

• n = length(C)

• for i = 0 to n-1:

• C[i] = A[i] + B[i]

• So C[0] = A[0] + B[0], C[1] = A[1] + B[1], etc.

Example: Vector Addition Kernel
// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global__ void vecAdd(float* A, float* B, float* C)

{

 int i = threadIdx.x + blockDim.x * blockIdx.x;

 C[i] = A[i] + B[i];

}

int main()

{

 // Run N/256 blocks of 256 threads each

 vecAdd<<< N/256, 256>>>(d_A, d_B, d_C);

}

Device Code

Example: Vector Addition Kernel
// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global__ void vecAdd(float* A, float* B, float* C)

{

 int i = threadIdx.x + blockDim.x * blockIdx.x;

 C[i] = A[i] + B[i];

}

int main()

{

 // Run N/256 blocks of 256 threads each

 vecAdd<<< N/256, 256>>>(d_A, d_B, d_C);

}

Device Code

Example: Vector Addition Kernel
// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global__ void vecAdd(float* A, float* B, float* C)

{

 int i = threadIdx.x + blockDim.x * blockIdx.x;

 C[i] = A[i] + B[i];

}

int main()

{

 // Run N/256 blocks of 256 threads each

 vecAdd<<< N/256, 256>>>(d_A, d_B, d_C);

}

Device Code

Example: Vector Addition Kernel
// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global__ void vecAdd(float* A, float* B, float* C)

{

 int i = threadIdx.x + blockDim.x * blockIdx.x;

 C[i] = A[i] + B[i];

}

int main()

{

 // Run N/256 blocks of 256 threads each

 vecAdd<<< N/256, 256>>>(d_A, d_B, d_C);

}

Device Code

Example: Vector Addition Kernel
// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global__ void vecAdd(float* A, float* B, float* C)

{

 int i = threadIdx.x + blockDim.x * blockIdx.x;

 C[i] = A[i] + B[i];

}

int main()

{

 // Run N/256 blocks of 256 threads each

 vecAdd<<< N/256, 256>>>(d_A, d_B, d_C);

}

Device Code

Example: Vector Addition Kernel
// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global__ void vecAdd(float* A, float* B, float* C)

{

 int i = threadIdx.x + blockDim.x * blockIdx.x;

 C[i] = A[i] + B[i];

}

int main()

{

 // Run N/256 blocks of 256 threads each

 vecAdd<<< N/256, 256>>>(d_A, d_B, d_C);

}

Device Code

Example: Vector Addition Kernel
// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global__ void vecAdd(float* A, float* B, float* C)

{

 int i = threadIdx.x + blockDim.x * blockIdx.x;

 C[i] = A[i] + B[i];

}

int main()

{

 // Run N/256 blocks of 256 threads each

 vecAdd<<< N/256, 256>>>(d_A, d_B, d_C);

}

Host Code

Synchronization of blocks

• Threads within block may synchronize with barriers
 … Step 1 …

__syncthreads();
… Step 2 …

• Blocks coordinate via atomic memory operations

• e.g., increment shared queue pointer with atomicInc()

• Implicit barrier between dependent kernels

 vec_minus<<<nblocks, blksize>>>(a, b, c);
vec_dot<<<nblocks, blksize>>>(c, c);

CUDA: Runtime support

• Explicit memory allocation returns pointers to GPU memory

 cudaMalloc(), cudaFree()

• Explicit memory copy for host ↔ device, device ↔ device

 cudaMemcpy(), cudaMemcpy2D(), ...

• Texture management

 cudaBindTexture(), cudaBindTextureToArray(), ...

