OpenMP

http://www.openmp.org

Parallel Programming with OpenMP
CsCADs Summer Workshop, 2011

Yonghong Yan
http.//www.cs.uh.edu/~hpctools
University of Houston

Acknowledgements: Tim Mattson (Intel), Ruud van der Pas (Oracle)

® 00

UH HPCTools Research Group
http://www.cs.uh.edu/~hpctools

8006

4| >

S http:/ /www2.cs.uh.edu/~hpctools/

Welcome

The High Performance Computing Tools group (HPCTools) is a rese:
Houston. The group was created by Dr. Barbara Chapman who join¢
edge research in compiler and tools for High performance computir
OpenMP ARB committees. Current research areas include:

Compilers and Tools: OpenUH compiler, Dragon Analysis Tool
Parallel Programming Models: Hybrid OpenMP/MPI, OpenMP, |

COPPER Project

Performance Tuning Environments: Selective Instrumentation
Optimization

Compiler Optimization: Wide Area Privitization, Parallel Data
Optimization

Grid Computing, Web Services, Scheduling Policy

Current Projects

4| >

€ http:/ /www2.cs.uh.edu/~hpctools/people/

|Name : Barbara Chapman

|Position : Principle Investigator
Phone : 713-743-3354

|Email : chapman AT cs.uh.edu
|Office : PGH 215
=) |Research Areas : Visit Website
¢ N IProjects : Visit Website

IName : Yonghong Yan

IPosition : Research Assistant Professor
[Phone : 713-743-3384 Office : PGH 204
IEmaiI : yanyh AT cs.uh.edu

tl[Research Areas : Programming Languages and (
Parallel and High Performance Computing, and (
Architectures

Projects : Extreme OpenMP, CAF, OpenUH and e
else

Outline

OpenMP Introduction
Parallel Programming with OpenMP

— Worksharing, tasks, data environment, synchronization
OpenMP Performance and Best Practices
Hybrid MPI/OpenMP

Case Studies and Examples

Reference Materials

What is OpenMP

* De-facto standard API to write shared memory parallel
applications in C, C++, and Fortran

* Consists of:
— Compiler directives
— Runtime routines
— Environment variables

 OpenMP Architecture Review Board (ARB)
— Maintains OpenMP specification
— Permanent members

 AMD, Cray, Fujitsu, HP, IBM, Intel, NEC, PGI, Oracle, Microsoft, Texas
Instruments, CAPS-Entreprise, NVIDIA

— Auxiliary members
* ANL, ASC/LLNL, cOMPunity, EPCC, LANL, NASA, TACC, etc
— http://www.openmp.org
 Version 3.1 released July 2011

OpenMP Components

Directives

Parallel region
Worksharing constructs
Tasking
Synchronization

Data-sharing attributes

Runtime
environment

Number of threads
Thread ID

Dynamic thread
adjustment

Nested parallelism
Schedule

Active levels
Thread limit
Nesting level
Ancestor thread
Team size

Locking

Wallclock timer

Environment
variables

Number of threads
Scheduling type

Dynamic thread
adjustment

Nested parallelism
Stacksize

Idle threads
Active levels

Thread limit

User layer

Prog. Layer
(OpenMP API)

System layer

OpenMP Parallel Computing Solution Stack

Runtime library

0OS/system

OpenMP Syntax

* Most OpenMP constructs are compiler directives using pragmas.
— For C and C++, the pragmas take the form:
#pragma omp construct [clause [clause]...]
— For Fortran, the directives take one of the forms:
* Fixed form
*SOMP construct [clause [clause]...]
CSOMP construct [clause [clause]...]

* Free form (but works for fixed form too)
ISOMP construct [clause [clause]...]

* Include file and the OpenMP lib module
#include <omp.h>
use omp_lib

OpenMP Compiler

* OpenMP: thread programming at “high level”.

— The user does not need to specify all the details
* Assignment of work to threads
* Creation of threads

* User makes strategic decisions

 Compiler figures out details

— Compiler flags enable OpenMP (e.g. —openmp, -
xopenmp, -fopenmp, -mp)

OpenMP Memory Model

private

v All threads have access to the
same, globally shared, memory

v Data can be shared or private

v Shared data is accessible by all
threads

v Private data can only be
accessed by the thread that
owns it

v Data transfer is transparent to
the programmer

v Synchronization takes place,
but it is mostly implicit

OpenMP Fork-Join Execution Model

- Master thread spawns multiple worker threads
as needed, together form a team

- Parallel region is a block of code executed by
all threads in a team simultaneously

Master thread

Worker thread \ A Nested
Parallel

region

Parallel Regions

10

OpenMP Parallel Regions

In C/C++: a block is a single statement or a group of statement
between { }

#pragma omp parallel #pragma omp parallel for
{ for(i=0;i<N;i++) {
id = omp_get_thread _num(); res[i] = big_calc(i);
res[id] = lots_of work(id); Ali] = BJ[i] + res]i];
} }

In Fortran: a block is a single statement or a group of statements
between directive/end-directive pairs.

C$SOMP PARALLEL C$OMP PARALLEL DO
10 wrk(id) = garbage(id) do i=1,N
res(id) = wrk(id)**2 res(i)=bigComp(i)
if(.not.conv(res(id)) goto 10 end do

C$OMP END PARALLEL C$SOMP END PARALLEL DO

Scope of OpenMP Region

A parallel region can span multiple source files.

foo.f

call whoami

CSOMP PARALLEL]
+

CSOMP END PARALLEL

\

lexical
extent of
parallel
region

e

Dynamic extent
of parallel
region includes
lexical extent

bar.f

subroutine whoami
external omp _get thread num
integer iam, omp_get thread _num
iam = omp_get thread num()
C$OMP CRITICAL
print*,” Hello froN
C$OMP END CRITICAL—>

Orphaned directives
can appear outside a
end parallel construct

return

12

OpenMP Worksharing Constructs

* Divides the execution of the enclosed code region
among the members of the team

* The “for” worksharing construct splits up loop
iterations among threads in a team

— Each thread gets one or more “chunk”

#pragma omp parallel
#pragma omp for
for (i=0;i<N; i++) {
work(i);
} By default, there is a barrier at the end of the “omp
for”. Use the “nowait” clause to turn off the barrier.

