

2| Computing, threads, and OpenMP
ant constructs of OpenMP
lces for optimizations
MP Applications

]-;Ile Edit ;{iew ng.icry_ Bc_)ol-cmarks Ic_)ols Help

% - @

2 |[] http:lfopenmp.argiwp/

IS !]Q'!GUL‘IQ|E‘

etting ed [llatest Headlihes Developer Guide
& Getting Started Latest Headli “|Devel Guid

| | OpenMP.crg]

OpenMF

R s OpenMP News

»Christian's First Experiments with Tasking in OpenMP 3.0
What's Here:

From Chrstian Terboven's blog:

» AP| Specs

»About OpenMP.org OpenMP 3.0 s out, maybe a bit later than we hoped for, but | think that we got a solid

»OpenMP Compiers standard document, Al IWOMP 2008 a couple of weeks ago, there was an OpenMP

»0penMP Resources tutorial which included a talk by Alex Duran (from UPC in Barcelona, Spain) on whal

#OpenMP Forum Is new In OpenMP 3.0 - which s really worh a look! My talk was on some OpenliP
applicalion experences, including a case study on Windows, and | really think that
many of our codes can profit from Tasks. Motivated by Alex’ talk | tried the updated

lnput Rgg[gtgr Manos compiler and prepared a couple of examples for my lectures on FParallel

Programming in Maastricht and Aachen. In this post | am walking through the

Mlart the OpenMP.arg
simplest one: Computing the Fibonacci number in parallel.

webmaster aboul new
products orupdates and we'll
postit here.
»WeEbmasterf@openmp.org

Search OpenMP.org

Read more...
Posted on June 6, 2008

s»New Forum Created

Seamhl The OpenMP 3.0 AP| Specifications forum is now apen fardiscussing the spacs document itself
Archives Posted on May 31, 2008

o Jung 2008

o May2008 »New Links

o April 2008

New links and information have been added to the OpenMP Compilers and the OpenMP
Resources pages.

Admin Posted on May 23, 2008

o Lagin
»Recent Forum Posts

Copyright @200_8 OpeniP e strange behavior of C function strempl) With OPENMP
Architecture Review Board. All e virtual destructor not called with first private clause

rinhts_resened A P PR T al

THE OPENMP API SPECIFICATION FOR PARALLEL PROGRAMMING

http:/lwww.openmp.org

OpenMP.org

The OpenhP Application
Program Inierface (AP1)
supports multi-platfarm
shared-memory parallel
programming in C/C++and
Fortran. OpanMP is a portabile,
scalable model with a simple
and flexibla intarface for
deweloping parallel
applications on platforms from
the desktop lo the
Supercomputer.

wReoad about OpenMP

Getlt
»OpenMP specs

Use It
»0penMP Compilers

Learn It

Done

OpenMP: An API for Writing Multithreaded
Applications

=A set of compiler directives and library
routines for parallel application programmers

=Greatly simplifies writing multi-threaded (MT)
programs in Fortran, C and C++

=Standardizes last 20 years of SMP practice

aller may not be able to do the
q In the way you like to see it:

o parallelism

ace analysis is not able to
afe to parallelize or not

0 parallelize at the

ormance and scalability

re standard

portable
ger of compilers

ning effort

grovides thread programming

2d to specify all the details

2 means to:
Rstroy threads

ared and which

on shared

a shared memory model.
amunicate by sharing variables.

ects data conflicts.

od to minimize the

Parallelism:
2ad spawns a team of threads as needed.

dlded incrementally until desired
ieved: i.e. the sequential program
Qrogram.

A Nested
Parallel
region

Directives, . Environment
OpenMp library ||E"Vironme

Runtime library

OS/system support for shared memory.

P qur¢\||l|e|| Regions:

a block s a smgle statement or a group of
otween brackets {}

#pragma omp parallel #pragma omp parallel for
{ for(1=0;1<N; 1++){
Id = omp_thread_num(); res[l] = big_calc(l);
res(id) = lots_of_work(id); A[l] = B[I] + res[l];

nent or a group of

C$OMP PARALLEL DO
do I=1,N
res(l)=bigComp(l)
end do
C$OMP END PARALLEL DO

C$OMP PARALLEL

10 wrk(id) = garbage(id)
res(id) = wrk(id)**2
if(.not.conv(res(id)) goto 10

C$OMP END PARALLEL

ope of OpenMP consfructs:

ructs can span multiple source files.

bar.f
foo.f

C$OMP PARALLEL
call whoami
C$OMP END PARALLBS

subroutine whoami
external omp_get thread num
integer iam, omp_get_thread num
lam = omp_get_thread _num()
C$OMP CRITICAL
print*,’"Hello froN
C$OMP END CRITICAL——> N
Orphan directives

can appear outside a
end parallel region

return

’ \Work-Sharing construct splits up
jons among the threads in a

#pragma omp parallel
#pragma omp for
for (1=0;I<N;l++){
work(l);

By default, there is a barrier at the end of the
“omp for”. Use the “nowait” clause to turn off
the barrier.

