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Abstract: 

As the gap in performance between the processors and the memory systems continue to grow, the communication component of 
an application will dictate the overall application performance and scalability. Therefore it is useful to abstract common 
communication operations across cores as collective communication operations and tune them through a runtime library that can 
employ sophisticated automatic tuning techniques. Our focus of this paper is on collective communication in Partitioned Global 
Address Space languages which are a natural extension of the shared memory hardware of modern multicore systems. In 
particular we highlight how automatic tuning can lead to significant performance improvements and show how loosening the 
synchronization semantics of a collective can lead to a more efficient use of the memory system. We demonstrate that loosely 
synchronized collectives can realize consistent speedups over their strictly synchronized counterparts on the highly threaded Sun 
Niagara2 for message sizes ranging from 8 bytes to 64kB. We thus argue that the synchronization requirements for a collective 
must be exposed in the interface so the collective and the synchronization can be optimized together.  

1 Introduction  
Current hardware trends show that the number of cores per chip is growing at an exponential pace and we will see hundreds 
processor cores within a socket in the near future [5]. However, the performance of the communication and memory system has 
not kept pace with this rapid growth in processor performance [20]. Transferring data from a core on one socket to a core on 
another or synchronizing between cores takes many cycles, and a small fraction of the cores are enough to saturate the available 
memory bandwidth. Thus many application designers and programmers aim to improve performance by reducing the amount of 
time threads are stalled waiting for memory or synchronization.  

Communication in its most general form, meaning the movement of data between cores, within cores, and within memory 
systems, will be the dominant cost in both running time and energy consumption. Thus, it will be increasingly important to avoid 
unnecessary communication and synchronization, optimize communication primitives and schedule communication to avoid 
contention and maximize use of memory bandwidth. The wide variety of processor interconnect mechanisms and topologies 
further aggravate the problem and necessitate either (1) a platform specific implementation of the communication and 
synchronization primitives or (2) a system that can automatically tune the communication and synchronization primitives across 
a wide variety of architectures. In this work we focus on the latter.  

Many communication-intensive problems involve global communication, in which one thread broadcasts to others, one thread 
combines values from others, or data is exchanged between threads in operations such as a transpose. To coordinate 
communication operations across cores, it is often useful to think of these as collective communication operations, in which a 
group of threads collectively work to perform the global communication operation. Collective communication is very popular in 
programming models that involve a fixed set of parallel threads, because multiple threads can combine together to perform the 
communication efficiently through combining trees or other structures, rather than having a single thread perform all of the work. 
Collective communication is widely used in message passing (MPI [14]) programs and in global address space models like 
UPC [18] for both convenience and scalability.  

While the collective communication problem has been well studied in the context of message passing on distributed memory 
clusters [16], we focus on Partitioned Global Address Space Languages (PGAS) such as UPC, Co-Array Fortran [9], and 
Titanium [21] on multicore and SMP systems. The key feature that distinguishes PGAS languages from message passing is the 
use of one-sided as opposed to two-sided communication: threads in a PGAS language communicate by reading and writing 
remote data without the need for a matching communication operation on the other side. One-sided communication decouples 
data transfer from synchronization and therefore allows for faster communication [7] on clusters, where they are most commonly 
used. PGAS languages are also a natural fit for multicore and SMP systems because they directly use their shared memory 
hardware while still giving control over locality which is important on multi-socket systems. We will show that the one-sided 
model when extended to collective operations allows for much higher communication bandwidth and better overall collective 
performance and throughput on shared memory architectures. 



 
Our Position: Collective communication operations are useful in programming multicore systems because they 
encapsulate performance-critical data movement operations. Automatic tuning can significantly improve 
performance by selecting the right implementation for a given system and communication pattern. Loosening the 
synchronization requirements for collective operations can also improve performance, and the synchronization 
requirements should be a parameter in the tuning process.  

 
The techniques and analysis in this paper apply to many common data movement and synchronization patterns such as 
Broadcast, Scatter, Gather, Barrier, Exchange and Reduce. Due to space considerations, we discuss the following two 
operations: 

Barrier: A thread can not exit a call to a barrier until all the other threads have called the barrier.  

Reduce: Every thread sends a contribution to a global combining operation. For example, if the desired result is the sum of a 
vector of elements where each thread has a different value of , the result on the root thread is . The operations sum, minimum, 
and maximum are usually built-in and the user is allowed to supply more complicated functions.  