#pragma omp for nowait

“nowait” is useful between two consecutive,
independent omp for loops.

Worksharing Constructs

Sequential code

OpenMP paralliel
region

OpenMP parallel
region and a
worksharing for
construct

for(i=0;i<N;i++) { a[i] = a[i] + b[i]; }

#pragma omp parallel
{
int id, i, Nthrds, istart, iend:
id = omp_get thread _num();
Nthrds = omp_get num_threads();
istart = id * N / Nthrds;
iend = (id+1) * N / Nthrds;
for(i=istart;i<iend;i++) { a[i] = ali] + bJ[i]; }

#pragma omp parallel
#pragma omp for schedule(static)
for(i=0;i<N;i++) { a[i] = a[i] + b[i]; }

OpenMP schedule Clause

schedule (static | dynamic | guided [, chunk])
schedule (auto | runtime)

static Distribute iterations in blocks of size "chunk" over the
threads in a round-robin fashion

dynamic | Fixed portions of work; size is controlled by the value of
chunk; When a thread finishes, it starts on the next portion of work

guided Same dynamic behavior as "dynamic", but size of the portion

of work decreases exponentially

auto The compiler (or runtime system) decides what is best to use;
choice could be implementation dependent

runtime | Iteration scheduling scheme is set at runtime through
environment variable OMP_SCHEDULE

15

OpenMP Sections

 Worksharing construct

e Gives a different structured block to each

thread #pragma omp parallel
#pragma omp sections
{
#pragma omp section
x_calculation();
#pragma omp section
y_calculation();
#pragma omp section
z_calculation();

}

By default, there is a barrier at the end of the “omp sections”.
Use the “nowait” clause to turn off the barrier.

Loop Collapse

* Allows parallelization of perfectly nested loops
without using nested parallelism

* The collapse clause on for/do loop indicates how
many loops should be collapsed

ISomp parallel do collapse(2) ...
doi=iliu,is
doj=]jl, ju,js
do k = ki, ku, ks

end do
ISomp end parallel do

OpenMP Master

* Denotes a structured block executed by the master
thread

 The other threads just skip it
— no synchronization is implied

#pragma omp parallel private (tmp)
{
do_many_things();
#pragma omp master
{ exchange boundaries(); }
#pragma barrier
do_many_other_things();

}

OpenMP Single

* Denotes a block of code that is executed by
only one thread.

* A barrierisimplied at the end of the single
block.

#pragma omp parallel private (tmp)

{
do_many_things();

#pragma omp single
{ exchange boundaries(); }
do_many_other_things();

OpenMP Tasks

Define a task:
— C/C++: #pragma omp task
— Fortran: 1Somp task

* Ataskis generated when a thread encounters a task
construct or a parallel construct

— Contains a task region and its data environment
— Task can be nested

e A task region is a region consisting of all code
encountered during the execution of a task.

* The data environment consists of all the variables
associated with the execution of a given task.

— constructed when the task is generated

Task completion and synchronization

* Task completion occurs when the task reaches
the end of the task region code

* Multiple tasks joined to complete through the
use of task synchronization constructs

— taskwait int fib(int n) {

. int x, y;
— barrier construct f(n<2) return n;
else {
. #pragma omp task shared(x)
* taskwait constructs: = el
. . #pragma omp task shared(y)
#pragma omp taskwait = fib(n-2);
— !Somp taskwait #pragma omp taskwait

return x +y;

Example: A Linked List

while(my pointer) {

(void) do independent work (my pointer);
my pointer = my pointer->next ;

} // End of while loop

Hard to do before OpenMP 3.0:
First count number of iterations, then
convert while loop to for loop

Example: A Linked List with Tasking

my pointer = listhead; OpenMP Task is specif ed here

#pragma omp parallel (executed in parallel)
! #pragma omp single nowait
while(my pointer)
#pragma omp task ftirstprivate(my_ pointer)
(void) do independent work (my_ pointer);
my pointer = my pointer->next ;

// End of single - no implied barrier (nowait)
} // End of parallel region - implied barrier

Data Environment

 Most variables are shared by default

* Global variables are SHARED among threads

— Fortran: COMMON blocks, SAVE variables, MODULE
variables

— C: File scope variables, static

* But not everything is shared...

— Stack variables in sub-programs called from parallel
regions are PRIVATE

— Automatic variables defined inside the parallel region are
PRIVATE.

OpenMP Data Environment

double a[size][size],
#pragma omp parallel private (1)

{0

shared data
a[size][size]

private data

private data

private data

private data

10

T1

T2

T3 S

b becomes undefined

OpenMP Data Environment

program sort

common /input/ A(10)

integer index(10)
C$OMP PARALLEL

call (index)
C$OMP END PARALLEL

print*, index(1)

A, index and count are
shared by all threads.

is local to each
thread

subroutine (index)
common /input/ A(10)
integer index(*)

real (10)

integer count

A, index, count

A, index, count

Data Environment:
Changing storage attributes

Selectively change storage attributes constructs using
the following clauses

— SHARED

— PRIVATE

— FIRSTPRIVATE

— THREADPRIVATE

The value of a private inside a parallel loop can be
transmitted to a global value outside the loop with

— LASTPRIVATE

The default status can be modified with:
— DEFAULT (PRIVATE | SHARED | NONE)

OpenMP Private

Clause

e private(var) creates a local copy of var for each

thread.
— The value is uninitialized

— Private copy is not storage-associated with the original

— The original is undefined at the end

IS=0

CSOMP PARALLEL DO PRIVATE(IS)

DO J=1,1000
IS =1S&J

IS was not
—nitialized

END DO
MP END PARALLEL DO
print *, 1S \

|S is undefined
here

28

Firstprivate Clause

 firstprivate is a special case of private.
— Initializes each private copy with the corresponding value

from the master thread.