#pragma omp for

“nowait” is useful between two consecutive,
independent omp for loops.

A TS

Sequential code for(i=0;1<N;i++) { a[i] = a[i] + b[i];}

OTIV ||l| | ©XAM ,-\

#pragma omp parallel

{

O VP lel int id, i, Nthrds, istart, iend;
id = omp_get thread _num();

Nthrds = omp_get num_threads();

istart = id * N / Nthrds;

iend = (id+1) * N / Nthrds;
for(i=istart;l<iend;i++) { a[i] = ali] + D[i];}

OpenMP parallel #pragma omp parallel

region and a #pragma omp for schedule(static)
work-sharing for- for(i=0;I<N;i++) { a[i] = a[i] + bJi];}
construct

he OpenMP API
MP For/Do schedule clause

Schedule Clause

When To Use

STATIC

Pre-determined and
predictable by the
programmer

'

DYNAMIC

Unpredictable, highly
variable work per
iteration

GUIDED

Special case of dynamic

to reduce scheduling
overhead

Least work at
runtime :
scheduling
done at
compile-time

Most work at
runtime :
complex
scheduling
logic used at
run-time

Rrations. The size of
D size “chunk” as

500 iterations on 4 threads

guided, _

AR 0 04
A
+-+H-H-HHH-H

ICTL R Ay e nunninl
-HH-H-H-HHH- - HHH

Thread ID

— dynamic, 5 AR
(AR

o B N W o R N Ww OB N W

_ 1
static
T

T T T T T T
0 100 200 300 400 500

Iteration Number

1
600

or runtime system) decides

alementation

® : tlons Work sharlng construct
ifferent structured block to

~

#pragma omp parallel
#pragma omp sections

{

#pragma omp section
X_calculation();
#pragma omp section
y_calculation();
#pragma omp section
z_ calculation();

By default, there is a barrier at the end of the “omp
sections”. Use the “nowait” clause to turn off the barrier.

MP Master

sl R R PO AR A i R, TEWN W IR
| w e A0 NE 3 ! 18 !
¥ . | | L 2 ‘fl
b et ! L L N L 4 . -

er construct denotes a structured
uted by the master thread. The
lJust skip it (no synchronization

#pragma omp parallel private (tmp)
{
do_many things();
#pragma omp master
{ exchange boundaries(); }
#pragma barrier
do_many_other_things();

}

P Single
3 Constructs

s constrlllj"ct denotes a block of
8. executed by only one thread.

ilod at the end of the single

#pragma omp parallel private (tmp)

{
do_many things();

#pragma omp single
{ exchange boundaries(); }
do_many_other_things();

construct defines an explicit

#pragma omp task [clause][,] clause] ...]

{
}

do_a task();

where clause is one of the following:
if(scalar-expression)
‘untied
«default(shared | none)
private(list)
firstprivate(list)
shared(list)

hread barrier

ad barrier
Oomp barrier

void increment_list_items(node * head)

{

#pragma omp parallel

{

#pragma omp single

{

node * p = head;

while (p) {
#pragma omp task /Il p is firstprivate by default

process(p);
P = p->next;

Hard to do before
OpenMP 3.0

Encountering
thread adds
task to pool

Threads execute
tasks in the pool

Developer specifies tasks in application
Run-time system executes tasks

iod by default

A executed always by the same

eduling restrictions
g points (creation,

deadlock problems
ance problems

Ise to lift all

i
oS
C C
° 8
o O
Q C
£

SYSE)} pPaljun pue mau
$YsE} pan -
SYSE} PaljUN pue Mau
SHSE] pal} —
SYSe} paljun pue mau —m
SHSE] pal} —
SYSE} Paiun pue mau =
SHSE] pal} —-

assion of a IF clause evaluates

g task Is suspended

s executed immediately

D synchronization

IS a key performance factor
De fine-grained
together

al transformations

3-way parallel

9-way parallel

3-way parallel

Master
Thread

Outer parallel region

Nested parallel region

Outer parallel region

Note: nesting level can
be arbitrarily deep

ory programming model.
2s are shared by default

are SHARED among threads
ocks, SAVE variables, MODULE

gl from parallel

Shared Data

Private Private Private Private Local copies

Data Data Data _—"ofb
b'=? = b= ’

double
#pragma omp parallel private(b)