 
2 Tuning Collectives for Shared Memory  
The wide variety of architectures that are currently deployed and under development necessitates a system that can automatically 
tune these operations rather than wasting valuable time hand-tuning. As the number of cores continues to grow, the performance 
and scalability of these algorithms will play a more prominent role in the overall application performance. 

 
2.1 The Tuning Space  
There have been many related projects that have focused their efforts on hand-tuning collectives including a few that have 
focused on automatically tuning these operations for clusters[16]. From the body of literature it is clear that the tuning space is 
indeed large. For example, for a rooted collective there are an exponential number of tree shapes that can be used to disseminate 
the data. Our experience and related work has shown that the following parameters affect the choice of the optimal algorithm. 
Further research will show whether this list is sufficient to capture all the parameters needed. Factors that influence performance 
include: processor type/speed, interconnect topology, interconnect latency, interconnect bandwidth, number of threads involved, 
size of the messages being transferred, synchronization mode, network load, mix of collectives that the user performs, amount of 
local memory available for collectives. 

 
2.2 Algorithm Selection  

Figure 1: Example Tree Topologies



To motivate our work we initially focus on an important collective found in many applications: a barrier synchronization. Having 
a faster barrier allows the programmer to write finer-grained synchronous code and conversely a slow barrier hinders application 
scalability as shown by Amdahl's Law. As highlighted in the seminal work by Mellor-Crummey and Scott [13], there are many 
choices of algorithms to implement a barrier across the threads. One of the critical choices that affects overall collective 
scalability is the communication topology and schedule that the threads use to communicate and synchronize with each other. 
Tree-based collectives allow the work to be more effectively parallelized across all the cores rather than serializing at one root 
thread, thereby taking advantage of more of the computational facilities available. These are extensions of the binomial tree 
found in [10] where a radix other than 2 is used. The higher the radix, the shallower the tree. Figure 1 shows a diagram of the 
trees used1. While the set of all possible trees is very large, we only focus on a small subset of them to illustrate our argument. 
Thus to implement a barrier each thread signals its parent once its subtree has arrived and then waits for the parent to signal it 
indicating that the barrier is complete. Two passes of the tree (one up and one down) will complete the barrier. All the barriers 
have been implemented through the use of flags declared as volatile ints and atomic counters. 

 

 
Figure 2 shows the latency of a barrier on three modern multicore machines shown in Table 1. The group of bars labeled 
``Pthread Lib'' is the performance of the barrier found in the pthread library. The bars labeled ``Flat'' show the performance of a 
flat topology to accomplish a barrier, (i.e. all threads communicate directly with the root). The final column, ``Tree,'' shows the 
performance of the barrier by selecting the best tree geometry. The pthreads library has been designed to handle the case when 
the number of threads is larger than the number of hardware thread contexts. However as the data show, the pthread library adds 
a significant amount of unnecessary overhead if the number of software threads do not exceed the number of available hardware 
thread contexts2. Thus even switching to a flat topology in which the threads communicate through the cache can yield almost 
two orders of magnitude in performance. However as the number of cores continue to rise at a dramatic rate, simply relying on 
all cores communicating directly with one root thread leads to non-scalable code as shown by the performance data from the Sun 
Niagara2. Using scalable tree based algorithms can yield another order of magnitude in performance improvement. Thus on the 
Sun Niagara2 we achieve three orders of magnitude performance gains by tuning the collectives for shared memory.  

 

 
Figure 2: Barrier Performance

Table 1: Experimental Platforms

 

Processor GHz Cores Sockets

  (Threads)  

Intel Clovertown[1] 2.66 8 (8) 2

AMD Barcelona[2] 2.30 32 (32) 8

Sun Niagara2[3] 1.40 32 (256) 4



3 Collective Synchronization  
The simplest semantics for a collective communication is to have it appear to execute in isolation after all preceding code on all 
threads has completed and before any succeeding code starts. However, in a traditional two-sided message passing model, a 
collective is considered complete on a particular thread when it has received its piece of the data. This does not imply that all 
threads have received their data, but a thread cannot view such asynchrony because all communication is done explicitly, and any 
lagging thread cannot communicate since it is still tied up executing the collective. In the case of a global address space model, 
such asynchrony may be visible if a thread has received its local contribution from a collective and then reads or writes data on a 
lagging thread. This raises interesting questions about when the data movement for a collective can start and when a collective is 
considered complete. Avoiding synchronization can improve performance but complicate programming. We argue that it is 
essential for the user to specify the synchronization requirements of the collective to achieve maximum possible performance so 
that the synchronization can be factored into the tuning process. 