IS=0
CSOMP PARALLEL DO FIRSTPRIVATE(IS)
DO 20 J=1,1000
IS = 1S+ J

20 CONTINUE\
C$OMP END PARALLEL DO Each thread gets its own IS

print *, 1S \ with an initial value of O

Regardless of initialization, IS is
undefined at this point

29

Lastprivate Clause

* Lastprivate passes the value of a private from the last
iteration to the variable of the master thread

IS=0

C$OMP PARALLEL DO FIRSTPRIVATE(IS)
C$OMP& LASTPRIVATE(IS) Are you sure ?
DO 20 J=1,1000

IS =I1S_+ J

20CONTINUE ———— gets its own IS |

C$OMP END PARALLEL DO _ ezl
print *, IS with an initial value of O

\

|S is defined as its value at the last |

iteration (i.e. for J=1000)

30

OpenMP Reduction

e Here is the correct way to parallelize this code.

IS=0
CSOMP PARALLEL DO REDUCTION(+:1S)
DO 1000 J=1,1000

IS=I1S+J
1000 CONTINUE
print *, IS

Reduction implies firstprivate (?)

Reduction operands/initial-values

* Associative operands used with reduction

 |nitial values are the ones that make sense
mathematically

Operand | Initial value Operand | Initial value
+ 0 OR. 0
* 1 MAX 1
- 0 MIN 0
AND. All1's /l All1's

OpenMP Threadprivate

 Makes global data private to a thread, thus crossing
parallel region boundary
— Fortran: COMMON blocks

— C: File scope and static variables

e Different from making them PRIVATE

— With PRIVATE, global variables are masked.
— THREADPRIVATE preserves global scope within each
thread
* Threadprivate variables can be initialized using
COPYIN or by using DATA statements.

Threadprivate/copyin

* You initialize threadprivate data using a copyin
clause.

parameter (N=1000)
common/buf/A(N)
C$OMP THREADPRIVATE(/buf/)

C Initialize the A array
call init_data(N,A)

C$SOMP PARALLEL COPYIN(A)
... Now each thread sees threadprivate array A initialized

... to the global value set in the subroutine init_data()
C$OMP END PARALLEL

C$OMP PARALLEL
... Values of threadprivate are persistent across parallel regions
C$OMP END PARALLEL

OpenMP Synchronization

* High level synchronization:
— critical section
— atomic
— barrier
— ordered

* Low level synchronization
— flush
— locks (both simple and nested)

Critical section

* Only one thread at a time can enter a critical
section.

C$OMP PARALLEL DO PRIVATE(B)
C$OMP& SHARED(RES)
DO 100 I=1,NITERS

B = DOIT()
C$OMP CRITICAL

CALL CONSUME (B, RES)
C$OMP END CRITICAL
100 CONTINUE
C$OMP END PARALLEL DO

36

Atomic

* Atomic is a special case of a critical section
that can be used for certain simple statements

* |t applies only to the update of a memory
location

C$OMP PARALLEL PRIVATE(B)
B = DOIT(l)
tmp = big_ugly();

C$OMP ATOMIC
X =X+temp

C$SOMP END PARALLEL

37

Barrier
 Barrier: Each thread waits until all threads arrive.

#pragma omp parallel shared (A, B, C) private(id)
{

id=omp_get thread _num();
A[id] = big_calc1(id);
#pragma omp barrier
#pragma omp for
for(i=0;i<N:i++){C[i]=big_calc3(l,A)} <
#pragma omp for nowait
for(i=0;i<N;i++){ B[i]=big_calc2(C, i); }

AJid] = big_calc3(id); T~

}\ implicit barrier at the end no implicit barrier
of a parallel region due to nowait

implicit barrier at the
end of a for work-
sharing construct

Ordered

* The ordered construct enforces the sequential
order for a block.

#pragma omp parallel private (tmp)
#pragma omp for ordered
for (i=0;i<N;i++){

tmp = NEAT_STUFF(i);
#pragma ordered

res += consum(tmp);

}

39

OpenMP Synchronization

* The flush construct denotes a sequence point where a
thread tries to create a consistent view of memory.

— All memory operations (both reads and writes) defined prior
to the sequence point must complete.

— All memory operations (both reads and writes) defined after
the sequence point must follow the flush.

— Variables in registers or write buffers must be updated in
memory.
* Arguments to flush specify which variables are

flushed. No arguments specifies that all thread visible
variables are flushed.

A flush example

e pair-wise synchronization.

integer ISYNC(NUM_THREADS)
C$OMP PARALLEL DEFAULT (PRIVATE) SHARED (ISYNC)
IAM = OMP_GET_THREAD_NUM()

ISYNC(IAM) =0
C$OMP BARRIER Make sure. other threads can
CALL WORK() SIS
ISYNC(IAM) = 1/ I’ m all done; signal this to other threads

C$OMP FLUSH(ISYNC)

DO WHILE (ISYNC(NEIGH) .EQ. 0)
C$OMP FLUSH(ISYNC)

END DO \ Make sure the read picks up a
C$OMP END PARALLEL good copy from memory.