[..

consistency, shared-memory model|
ave access to a “main memory” and its
” view of memory for shared data

BN be any intervening structure between
emory, e.g. cache, registers, or other

emporary view and main memaory
ecified by user

Temp View

Temp View

private g

private @

program sort
common /input/ A(10)

integer index(10)
C$OMP PARALLEL

call work(index)
C$OMP END PARALLEL

print*, index(1)

A, index and count are
shared by all threads.

temp is local to each
thread

subroutine work (index)
common /input/ A(10)
integer index(*)

real temp(10)

integer count

save count

| 'electlvely Change storage attributes
iing the following clauses*

All the clauses on this page
only apply to the lexical extent
of the OpenMP construct.

® parallel loop can be
iside the loop with:

All data clauses apply to parallel regions and worksharing constructs excep
“shared” which only applies to parallel regions.

) creates a local copy of var for each

B uninitialized
I8 NOt storage-associated with the original
cfined at the end

program wrong
IS=0
C$OMP PARALLEL DO PRIVATE(IS)

DO J=1,1000 S t
IS=1S+J was no

END DO initialized
print *, IS

IS is undefined
here

a special case of private.

private copy with the corresponding
master thread.

program almost_right
IS=0
C$OMP PARALLEL DO FIRSTPRIVATE(IS)
DO J=1,1000
IS=IS+J Each thread gets its own IS

1000 CONTINUE with an initial value of O
print *, IS

Regardless of initialization, IS is
undefined at this point

nasses the value of a private from the
D a global variable.

program closer

IS=0
C$OMP PARALLEL DO FIRSTPRIVATE(IS)
C$SOMP& LASTPRIVATE(IS)

DO J=1,1000 Each thread gets its own IS

IS=IS +J . L
1000 CONTINUE with an initial value of O

print *, IS

IS is defined as its value at the last
iteration (l.e. for J=1000)

t way to parallelize this code.

program closer
IS=0
C$OMP PARALLEL DO REDUCTION(+:1S)
DO J=1,1000
IS=1S +J
1000 CONTINUE
print *, IS

] Fom e N 5 4
- 3 »d

b Of associative operands can be

aduction:
o the ones that make sense

Operand | Initial value
h |

1

Qles are masked.
pbal scope within each

lize threadprivate data using a copyin clause.

parameter (N=1000)
common/buf/A(N)
C$OMP THREADPRIVATE(/buf/)

C Initialize the A array
call init_data(N,A)

C$OMP PARALLEL COPYIN(A)
... Now each thread sees threadprivate array A initialied

... to the global value set in the subroutine init_data()
C$OMP END PARALLEL

C$OMP PARALLEL
... Values of threadprivate are persistent across parallel regions
C$OMP END PARALLEL

end

read has its

o| synchronization:

tion

i i
o oF W W e o =y S
I | Al -i 1]

- Ve h e

C$OMP PARALLEL DO PRIVATE(B)
C$OMP& SHARED(RES)
DO 100 I=1,NITERS

B = DOIT(I)
C$OMP CRITICAL

CALL CONSUME (B, RES)
C$OMP END CRITICAL
100 CONTINUE

a special case of a critical section
o used for certain simple

A the update of a memory
ate of X in the following

C$OMP PARALLEL PRIVATE(B)
B = DOIT(l)

tmp = big_ugly();

C$OMP ATOMIC
X=X+temp

C$OMP END PARALLEL

ronization
L Fach thread waits until all threads

#pragma omp parallel shared (A, B, C) private(id)
{

id=omp_get_thread num();

Alid] = big_calc1(id); implicit barrier at the

end of a for work-

#pragma omp barrier _
sharing construct

#pragma omp for
for(i=0:i<N:i++){C[i]=big_calc3(l,A):} <

#pragma omp for nowait =
for(i1=0;i<N;i++){ B[i]=big_calc2(C, 1); }
Afid] = big_calc3(id): ™S

implicit barrier at the end no implicit barrier
- due to nowait

L L
- e | R g o7 o0 g
81 il ']
| ~d = Ly

ored construct enforces the
order for a block.

