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Goals for this Hour

e Why GPU computing?
e Multi-GPU computing
e Single-GPU computing



“If you were plowing a field, which
would you rather use? Two strong
oxen or 1024 chickens?”

—Seymour Cray



Recent GPU Performance Trends
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What’s new?
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e Double precision

e Fast atomics

e Hardware cache

& ECC e
e (CUDA) debuggers .t
& profilers - TR s s wmomomomomomom




Intel ISCA Paper (June 2010)

Debunking the 100X GPU vs. CPU Myth:
An Evaluation of Throughput Computing on CPU and GPU

Victor W Lee?, Changkyu Kim®, Jatin Chhuganit, Michael Deisher,
Daehyun Kim?, Anthony D. Nguyen®, Nadathur Satish?, Mikhail Smelyanskiy",
Srinivas Chennupaty*, Per Hammarlund*, Ronak Singhal and Pradeep Dubey*

victor.w.lee@intel.com

TThroughput Computing Lab, *Intel Architecture Group,
Intel Corporation Intel Corporation
ABSTRACT The past decade has seen a huge increase in digital content as

more documents are being created in digital form than ever be-
fore. Moreover, the web has become the medium of choice for
storing and delivering information such as stock market data, per-
sonal records, and news. Soon, the amount of digital data will ex-
ceed exabytes (10'8) [31]. The massive amount of data makes stor-
ing, cataloging, processing, and retrieving information challenging.
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Recent advances in computing have led to an explosion in the amount
of data being generated. Processing the ever-growing data in a
timely manner has made throughput computing an important as-
pect for emerging applications. Our analysis of a set of important
throughput computing kernels shows that there is an ample amount
of parallelism in these kernels which makes them suitable for to-
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CUDA Successes <A

NVIDIA

100X
Medical Imaging  Molecular Dynamics Video Transcoding Matlab Computing Astrophysics
U of Utah U of lllinois Elemental Tech AccelerEyes RIKEN
—
30X
Financial simulation Linear Algebra 3D Ultrasound Quantum Chemistry Gene Sequencing
Oxford Universidad Jaime Techniscan U of lllinois U of Maryland

(c) 2010 NVIDIA Corporation [courtesy David Luebke, NVIDIA]
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13 Dwarfs

1. Dense Linear Algebra

2. Sparse Linear
Algebra

3. Spectral Methods
4. N-Body Methods
5. Structured Grids

6. Unstructured Grids

7. MapReduce

8. Combinational Logic
9. Graph Traversal

10. Dynamic
Programming

11. Backtrack and
Branch-and-Bound

12. Graphical Models

13. Finite State
Machines
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GPU in system (3 alternatives)
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Fast & Flexible Communication
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e (PUs are good at creating & manipulating data structures?

e GPUs are good at accessing & updating data structures?

http://www.watch.impress.co.jp/game/docs/20060329/3dps303.jpg
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Structuring CPU-GPU Programs

CPU GPU

Marshal data

Send to GPU
\ Receive from CPU

Call kernel
\ Execute kernel
Retrieve from GPU \
Send to CPU



Structuring Multi-GPU Programs

PU Static division of work

C
(Global Arrays: Zippy,
/ lNSA)
GPU GPU G

PU GPU GPU




Structuring Multi-GPU Programs

PU

Static division of work

C
(Global Arrays: Zippy,
/ lNSA)
GPU GPU G

PU GPU GPU

Want to run on GPU:
if (foo == true) {
GPU[Lx][bar] = baz;
} else {
bar = GPU[Lyl[baz];
}



Structuring Multi-GPU Programs

AN

Want to run on GPU:
if (foo == true) {
GPU[Lx][bar] = baz;
} else {
bar = GPU[Lyl[baz];
}

CPU

Static division of work
(Global Arrays: Zippy,
CUDASA)

GPU GPU GPU

Instead, GPU as slave.
Goal: GPU as first-class citizen.



Our Research Program

Abstractions




Example

e Abstraction: GPU

initiates network send _

e Problems: Abstractions
e GPU can’t communicate Mechanisms
with NI

e GPU signals CPU



Example

e Abstraction: GPU
initiates network send

e Solution:

e (PU allocates
“mailbox” in GPU mem

e GPU sets mailbox to
initiate network send

e (CPU polls mailbox

Abstractions

Mechanisms




Example

e Abstraction: GPU
initiates network send

e Solution:

e (CPU allocates
“mailbox” in GPU mem

e GPU sets mailbox to
initiate network send

e (CPU polls mailbox

Take-home: Abstraction
does not change even if
underlying
mechanisms change

Abstractions

Mechanisms




DCGN: MPI-Like Programming Model

e Distributed Computing for GPU Networks (DCGN,
pronounced decagon)

e MPI-like interface

e Allows communication between all CPUs and GPUs in
system

e Allow GPU to source/sink communication

e Multithreaded communication via MPI

e Both synchronous and asynchronous (¢- overlap!)
e C(ollectives

e Multiplex MPI addresses (“slots”)