To illustrate the impacts of collective synchronization we consider Reduce on the Sun Niagara2. Each Niagara2 socket is 
composed of 8 cores each of which multiplexes instructions from 8 hardware thread contexts. Thus, our experimental platform 
has support for 256 active threads. Due to the high thread count, we consider it a good proxy for analyzing scalability on future 
manycore platforms. We explore two different synchronization modes: Loose and Strict. In the Loose synchronization mode, 
data movement for the collective can begin as soon as any thread has entered the collective and continue until the last thread 
leaves the collective. In the Strict mode data movement can only start after all threads have entered the collective and must be 
completed before the first thread exits the collective. In all our examples the Strict synchronization has been achieved by 
inserting the aforementioned tuned barrier between each collective. There are many synchronization modes that lie between these 
two extremes, however for the sake of brevity we will focus on the two extremes.  

Figure 3 shows the performance of Reduce on the Sun Niagara2. The x-axis shows the number of doubles reduced in the vector 
reduction and the y-axis shows the time taken to perform the reduction on a log scale. As the data show, the looser 
synchronization yields significant performance advantages over a wide range of vector sizes. At the lower vector sizes the 
memory system latency becomes the dominant concern. Thus requiring a full barrier synchronization along with the reduction 
introduces significant overheads. Thus, by amortizing the cost of this barrier across many operations, we can realize significant 
performance gains.  

However, the data also show that the looser synchronization continues to show factors of 3 improvement in performance over the 
strict synchronization versions where one would imagine the operations to be dominated by bandwidth. Loosely synchronized 
collectives allow for better pipelining amongst the different collectives. At high vector sizes both synchronization modes realize 
the best performance by using trees. In a strict synchronization approach a particular core is only active for a brief period of time 
while the data is present at its level of the tree. During the other times the core is idle. Loosening the synchronization allows 
more collectives to be in flight at the same time and thus pipelined behind each other. This allows the operations to expose more 
parallelism to the hardware and decrease the amount of time the memory system sits idle. As is the case with any pipelined 
operation, we have not reduced the latency for a given operation but rather improved the throughput for all the operations. As the 
data show in Figure 3, the median performance gain of the strict execution time compared to the loose execution time is about 
while the maximum is about .  

Figure 3: Reduction Performance on Niagara2



4 Collective Tuning and Synchronization  
In previous sections we have seen the effectiveness of both collective tuning and loosely synchronized collectives. In this section 
we combine the two pieces and show that the collective synchronization must be expressed through the interface to realize the 
best performance. 

To illustrate our approach we show the performance of Reduce on the eight socket quad-core Barcelona (i.e. 32 Opteron cores). 
The results are shown in Figure 4. In the first topology, which we call Flat, the root thread accumulates the values from all the 
other threads. Thus only one core is reading and accumulating the data from the memory system while the others are idle. In the 
second topology (labeled Tree) the threads are connected in a tree described in Section 23. Once a child has accumulated the 
result for all its subtree, it then sends a signal to the parent allowing the parent to accumulate the data from all its children. We 
search over a set of trees and report the performance for the best tree shape at each of the data points. Unlike the Flat topology 
the Tree topology allows more cores to participate in the reduction but forces more synchronization amongst the cores. 
Orthogonally we present the two aforementioned synchronization modes: Loose and Strict.  

 
 

Figure 4: Optimal Algorithm Selection on Barcelona

 
 

Figure 5: Optimal Algorithm Selection on Niagara2

 
 

Figure 6: Optimal Algorithm Selection on Clovertown



As the data show, the Flat topology outperforms the Trees at smaller vector sizes. Even in the loosely synchronized collectives, 
the tree based implementations require the threads to signal their parents when they finish accumulating the data for their subtree. 
Since the Flat topology outperforms the Tree one, this indicates the overheads of the point-to-point synchronizations make the 
algorithm more costly especially when the memory latency is the biggest consideration. However, as the vector size increases, 
serializing all the computation at the root becomes expensive. Switching to a tree is a critical for performance in order to engage 
more of the functional units and better parallelize the problem. Both the Strict and Loose see a crossover point that highlights this 
tradeoff. As the data also show, the optimal switch-point is dependent on the synchronization semantics. Since the looser 
synchronization enables better pipelining the costs of synchronization can be amortized quicker, thereby reaping the benefits of 
parallelism at a smaller vector size. There is a large performance penalty for not picking the correct crossover point. If we 
assume that the crossover between the algorithms is at 8 doubles (the best for the loose synchronization) for both synchronization 
modes, then the strict collective will take twice as long as the optimal. If we employ a crossover of 32 doubles then a loosely 
synchronized collective will take three times as longer. Thus the synchronization semantics are an integral part of selecting the 
best algorithm.  