Note: flush is analogous to a fence in other shared

memory APlIs.
41

OpenMP Lock routines

* Simple Lock routines: available if it is unset.

omp init lock(), omp_ set lock(),
omp_unset_lock(), omp_test lock(),
omp_destroy_lock()

Nested Locks: available if it is unset or if it is set
but owned by the thread executing the nested
lock function

omp _init_nest _lock(), omp _set nest lock(),

omp_unset_nest _lock(), omp_test nest_lock(),
omp_destroy_ nest_lock()

42

OpenMP Locks

* Protect resources with locks.

omp_lock t Ick;
omp_init_lock(&lck);
#pragma omp parallel private (tmp, id)
{

id = omp_get_thread _num();

tmp = do_lots_of work(id);

omp_set lock(&lck);

printf(“%d %d”, id, tmp);

omp_unset_lock(&lck)

Wait here for
your turn.

_ Release the lock so
' the next thread gets

} a turn.

omp_destroy_lock(&lck);\

Free-up storage when done.

OpenMP Library Routines

* Modify/Check the number of threads

—omp_set num_threads(), omp get num threads(),
omp_get thread num(), omp get max_threads()

* Are we in a parallel region?

—omp_in_parallel()

* How many processors in the system?
—omp_num_procs()

44

OpenMP Environment Variables

e Set the default number of threads to use.
— OMP_NUM_THREADS int_literal

 Control how “omp for schedule(RUNTIME)”
loop iterations are scheduled.

— OMP_SCHEDULE “schedule[, chunk_size]”

Outline

OpenMP Introduction
Parallel Programming with OpenMP

— Worksharing, tasks, data environment, synchronization
OpenMP Performance and Best Practices
Hybrid MPI/OpenMP

Case Studies and Examples

Reference Materials

OpenMP Performance

Relative ease of using OpenMP is a mixed
blessing

We can quickly write a correct OpenMP
program, but without the desired level of
performance.

There are certain “best practices” to
avoid common performance problems.

Extra work needed to program with large
thread count

Typical OpenMP Performance Issues

Overheads of OpenMP constructs, thread
management. E.g.

— dynamic loop schedules have much higher overheads
than static schedules

— Synchronization is expensive, use NOWAIT if possible

— Large parallel regions help reduce overheads, enable
better cache usage and standard optimizations

Overheads of runtime library routines
— Some are called frequently

Load balance
Cache utilization and false sharing

Overhead (Cycles)

Overheads of OpenMP Directives

1400000

1200000

1000000

800000

600000

400000

200000

OpenMP Overheads
EPCC Microbenchmarks

SGl Altix 3600

Number of Threads

64

128

256

ATOMIC

LOCK/UNLOCK

SINGLE

PARALLEL FOR

PARALLEL

B PARALLEL

= FOR

O PARALLEL FOR
B BARRIER

B SINGLE

O CRITICAL

B LOCK/UNLOCK
O ORDERED

B ATOMIC

O REDUCTION

OpenMP Best Practices

* Reduce usage of barrier with nowait clause

#pragma omp parallel

{

#pragma omp for
for(i=0;i<n;i++)

#pragma omp for nowait
for(i=0;i<n;i++)

}

OpenMP Best Practices

#pragma omp parallel private(i)
{
#pragma omp for nowait
for(i=0;i<n;i++)
ali] +=b[i];
#pragma omp for nowait
for(i=0;i<n;i++)
cli] +=d[if;
#pragma omp barrier
#pragma omp for nowait reduction(+:sum)
for(i=0;i<n;i++)
sum += a[i] + c[i];
}

OpenMP Best Practices

* Avoid large ordered construct
* Avoid large critical regions

#pragma omp parallel shared(a,b) private(c,d)

{

#pragma omp critical
{

a += 2%c;

c = d*d;

!
}
Move out this

Statement

OpenMP Best Practices

* Maximize Parallel Regions

#pragma omp parallel #pragma omp parallel
{ {
#pragma omp for #pragma omp for
for (...) { /* Work-sharing loop 1 */ } for (...) { /* Work-sharing loop 1 */ }
}
opt = opt + N; //sequential #pragma omp single nowait
#pragma omp parallel opt = opt + N; //sequential
{
#pragma omp for #pragma omp for
for(...) { /* Work-sharing loop 2 */ } for(...) { /* Work-sharing loop 2 */ }
#pragma omp for #pragma omp for
for(...) { /* Work-sharing loop N */} for(...) { /* Work-sharing loop N */}

} }

OpenMP Best Practices

* Single parallel region enclosing all work-sharing
loops.

for (i=0; i<n; i++)
for (j=0; j<n; j++)
pragma omp parallel for private(k)
for (k=0; k<n; k++) {

—— #pragma omp parallel private(i,j,k)
{
for (i=0; i<n; i++)
for (j=0; j<n; j++)
#pragma omp for
for (k=0; k<n; k++) {

OpenMP Best Practices

 Address load imbalances
e Use parallel for dynamic schedules and
different chunk sizes

Smith-Waterman Sequence
Alignment Algorithm

OpenMP Best Practices

* Smith-Waterman Algorithm
— Default schedule is for static even =2 load imbalance

#pragma omp for

for(...)

for(...)
for(...)
for(...)
{ I* compute alignments */ }

#pragma omp critical

{. I* compute scores */ }

OpenMP Best Practices

Smith-Waterman Sequence Alignment Algorithm
#pragma omp for

BE]

100

nnnnnn Speedup 10

o 2 4 8 16 32 64 128

threads
nsparency ————(———

=n #pragma omp for dynamic(schedule, 1)

S— 100
| v J
|| (e |
m_l?m S p ee d u p 1 0
(1777 E—
Plot | Axes | ColorScale | Render |
[
- 1 : : : : : :
Plot Height G 2 4: 8 16 32 64: 128
[Transparency =il thI‘eadS

128 threads with 80% efficiency

OpenMP Best Practices

* Address load imbalances by selecting the best schedule and
chunk size

* Avoid selecting small chunk size when work in chunk is small.