Architecture
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Run Run
MapReduce: Keys to Performance || o || o
GPU CPU
GPU 1 GPUN
and and
. CPU 1 CPUN
® Process data in chunks
Scheduler € 2 Scheduler
e More efficient transmission & v v
. Map + Map +
ComPUtatlon Paar]gal Paar]gal
Reduce + Reduce +
Partition Partition
e Also allows out of core 5 B
i v v
e Overlap computation and Bin Bin
communication |
e Accumulate Sort Sort
v v
Py Partial Red uce Scheduler Scheduler
v v
Reduce Reduce




Why is data-parallel computing fast?

e The GPU is specialized for compute-intensive, highly parallel
computation (exactly what graphics rendering is about)

e So, more transistors can be devoted to data processing rather than data
caching and flow control

ALU ALU

Control

ALU ALU

CPU GPU




Programming Model: A Massively Multi-threaded Processor

e Move data-parallel application portions to the GPU
e Differences between GPU and CPU threads

e Lightweight threads

e GPU supports 1000s of threads
e Today:

e GPU hardware

e CUDA programming
environment




Big Idea #1

e One thread per data element.

e Doesn’t this mean that large problems will have
millions of threads?



Big Idea #2

e Write one program.
e That program runs on ALL threads in parallel.

e NVIDIA’s terminology here is “SIMT”: single-instruction,
multiple-thread.

e Roughly: SIMD means many threads run in lockstep; SIMT
means that some divergence is allowed and handled by
the hardware



CUDA Kernels and Threads

e Parallel portions of an application are executed on the

device as kernels Definitions:

Device = GPU; Host = CPU
Kernel = function that
runs on the device

e One SIMT kernel is executed at a time
e Many threads execute each kernel

e Differences between CUDA and CPU threads

e (CUDA threads are extremely lightweight
e \Very little creation overhead

e |nstant switching

e CUDA must use 1000s of threads to achieve efficiency

e Multi-core CPUs can use only a few



SM Multithreaded Multiprocessor

This figure is 1 generation old

® Each SM runs a block of threads
e SM has 8 SP Thread Processors

e 32 GFLOPS peak at 1.35 GHz

e |EEE 754 32-bit floating point

e ScalarISA

e Up to 768 threads,
hardware multithreaded

e 16KB Shared Memory

e C(Concurrent threads share data

e Low latency load/store



GPU Computing (G80 GPUs)

® Processors execute
, e 128 Thread Processors
computing threads
e Parallel Data Cache

e Thread Execution :
accelerates processing

Manager issues threads
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NVIDIA Fermi

Performance e 7x Double Precision of CPUs
e |EEE 754-2008 SP & DP Floating Point

Increased Shared Memory from 16 KB to 64 KB
Added L1 and L2 Caches
Flexibility ECC on all Internal and External Memories
e Enable up to 1 TeraByte of GPU Memories
High Speed GDDR5 Memory Interface

\ I ato] CI N ERETEN S
on GPU
Usability 10x Faster Atomic Operations

C++ Support
System Calls, printf support ; ———

.
T T




Big Idea #3

e Latency hiding.
e |[ttakes alongtime to goto memory.
e So while one set of threads is waiting for memory ...

e ...run another set of threads during the wait.

® In practice, 32 threads runin a “warp” and an efficient program
usually has 128-256 threads in a block.



HW Goal: Scalability

e Scalable execution
e Program must be insensitive to the number of cores
e Write one program for any number of SM cores

e Program runs on any size GPU without recompiling

e Hierarchical execution model
e Decompose problem into sequential steps (kernels)

e Decompose kernelinto computing parallel blocks

This is very
important.

e Decompose blockinto computing parallel threads

e Hardware distributes independent blocks to SMs as available



Scaling the Architecture

e Same program

e Scalable performance

R e |-

v

v




CUDA Software Development Kit




Compiling CUDA for GPUs
Py

@WVEE) cPU Code
PTX Code

Generic

Specialized .t
GPU_ ... |GPU

Target device code




Programming Model (SPMD + SIMD): Thread Batching

e Akernelis executed as a grid of — S—
thread blocks Crid 1
. Block Block Block
e Athread blockis a batch of Kernel 1 0.0 || 10 | (20
threads that can cooperate with Biock 7 Block | Block
each other by: .01 1) @1
e Efficiently sharing data through T "‘.
shared memory he
Kernel 2 - ) 1R
® Synchronizing their execution ".
Block (1, 1) .
e For hazard-free shared memory
accesses Thread | Thread | Thread | Thread | Thread
0, 0) 1, 0) 2,0) @3,0) 4,0)
® TWO th I’eadS from tWO diﬁ:e rent Thread | Thread | Thread | Thread | Thread
0, 1) 1) 2,1) A3, 1) “,1)
blocks cannot cooperate
Thread | Thread | Thread | Thread | Thread
0, 2) 1,2) 2,2) @3,2) 4,2)
e Blocks are independent




Blocks must be independent

e Any possible interleaving of blocks should be valid
e presumed to run to completion without pre-emption
® canruninanyorder
e can run concurrently OR sequentially

e Blocks may coordinate but not synchronize
e shared queue pointer:

e shared lock: BAD ... can easily deadlock

e Independence requirement gives scalability



Big Idea #4

e Organization into independent blocks allows
scalability / different hardware instantiations

e Ifyou organize your kernels to run over many blocks ...