The switch-point is heavily dependent on the target architecture and the concurrency level. The same data is shown for the 
Niagara2 as well as the Clovertown in Figures 5 and 6. The high concurrency levels for the Niagara2 mandate trees for both 
synchronization modes since the scalability and added parallelism the trees offer is important at all vector sizes. However, on the 
Clovertown, the lower thread count implies that the added cost of the point-to-point synchronization associated with the trees 
outweighs the benefits from parallelism and thus the Flat topology performs the best.  

 

 
4.1 Tree Selection  
Table 2 shows the performance of Loose and Strict synchronization on the Barcelona and the Niagara2 as a function of the tree 
radix. On both platforms the Chain tree is the optimal for loosely synchronized collectives and a higher radix tree is optimal for 
strictly synchronized collectives. The lower radices impose a higher latency for the operation since they imply deeper trees. The 
higher radices reduce the amount of parallelism but improve the latency since the trees are shallower. Thus we tradeoff increased 
parallelism for increased latency. If the goal is to maximize collective throughput (as is the case with loosely synchronized 
collectives), then the increased latency is not a concern since it will be amortized over all the pipelined operations and the deep 
trees do not adversely affect performance. However, if collective latency is a concern then finding the optimal balance between 
decreased parallelism and tree depth is key. On the Niagara2 trying to force a radix-2 tree has a penalty of 7% in the loosely 
synchronized case and 16% in the strictly synchronized case. Thus we argue that the synchronization semantics of the collective 
also determine the optimal communication topology. 

5 Related Work  
Most of the prior work on collective tuning has been done for distributed memory platforms. This includes both hand-tuning for 
a particular machine[17,4], optimizations for clusters with shared memory nodes[12] and creating new algorithms[8,6]. The 
literature shows that the tuning space is quite large and that automatic tuning (which includes empirical search) is often 
beneficial[16]. In prior work by one of the authors, we presented a novel interface for UPC collectives on BlueGene/L[15]. In 
contrast, the work in this paper is focused on collectives within a single shared memory node, including the highly multi-
threaded Niagara2 architecture. 

Table 2: Time (in s) for 8kB (1k Double) 
Reduction. Best performers for each 

category are highlighted

 

 Barcelona Niagara2

Tree Radix Loose Strict Loose Strict

1 46.4 306 576 3,103

2 52.9 110 621 2,115

4 60.1 119 710 1,774

8 73.8 130 1,316 2,471

16 110 213 2,240 3,998



Automatically searching over a set of optimized versions of an algorithm has become a popular technique used by compiler and 
library developers for computational kernels. That literature is too large to cite here, but includes optimizations of dense and 
sparse linear algebra, spectral transforms, and stencil operations on structured grids. Most of the earlier work on automatic tuning 
work for computational kernels was done on single processors, but more recent work includes multicore systems[11,19,20]. We 
believe the collective communication problem is at least as important as these computational kernels, since collective patterns are 
common in user applications and they stress the most limited features of current and future systems.  

6 Conclusion  
Given the recent limits to clock speed scaling, future performance increases will rely primarily on increasing the number of 
processor cores. As the numbers of cores grow, communication and memory systems that already limit performance will be 
increasingly likely to surface as bottlenecks. By focusing on global communication operations encapsulated in a collective 
communication interface, we measured and tuned some of the most critical execution patterns for future systems. We showed the 
interface considerations were critical, that loosely synchronized operations are up to 4x faster than strictly synchronized ones for 
a fixed communication topology. This identifies a clear performance and productivity trade-off, as the strictly synchronized 
operations are less likely to result in surprising behavior, but are consistently slower. Furthermore, even on relatively small 
shared memory systems, the choice of topology (the communication pattern within the algorithm) is critical to performance, with 
differences as high as 4x between the best and worst topology for a given synchronization mode. In general, the choice of 
optimal algorithm varies with the system, the size of the data being communicated, and the synchronization mode. All of this 
suggests the need for automatic tuning of multicore collectives on today's multicore SMP systems. As the communication 
component of applications continues to become a more significant part of the runtime tuning these operations will take center 
stage to ensure application scalability to the manycore systems of the future. 
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Footnotes 

... used1 
 

A radix ``1'' k-nomial tree is a chain tree.  
... contexts2  

The comparison of performance of the various approaches within a machine is more valid than comparison across 
machines due to the wide variation in the amount of available hardware threads.  

...sec:coll-tune3  
We perform an exhaustive search over the tree topologies and report the best one.  
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