Overheads of OpenMP For Static Scheduling Overheads of OpenMP For Dynamic Schedule
SGlI Altix 3600 SGI Altix 3600

80000

60000

Cycles)

Cycles

£ 40000
el
3
£ 30000 6 Chunk Size
>
O 20000

10000

1 2 4 8 16 32 64 128 256

OpenMP Best Practices

* Pipeline processing to overlap I/O and
computations

for (i=0; i<N; i++) {
ReadFromkFile(i,...);

for(j=0; j<ProcessingNum; j++)
ProcessData(i, j);

WriteResultsToFile(i)
}

OpenMP Best Practices

Pipeline Processing
Pre-fetches I/O

Threads reading or
writing files joins
the computations

#pragma omp parallel

{
#pragma omp single
{ ReadFromFile(0,...); }

for (i=0; i<N; i++) {
#pragma omp single nowait
{ ReadFromFile(i+1,....); }

#pragma omp for schedule(dynamic)
for (j=0; j<ProcessingNum; j++)
ProcessChunkOfData(i, j);

#pragma omp single nowait
{ WriteResultsToFile(i); }

OpenMP Best Practices

* single vs. master work-sharing

— master is more efficient but requires thread 0 to be
available

— single is more efficient if master thread not available
— single has implicit barrier

OpenMP Best Practices

* Avoid false sharing

— When at least one thread write
to a cache line while others
access it

— Use array padding

iInt a[max_threads];

CPUs

Bl o
==

Caches

Memory

#pragma omp parallel for schedule(static,1)

for(int i=0; i<max_threads; i++)
ali] +=i;

int a[max_threads][cache_line_size];

#pragma omp parallel for schedule(static,1)

for(int i=0; i<max_threads; i++)
a[i][0] +=i;

OpenMP Best Practices

* Data placement policy on NUMA architectures

Processor Processor

T

Local Access
(fast) Cache Coherent <«— Remote Access
(slower)

Interconnect

e First Touch Policy

— The process that first touches a page of memory causes
that page to be allocated in the node on which the
process is running

NUMA First-touch placement/1

afo]

a[§9]

Processor Processor

Cache Coherent
Interconnect

for (i=0; i<100; i++)
a[i] = 0;

First Touch
All array elements are in the memory of
the processor executing this thread

64

NUMA First-touch placement/2

a[0]

a[i9]

Processor Processor

Cache Coherent
Interconnect

a[50]

a[§9]

tpragma omp parallel for num threads(2)

for (1i=0; 1i<100; i++)
a[i] = 0;

First Touch
Both memories each have “their half” of
the array

OpenMP Best Practices

* First-touch in practice
— Initialize data consistently with the computations

#pragma omp parallel for
for(i=0; i<N; i++) {

ali] = 0.0; b[i] = 0.0 ; c][i] = 0.0;
}

readfile(a,b,c);

#pragma omp parallel for
for(i=0; i<N; i++) {

a[i] = bl[i] + ci];
}

OpenMP Best Practices

* Privatize variables as much as possible
— Private variables are stored in the local stack to the thread

Private data close to cache

double a[MaxThreads][N][N] double a[N][N]
#pragma omp parallel for #pragma omp parallel private(a)
for(i=0; i<MaxThreads; i++) { {
for(intj...) for(intj...)
for(int k...) for(int k...)
alilljllk] = ... aljllk] = ...

Example: Hybrid CFD code, MPIXOpenMP

version (1x8)

We find that a single procedure is
responsible for 20% of the total time
the OpenMP version and is 9 times
slower than the MPI version

MPI version (8x1

Example: Hybrid CFD code, MPIXOpenMP

ParaProf: Comparison Window

Loop Timings

File Options Windows Help

Metric: LINUX_TIMERS
Value: Inclusive
Units: seconds

O Clexperimentsigenidlestiopenmpidifi_coeff - Mean
[] Clexperimentsigenidlestimpitdiff_coeff- Mean

215108 [

) . sl
25.635 (11.917%) = diff_coeff__ [file:diff_coefff <21, 2055=]

151.857 [

. - _ -
20,109 (13.242%) [l diff_coefl__ [file:diff_coefff <21, 2055=] => LOOP #133 [file.diff_coefff <128, 2036>]

151.821 |

| i
20,109 (13.245%) [l LOOP #133 [file:dif_coeff.f <128, 2036=]

54.05
2.06(3.812%) |

54.05 [T
206 (3.812%) |

53.89
2,027 (3.762%) |

53.89 [T
2.027 (3.762%) |

11872 [-
2103177179 | LOOP #2 [fle:dif_coefif <154,219-]

LOOP #5 [file:diff_coefff<223, 288=]
LOOP #133 [file:diff_coefff <128, 2036=] == LOOP #5 [file:difl_coefif <223, 288>]
LOOP #8 [file:diff_coefff<292, 356>] —

LOOP #133 [file:diff_coefff <128, 2036=] == LOOP #8 [file:difl_coefif <292, 356>]

11.872 [
2103 (17.717%) |

2408 [i
5,811 (60.110%) [LOOF #101 [fledif_coefif <1483, 1623:)

2408 [
5811 (69.119%) M

5324 [I
2,063 (38.753%) |

LOOP #133 [file:diff_coefff <128, 2036=] == LOOP #2 [file:difl_coefif <154, 219>]

LOOP #133 [file:diff_coefff <128, 2036=]=> LOOP #101 [file:diff_coeflf <1483, 1623=]
LOOP #98 [file:diff_coefff <1471, 1479>]

5324 1 - _ .
2063 (38.753%) | LOOF #133 fle:cif_coefif <128, 2036-] => LOOP #98 [fle:oif_coefif <1471, 1479>]

1303 | -
0617 (47.372%) | LOOP #104 [fle:dif_coefif <1831, 1637>]

1303 || 0p 133 et st <178 2036s] =» | OOP #104 [l coefff <1631 16371 |~

=lolx|

Some loops are 27 times slower in OpenMP (1x8) than
MPI (8x1). These loops contains large amounts of

stalling due to remote memory accesses to the shared heap.