o ...the same code will be efficient on hardware that runs
one block at once and on hardware that runs many blocks
at once



CUDA: Programming GPU in C

e Philosophy: provide minimal set of extensions necessary to expose power

e Declaration specifiers to indicate where things live
__global  void KernelFunc(...); //kernelcallable from host

device void DeviceFunc(...); //function callable on device

device int GlobalVar; // variable in device memory

shared  int SharedvVar; /[ shared within thread block

e Extend function invocation syntax for parallel kernel launch
KernelFunc<<<500, 128>>>(...); // launch 5oo blocks w/ 128 threads each

e Special variables for thread identification in kernels
dim3 threadIdx; dim3 blockIdx; dim3 blockDim; dim3 gridDim;

e Intrinsics that expose specific operations in kernel code
__syncthreads () /] barrier synchronization within kernel



Example: Vector Addition Kernel

e (Compute vector sum C=A+B means:
e n = length(C)
e fori=oton-1:
o (Ji] =Ali] + Blil
e So C[o] =A[o] + B[o], C[1] = A[1] + B[1], etc.



Example: Vector Addition Kernel

// Compute vector sum C = A+B Device Code
// Each thread performs one pair-wise addition
__global  void vecAdd(float* A, float* B, float* C)
{
int 1 = threadIdx.x + blockDim.x * blockIdx.x;

C[i] = A[i] + B[1i];

int main|()
{
// Run N/256 blocks of 256 threads each

vecAdd<<< N/256, 256>>>(d A, d B, d C);
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Example: Vector Addition Kernel

// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
__global  void vecAdd(float* A, float* B, float* C)
{

int i = threadIdx.x + blockDim.x * blockIdx.x;

C[i] = A[i] + BI[1i];

Host Code

int main|()
{
// Run N/256 blocks of 256 threads each

vecAdd<<< N/256, 256>>>(d A, d B, d C);



Synchronization of blocks

e Threads within block may synchronize with barriers

. Step 1 ..
___syncthreads (),
. Step 2 ..

e Blocks coordinate via atomic memory operations
e e.g.,increment shared queue pointer with atomicInc ()
e Implicit barrier between dependent kernels

vec minus<<<nblocks, blksize>>>(a, b, c);
vec_dot<<<nblocks, blksize>>>(c, c);



CUDA: Runtime support

e Explicit memory allocation returns pointers to GPU memory

cudaMalloc (), cudaFree ()

e Explicit memory copy for host < device, device < device

cudaMemcpy () , cudaMemcpy?2D (), ...
e Texture management
cudaBindTexture (), cudaBindTextureToArray (), ...

e OpenGL & DirectX interoperability

cudaGLMapBufferObject (), cudaD3D9MapVertexBuffer (), ..



Example: Vector Addition Kernel

// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
__global void vecAdd(float* A, float* B, float* C) {

int i = threadIdx.x + blockDim.x * blockIdx.x;

C[i] = A[i] + B[1i];

int main () {
// Run N/256 blocks of 256 threads each

vecAdd<<< N/256, 256>>>(d A, d B, d C);



Example: Host code for vecAdd

// allocate and initialize host (CPU) memory
float *h A = ., *h B = .;

// allocate device (GPU) memory

float *d A, *d B, *d C;

cudaMalloc( (void**) &d A, N * sizeof(float))

cudaMalloc( (void**) &d B, N * sizeof(float))

cudaMalloc( (void**) &d C, N * sizeof(float))

// copy host memory to device

cudaMemcpy( d A, h A, N * sizeof(float), cudaMemcpyHostToDevice) ) ;

cudaMemcpy( d B, h B, N * sizeof(float), cudaMemcpyHostToDevice) ) ;

// execute the kernel on N/256 blocks of 256 threads each
vecAdd<<<N/256, 256>>>(d A, d B, d C);
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Basic Efficiency Rules

e Develop algorithms with a data parallel mindset
e Minimize divergence of execution within blocks
e Maximize locality of global memory accesses

e Exploit per-block shared memory as scratchpad

e Expose enough parallelism



Summing Up

e Four bigideas:
One thread per data element
Write one program, runs on all threads
Hide latency by switching to different work
Independent blocks allow scalability

e Three key abstractions:
hierarchy of parallel threads
corresponding levels of synchronization

corresponding memory spaces



GPU Computing Challenges

e Addressing other dwarfs
e Sparseness & adaptivity
e Scalability: Multi-GPU algorithms and data structures
e Heterogeneity (Fusion/Knight’s Corner architectures)

e |[rregularity

e Incremental data structures

e Abstract models of GPU computation



Thanks to ...

e David Luebke and Rich Vuduc for slides

e NVIDIA for hardware donations; Argonne and University
of Illinois / NCSA for cluster access

e Funding agencies: Department of Energy (SciDAC
nstitute for Ultrascale Visualization, Early Career
Principal Investigator Award), NSF, LANL, BMW, NVIDIA,
HP, Intel, UC MICRO, Microsoft, ChevronTexaco, Rambus