#pragma omp parallel private (tmp)
#pragma omp for ordered
for (1=0;I<N;I++){
tmp = NEAT_STUFF(I);
#pragma ordered
res += consum(tmp);

}

|t construct specifies a wait
otion of child tasks
A the beginning of the

#pragma omp taskwait

void traverse(struct node *p) {
If (p->left)
#pragma omp task // p is firstprivate by
default
traverse(p->left);,
If (p->right)
#pragma omp task // p is firstprivate by
default
traverse(p->right);

[ask Example: postorder free
laverse

void traverse(struct node *p) {
If (p->left)
#pragma omp task // p is firstprivate by
default
traverse(p->left);,

If (p->right)
#pragma omp task // p is firstprivate by
default

traverse(p->right);
#pragma omp taskwait

, {0 create a consistent view of memory.

gerations (both reads and writes) defined
RNce point must complete.

0s (both reads and writes) defined

it must follow the flush.
R buffers must be updated in

all thread visible

le shows how flush is used to implement
ronization.

integer ISYNC(NUM_THREADS)
C$OMP PARALLEL DEFAULT (PRIVATE) SHARED (ISYNC)
IAM = OMP_GET_THREAD_NUM()

ISYNC(IAM) =0 Make sure other threads can

C$OMP BARRIER see my write
CALL WORK() / '
1/

ISYNC(IAM) =
C$OMP FLUSH(ISYNC)

DO WHILE (ISYNC(NEIGH) .EQ. 0)
C$OMP FLUSH(ISYNC)

END DO IRl \iake sure the read picks up a
C$OMP END PARALLEL good copy from memory.

m all done; signal this to other threads

Note: OpenMP’s flush is analogous to a fence in
other shared memory API’s.

aple Lock routines:
yle lock is avallable if it Is unset.

Init_lock(), omp_set lock(),
set lock(), omp_test lock(),

If it is unset or if it is set but
ting the nested lock

et nest _|lock(),

o tect resources with locks.

omp_lock t Ick;
omp_init_lock(&lck);
#pragma omp parallel private (tmp, id)
{
id = omp_get thread num();
tmp = do_lots_of work(id);
omp_set_lock(&Ick);
printf(“%d %d”, id, tmp);
omp_unset_lock(&lck); _

Walit here for
your turn.

Release the lock
so the next thread

} gets a turn.
omp_destroy lock(&Ick);

Free-up storage when done.

ne environment routines:
Check the number of threads

num_threads(),
ALim_threads(),

Jefault number of threads to use.
M_THREADS int_literal

ROP Iterations are

hunk_size]”

easy of OpenMP is a mixed

write a correct
yut the desired

gractices” to

geads of OpenMP constructs, thread

loop schedules have much higher
static schedules

expensive, use NOWAIT if possible
R |ibrary routines

Overhead (Cycles)

1400000

1200000

1000000

800000

600000

400000

200000

OpenMP Overheads
EPCC Microbenchmarks
SGI Altix 3600

——y Ay Sy =5
_—— @z z— 42— ATOMIC
e . G S 4
—_— @y —— 2 LOCK/UNLOCK
ey £ v g &=
ARy A A 4O SINGLE

PARALLEL FOR

PARALLEL
8 16 32 64 128 256
Number of Threads

m PARALLEL
= FOR

0 PARALLEL FOR
= BARRIER

m SINGLE

o CRITICAL

B LOCK/UNLOCK
= ORDERED
m ATOMIC

= REDUCTION

ge of barrier with nowait

#pragma omp parallel

{

#pragma omp for
for(i=0;i<n;i++)

#pragma omp for nowait
for(i=0;i<n;1++)

}

#pragma omp parallel private(i)
{
#pragma omp for nowait
for(i=0;i<n;i++)
all] +=b[i];
#pragma omp for nowait
for(1=0;i<n;i++)
c[i] +=d[i];
#pragma omp barrier
#pragma omp for nowait reduction(+:sum)
for(i=0;i<n;i++)
sum += a[i] + c|i];

}

Ordered Construct
itical Regions

#pragma omp parallel shared(a,b) private(c,d)

#pragma omp critical

{
a += 2*C: Statement
c = d*d;

Move out this

arallel Regions

#pragma omp parallel
#pragma omp parallel {
{ #pragma omp for
#pragma omp for for (...){ /*Work-sharing loop 1 */}
for (...){ /*Work-sharing loop 1 */} }
} #pragma omp single nowait
opt = opt + N; //sequential opt = opt + N; //sequential
#pragma omp parallel
#pragma omp for #pragma omp for
for(...) { /* Work-sharing loop 2*/} for(...) { /* Work-sharing loop 2 */ }

#pragma omp for #pragma omp for
for(...) { * Work-sharing loop N */} for(...) { /* Work-sharing loop N */}
} }

Avoid parallel region overheads

#pragma omp parallel private(i,j,k)

{

for (I=0; i<n; 1++) for (i=0; i<n; i++)

for (j=0; j<n; j++) for (j=0; j<n; j++)
#pragma omp parallel for private(k) #pragma omp for
for (k=0; k<n; k++) for (k=0; k<n; k++)

Avoid parallel region
overheads

Smith-Waterman Sequence

Alignment Algorithm

Default scheduler
IS static even.