• OpenGL & DirectX interoperability

 cudaGLMapBufferObject(), cudaD3D9MapVertexBuffer(), …

Example: Vector Addition Kernel
// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global__ void vecAdd(float* A, float* B, float* C){

 int i = threadIdx.x + blockDim.x * blockIdx.x;

 C[i] = A[i] + B[i];

}

int main(){

 // Run N/256 blocks of 256 threads each

 vecAdd<<< N/256, 256>>>(d_A, d_B, d_C);

}

Example: Host code for vecAdd
// allocate and initialize host (CPU) memory
float *h_A = …, *h_B = …;
// allocate device (GPU) memory
float *d_A, *d_B, *d_C;

cudaMalloc((void**) &d_A, N * sizeof(float));
cudaMalloc((void**) &d_B, N * sizeof(float));
cudaMalloc((void**) &d_C, N * sizeof(float));
// copy host memory to device
cudaMemcpy(d_A, h_A, N * sizeof(float), cudaMemcpyHostToDevice));
cudaMemcpy(d_B, h_B, N * sizeof(float), cudaMemcpyHostToDevice));

// execute the kernel on N/256 blocks of 256 threads each
vecAdd<<<N/256, 256>>>(d_A, d_B, d_C);

Example: Host code for vecAdd
// allocate and initialize host (CPU) memory
float *h_A = …, *h_B = …;
// allocate device (GPU) memory
float *d_A, *d_B, *d_C;

cudaMalloc((void**) &d_A, N * sizeof(float));
cudaMalloc((void**) &d_B, N * sizeof(float));
cudaMalloc((void**) &d_C, N * sizeof(float));
// copy host memory to device
cudaMemcpy(d_A, h_A, N * sizeof(float), cudaMemcpyHostToDevice));
cudaMemcpy(d_B, h_B, N * sizeof(float), cudaMemcpyHostToDevice));

// execute the kernel on N/256 blocks of 256 threads each
vecAdd<<<N/256, 256>>>(d_A, d_B, d_C);

Example: Host code for vecAdd
// allocate and initialize host (CPU) memory
float *h_A = …, *h_B = …;
// allocate device (GPU) memory
float *d_A, *d_B, *d_C;

cudaMalloc((void**) &d_A, N * sizeof(float));
cudaMalloc((void**) &d_B, N * sizeof(float));
cudaMalloc((void**) &d_C, N * sizeof(float));
// copy host memory to device
cudaMemcpy(d_A, h_A, N * sizeof(float), cudaMemcpyHostToDevice));
cudaMemcpy(d_B, h_B, N * sizeof(float), cudaMemcpyHostToDevice));

// execute the kernel on N/256 blocks of 256 threads each
vecAdd<<<N/256, 256>>>(d_A, d_B, d_C);

Example: Host code for vecAdd
// allocate and initialize host (CPU) memory
float *h_A = …, *h_B = …;
// allocate device (GPU) memory
float *d_A, *d_B, *d_C;

cudaMalloc((void**) &d_A, N * sizeof(float));
cudaMalloc((void**) &d_B, N * sizeof(float));
cudaMalloc((void**) &d_C, N * sizeof(float));
// copy host memory to device
cudaMemcpy(d_A, h_A, N * sizeof(float), cudaMemcpyHostToDevice));
cudaMemcpy(d_B, h_B, N * sizeof(float), cudaMemcpyHostToDevice));

// execute the kernel on N/256 blocks of 256 threads each
vecAdd<<<N/256, 256>>>(d_A, d_B, d_C);

Basic Efficiency Rules

• Develop algorithms with a data parallel mindset

• Minimize divergence of execution within blocks

• Maximize locality of global memory accesses

• Exploit per-block shared memory as scratchpad

• Expose enough parallelism

Summing Up

• Four big ideas:

1. One thread per data element

2. Write one program, runs on all threads

3. Hide latency by switching to different work

4. Independent blocks allow scalability

• Three key abstractions:

1. hierarchy of parallel threads

2. corresponding levels of synchronization

3. corresponding memory spaces

GPU Computing Challenges

• Addressing other dwarfs

• Sparseness & adaptivity

• Scalability: Multi-GPU algorithms and data structures

• Heterogeneity (Fusion/Knight’s Corner architectures)

• Irregularity

• Incremental data structures

• Abstract models of GPU computation

Thanks to …

• David Luebke and Rich Vuduc for slides

• NVIDIA for hardware donations; Argonne and University
of Illinois / NCSA for cluster access

• Funding agencies: Department of Energy (SciDAC
Institute for Ultrascale Visualization, Early Career
Principal Investigator Award), NSF, LANL, BMW, NVIDIA,
HP, Intel, UC MICRO, Microsoft, ChevronTexaco, Rambus