When comparing the metrics between OpenMP and
MPI using KOJAK performance algebra.

Performance Metrics

8509.0 BACK_END_BUBBLE_FE

33.7 BE_FLUSH_BUBBLE_BRU
8595664.7 BE_FLUSH_BUBBLE_XPN
156.7 BE_L1D_FPU_BUBBLE_L1D
559.1 BACK_END_BUBBLE_ALL

606.3 CPU_CYCLES

484.7 1464_INST_RETIRED_THIS

592.0 LINUX_TIMERS

912.7 NOPS_RETIRED

672.4 BE_EXE_BUBBLE_ALL

40452.9 BE_FLUSH_BUBBLE_ALL
138.6 BE_L1D_FPU_BUBBLE_ALL

55.1 BE_RSE_BUBBLE_ALL

565.8 FE_BUBBLE_ALL

60.4 BE_RSE_BUBBLE_OVERFLOW
6556.8 FE_BUBBLE_ALLBUT_IBFULL
52.5 BE_RSE_BUBBLE_UNDERFLOW
27395.1 L2_INST_DEMAND_READS
220.2 L2_DATA_REFERENCES_L2_AL
86.9 L3_REFERENCES

76.5 LZ_INST_PREFETCHES

65.7 BE_L1D_FPU_BUBBLE_L1D_FULL
138.5 BE_L1D_FPU_BUBBLE_L1D_LZB
92.9 L2_MISSES

314.5 L2_REFERENCES

3.1 BE_L1D_FPU_BUBBLE_FPL

166.3 BE_L1D_FPU_BUBBLE_L1D_DCl
231.0 BE_L1D_FPU_BUBBLE_L1D_STE
1143.6 BE_L1D_FPU_BUBBLE_L1D_TL
2102.2 ITLB_MISSES_FETCH_ALL
525.6 L2DTLB_MISSES

80.7 L3_MISSES

7619.1 FE_BUBBLE_BRANCH

897.4 FE_BUBBLE_BUBBLE

149635.3 FE_BUBBLE_FEFLUSH
9811.3 FE_BUBBLE_IMISS

582.0 BE_EXE_BUBBLE_FRALL
8655.9 BE_EXE_BUBBLE_GRALL

| [E 166 BE_EXE_BUBBLE_GRGR

We found:

Large # of:

Exceptions
Flushes
Cache Misses
Pipeline stalls

000D OEd0DDOEdE D OEE 000D D0 0000 DD 0000 Dod

OpenMP Best Practices

* CFD application psudo-code
— Shared arrays initialized incorrectly (first touch policy)

— Delays in remote memory accesses are probable causes by
saturation of interconnect

procedure diff_coeff() {
array allocation by master thread
initialization of shared arrays

PARALLEL REGION

{
loop lower_bn [id] , upper_bn [id]

computation on shared arrays

OpenMP Best Practices

* Array privatization
— Improved the performance of the whole program by 30%
— Speedup of 10 for the procedure, now only 5% of total time

* Processor stalls are reduced significantly

Privatized (P) Versions of diff_coeff

Stall Cycle Breakdown for Non-Privatized (NP) and

Instruction
miss stall
FLP Units

0
©
8
2]
<
[9)
@
?
[a]

Branch
misprediction

5.00E+10
450E+10
4:00E+10 1
w 3.50E+10 - BNP
2 300E+10 1
G 2.50E+10 - oP
> 200E+10
1.50E+10 - 8 NP-P
1.00E+10 -
5.00E+09 -
0.00E+00 -

OpenMP Best Practices

Avoid Thread Migration
— Affects data locality

Bind threads to cores.
Linux:

— numact!| —cpubind=0 foobar
— taskset —c 0,1 foobar

SGI Altix

— dplace —x2 foobar

OpenMP Source of Errors

Incorrect use of synchronization constructs

— Less likely if user sticks to directives
— Erroneous use of NOWAIT

Race conditions (true sharing)
— Can be very hard to find

Wrong “spelling” of sentinel
Use tools to check for data races.

Outline

OpenMP Introduction
Parallel Programming with OpenMP

— Worksharing, tasks, data environment, synchronization
OpenMP Performance and Best Practices
Hybrid MPI/OpenMP

Case Studies and Examples

Reference Materials

Hybrid MPI/OpenMP

e Good for:

— MPI communication overhead can be reduced by
using OpenMP within the node, exploiting shared
data

— Application with two levels of parallelism

— Application with unbalanced work load at the
MPI level.

— Application with limited # of MPI processes.

Hybrid MPI/OpenMP

Not Good for:

— When MPI library implementation doesn’ t
support threads.

— Application with one level of parallelism, no
need for hierarchical parallelism.

— OpenMP is not written correctly, introducing
its drawbacks.

— Implementation of OpenMP is not scalable.
 Compiler dependent.

MPI Thread Support

MPI_INIT_THREAD (required, provided, ierr)

— IN: required, desired level of thread support (integer).

— OUT: provided, provided level of thread support (integer).
— Returned provided maybe less than required.

MPI_THREAD_SINGLE: Only one thread will execute.

MPI_THREAD_FUNNELED: Only main thread makes MPI
calls

— all MPI calls are “funneled" to main thread

MPI_THREAD_SERIALIZED: multiple threads may make
MPI calls, but only one at a time

— MPI calls are not made concurrently from two distinct
threads

MPI_THREAD_MULTIPLE: Multiple threads may call MPI,
with no restrictions.

Hybrid MPI/OpenMP

If MPI_THREAD_SERIALIZED is supported

OMP_BARRIER is needed since OMP_SINGLE only guarantees
synchronization at the end.

It also implies all other threads are sleeping!

I$SOMP BARRIER
I$SOMP SINGLE

call MPI_xxx(...)
ISOMP END SINGLE

Overlap COMM and COMP

If MPI_THREAD FUNNELED is supported

While master or single thread is making MPI calls, other
threads are performing work.

Must be able to separate codes that can run before or after
halo info is received.

ISOMP PARALLEL
if (my_thread_rank < 1) then
call MP1_xxx(...)
else
do some computation
endif
ISOMP END PARALLEL

Hybrid MPI/OpenMP

e |f MPI_THREAD_ MULTIPLE is supported
* Good to overlap computations and communication.

ISOMP PARALLEL
If (thread_id .eq. id1) then
call mpi_routine1()
else if (thread_id .e.q. id2) then
call mpi_routine2()
else
do_compute()
endif
ISOMP END PARALLEL

Genl|DLest Hybrid 1x8 vs. 8x1

w M = C QA M o 0 =

Timings and Improvements of GenlIDLest

pc

7.52

restart_read

pc_implicit

matxvec_implct

diff_coeff

mpi_sendrecv_ko

8.27

10.881

11.096

13938
B MPI Version

B OpenMP version(Optimized)

W OpenMP Version (original)

*Pure MPI faster 16%
than pure OpenMP but
OpenMP uses 30% less
memory. Reason: Need
to merge more parallel
regions and reduce
synchronization.

*Other hybrid
configurations may
benefit from reduced
communication and less
memory footprint.

2x4, 4x2

30.078

10

15 20

Exclusive time (Seconds)

25

30 35

Less Communication with OpenMP: Required replacing send/recv buffers with

direct memory copies

Remarks

Important to use OpenMP Best Practices strategy to achieve
good performance

Data locality is extremely important for OpenMP
— Privatization or Implicit Data Placement.

Important to reduce synchronizations
Hybrid MPl/OpenMP

— Uses less memory

— Reduces MPI communication overhead.

Outline

OpenMP Introduction
Parallel Programming with OpenMP

— Worksharing, tasks, data environment, synchronization
OpenMP Performance and Best Practices
Hybrid MPI/OpenMP

Case Studies and Examples

Reference Materials

A 3D matrix update

do k =2, n
do j =2, n
!Somp parallel do default(shared) private(i) &
!Somp schedule (static)
doi=1, m
x(i,j,k) = x(i,j,k-1) + x(i,j-1,k) *scale

end do
ISomp end parallel do
end do
end do
A

Q The loops are correctly nested for KT Data Dependency Graph

serial performance

kl-———.———. :

Q0 Due to a data dependency on J and "’:

K, only the inner loop can be k-1

Q This will cause the barrier to be

parallelized ;"'”‘
executed (N-1) ? times '

84

The performance

Performance (MF op/s)

350 Scaling is very poor

300 Inner loop over | has (as to be expected)
been parallelized

250

200

150

100

50

0 10 20 30 40 50 60

Number of threads

Dimensions : M=7,500 N=20
Footprint : ~24 MByte

85

Performance analyzer data

Name . Excl. User Incl. Excl.
Using 10 threads CPU User CPU Wall
sec. % sec. sec.
<Total> 10.590 100.0 10.590 1.550
__mt EndOfTask Barrier 5.740 54.2 5.740 0.240
~_mt_WaitForWork —> 3.860 36.4 3.860 0.
__mt MasterFunction_ 0.480 4.5 0.680 0.480
MAIN —~ 0.230 2.2 1.200 0.470
block 3d -- MP doall from line 14 [$dlAl4 = 3] 0.170 1.6 5.910 0.170¢—
block 3d e © 0.040 0.4 6.460 0.040 »
memset Q¥ 0.030 0.3 0.030 0.080 0
c® 9
. 02 3
Name Us’ng 20 threads b (1 Excl. User Incl. Excl. P
Q CPU User CPU Wall o
" sec. % sec. sec. 5
<Total> 47.120 100.0 47.120 2.900 D
__mt EndOfTask Barrier 5 25.700 54.5 25.700 0.980 §
__mt WaitForWork _ 19.880 42.2 19.880 0. >
__mt MasterFunction__ 1.100 2.3 1.320 1.100 &)’
MAIN 0.190 0.4 2.520 0.470
block_3d_ -- MP doall from line 14 [_$dlAl4.block 3d] 0.100 0.2 25.800 0.100 ¢
__mt _setup doJob_int 0.080 0.2 0.080 0.080
__mt setup job 0.020 0.0 0.020 0.020
block 3d 0.010 0.0 27.020 0.010

Question: Why is __mt_WaitForWork so high in the prof le ?

False sharing at work

!Somp parallel do default(shared) private(i) &
!Somp schedule(static)
doi=1, m
x(i,j,k) = x(1i,3,k-1) + x(i,j-1,k) *scale
end do
!Somp end parallel do

P=1 P=2 P=4 P=8

- }

False sharing increases as
<@==m We increase the number of
threads

no sharing
<> . <>
I e

87

Sanity check: set M=75000*

File View Timeline Selected FunctionfLoad-Object: 12 [_#1%mf doall0_ #$2klock_3d $fl4fomp block_2d_+1%_1 Help

 [m]E]m] Find | Text: [-][a][]

<0 || 0% = ﬁ || = || Data for Current Timeline Selection
. 44 .4 44 5 44 6 447 443 44.9 Event Type: filing Data
Ex 1 = Leaf Function: __ mt EndofT
i [I | enestamp s - oo

L MR NEN RN nnn e | LIRS |2
S HHH T H B S H Theesd: 2

03

CPU: | iunknown)

2
Duration (msec.): 10.000
e AR R R R R R RN RN RN Rinninninniniintil

Micro State: Uzexr CFU

Call Stack for Selected Event

_ mt_EndXfTask_Barrier_
block_2d_ -- MP deall from line 14 [_
_ mt_SlaveFunction_

_lwp_start

[4]

K

Only a very few barrier calls now

*) Increasing the length of the loop should decrease false sharing
88

Performance (Mf op/s)

Performance compared

20 30 40 50 60

Number of threads

For a higher value of M, the
program scales better

89

Observation

K 4 Q0 No data dependency on 'I'
Q Therefore we can split the 3D
---------- Q-»-: matrix in larger blocks and
rocess these in parallel
__________ ,.*’ N ‘ p p
4 i
............ :___.., i
i i o —
I !
- .
do k = 2, n
do j =2, n
do i =1, m
x(1i,3,k) = x(1,3,k-1) + x(1,J-1,k) *scale
end do
end do

The idea

QO We need to distribute the M
iterations over the number
of processors

0 We do this by controlling
the start (I1S) and end (IE)
value of the inner loop

K

j o Each thread will calculate
these values for it's portion

of the work
do k = 2, n
do j =2, n
do 1 = is, 1ie
x(1,3,k) = x(1,3,k-1) + x(1i,3-1,k) *scale
end do
end do
end do

The first implementation

use omp 1lib

!Somp parallel default (none)é&
ISomp private (P,is,ie) &

!Somp shared

= mod (m,nthreads)
= (m-nrem)/nthreads

end do
end do
end do

subroutine kernel (is,ie,m,n,x,scale)

ie

x(i,j,k)=x(i,j,k-1)+x(i,j-1,k)*scale

(nrem,nchunk,m,n,x, scale)

P

omp get thread num()

if (
is
ie
else
is
ie

P

< nrem) then
1 + P*(nchunk + 1)
is + nchunk

1 + P*nchunk+ nrem
is + nchunk - 1

end if
call kernel(is,ie,m,n,x,scale)

!Somp end parallel

OpenMP version

use omp lib

implicit none

integer :: is, ie, m, n
real (kind=8):: x(m,n,n), scale
integer 01, 3, k

!Somp parallel default(none) &
!Somp private(i,j,k) shared(m,n,scale, x)
do k =2, n
do j =2, n
ISomp do schedule(static)
do i1 =1, m
x(i,j,k) = x(i,3j,k-1) + x(1i,j-1,k) *scale
end do
ISomp end do nowait
end do
end do
!Somp end parallel

Thread 0 Executes:

How this works

Thread 1 Executes:

k=2 parallel region k=2
j=2 j=2
do i = 1,m/2 . do i = m/2+1,m
x(i,2,2) = work sharlng x(1i,2,2) = ...
end do end do
=2 parallel region k=2
j= j=

do i=1,m/2
x(1i,3,2)
end do

work sharing

do i = m/2+1,m
x(1,3,2) = ...
end do

. etc ..

. etc ..

Performance

a We have set M=7500 N=20

e This problem size does not scale at all when we
explicitly parallelized the inner loop over 'I'

Q We have have tested 4 versions of this program

e Inner Loop Over 'I' - Our F rst OpenMP version

e AutoPar - The automatically parallelized version of
'kernel’

e OMP_Chunks - The manually parallelized version
with our explicit calculation of the chunks

e OMP_DO - The version with the OpenMP parallel
region and work-sharing DO

95

Performance (Mf op/s)

Performance

2500

2000

1500

OMP Chunks

1000

The auto-parallelizing
compiler does really well !

500

4

0
0

% Innerloop

10 20 30 40 50 60

Number of threads

96

Matrix times vector

for (i=0; i<m; i++)
{
a[i] = 0.0;

for (j=0; j<n; J++)
af[i] += b[i]l[j]l*c[3]]:

}

> |

#pragma omp parallel for default (none) \
private(i,]j) shared(m,n,a,b,c)

for (i=0; i<m; i++)
{
a[i] = 0.0;

for (j=0; j<n; J++)
a[i] += b[i][j]*c[]]:

}

> |

—-

Performance — 2-socket Nehalem

Performance (Mflop/s)

35000

30000

25000

20000

15000

10000

5000

%1 Thread
=#=2 Threads
V"4 Threads
-8 Threads
®=16 Threads

Speed-up is ~1.6x

only

‘-..

10 100 1000 10000
Memory Footprint (KByte)

A mgm
100000

L 4

1000000

98

2-socket Nehalem

hw thread 0
® -_m{hw thread 1
> G hw thread 0 ¢
qE, ° hw thread 0 %
b hw thread 0
hw thread 0
> S hw thread 0 ¢
qE, ° hw thread 0 %
E | S -_m{hwthreaﬂ =
s hw thread 0
-_m{ hw thread 1

10

11

12

13

14

15

Data initialization

#pragma omp parallel default(none) \
shared(m,n,a,b,c) private(i, j)
{
#pragma omp for
for (j=0; j<n; Jj++)
c[j] =1.0;

> |

#pragma omp for
for (i=0; i<m; i++) v
{ i
af[i] = -1957.0;
for (j=0; j<n; Jj++)
b[i[]]] = 1;
} /*-- End of omp for --*/

} /*-- End of parallel region --*/

100

Exploit First Touch

Performance (Mflop/s)

35000

30000

25000

20000

15000

10000

5000

%1 Thread
~%-2 Threads
V"4 Threads
& 8 Threads
=16 Threads

NN R
Jf.-“
100 1000 10000 100000 1000000

Memory Footprint (KByte)

101

Reference Material on OpenMP

* OpenMP Homepage www.openmp.org:

— The primary source of information about OpenMP
and its development.

* OpenMP User’s Group (cOMPunity) Homepage

— WWW.compunity.org:

e Books:

— Using OpenMP, Barbara Chapman, Gabriele Jost,
Ruud Van Der Pas, Cambridge, MA : The MIT Press
2007, ISBN: 978-0-262-53302-7

— Parallel programming in OpenMP, Chandra, Rohit,
San Francisco, Calif. : Morgan Kaufmann ; London :
Harcourt, 2000, ISBN: 1558606718

OpenMP

http:/www.openmp.org

OMP

http://www.compunity.org

103