Not good for load

Imbalance.

#pragma omp for

Smith-Waterman Sequence
Alignment Algorithm

I P00 ParaProt 0 Wissabizer 11 Vg _Saba 1054
- "

100

Speed W

10

2 4 8 16 32 64 128
t hr eads

amp for schedule(dynamic, 1)

100 2 |

Speed W
; 7 /

2 4 8 16 32 64 128
t hr eads

| | &
- T | ol W = |

Overheads of OpenMP For Dynamic Schedule
SGI Altix 3600

Overheads of OpenMP For Static Scheduling
SGI Altix 3600

00000

00000

00000

ad (in Cycles
Cycles

Chunk Size

00000

jpeline Processing to overlap
outations

for (i=0; i<N; i++)

{
ReadFromkFile(l,...);

for(j=0; j<ProcessingNum; j++)
ProcessData();
WriteResultsToFile(l);,

}

#pragma omp parallel

{
#pragma omp single
{ReadFromkFile(0,...);}

for (I=0; I<N; i++) {
#pragma omp single nowait

{ReadFromFile(i+1,....);}

#pragma omp for schedule(dynamic)
for (j=0; j<ProcessingNum; j++)
ProcessChunkOfData();

#pragma omp single nowait
{WriteResultsToFile(i);}

Aster thread not

® alse Sharing
vyhen threads access same cache line
lding/change schedule to fix the

Int afmax_threads];
#pragma omp parallel for schedule(static,1)
for(int 1=0; I<N; 1++)
ali] +=i;

Int afmax_threads][cache line_size];
#pragma omp parallel for schedule(static,1)
for(int 1=0; I<N; 1++)
ali][0] +=I;

ement on NUMA architectures

Policy or system commands

n-Cneren
Hyper Transoar ™ Link

m00r0 @00r1 mOOr2 gO00r3

miO0w0@m00ow.1 m00w.2 O0.0.w.3

na omp parallel private(a)

Example: Hybrid CFD code
MPIxOpenMP

version (1x8)

We find that a single procedure is

responsible for 20% of the total time

the OpenMP version and is 9 times
== glower than the MPI version.... Why?

MPI version (8x1)

Example: Hybrid CFD code
MPIxOpenMP

.. When comparing the metrics between OpenMP and
TI minags MPI using KOJAK performance algebra.

Performance hetrics

09.0 _END_EUBBLE_FE o
33.7 BE_FLUSH_BUBELE_BRU We found'

G535664.7 BE_FLUSH_BUBBLE_XPM
156.7 BE_L1D_FPU_BUBBLE_L1D La ge # of

ParaProf: Comparison Window
File Options Windows Help

Metric: LINUX_TIMERS Oc ‘experimentsigenidlestiopenmpidiff_coeff - Mean
Yalue: Inclusive M experimentsigenidiestimpidif_caeff- Mean
Units: seconds

215.108 | = " = 553.1 BACK_END_BUEBLE_ALL
25,635 (11.917%) = diff_caeff__ [file:diff_coefif=21, 20546=] §06.3 CPU_CYCLES
151.857 | 20108 (13.247% é difi_coeff__ [file:diff_coefif=21, 2085=] == LOOP #133 [file:diff_coefff =128, 2036=] ST REs NS _RIETIRED,_TiHE Exceptlons
Gtk pac) 592.0 LINUX_TIMERS Flushes
151.821 | | - 312.7 NOPS_RETIRED
LOOP #133 [fle:diff_cosfff <128, 2036] : 8 .
20108 (13.245%) [L f724 BE_EXE_BUBBLE_ALL Cache Misses
54.05 - 40452.9 BE_FLUSH_BUBELE_ALL ineli
206 (9125 | LOOF #5 et coefff <223, 268-] s = - Pipeline stalls

138.6 BE_L1D_FPU_BUBBLE_ALL
55.1 BE_RSE_BUBBLE_ALL

565.8 FE_BUBBLE_ALL

f0.4 BE_RSE_BUBELE_OVERFLOW
f556.5 FE_BUBBLE_ALLEUT_IBFULL
5.5 BE_RSE_BUBBLE_UNDERFLOW
27395.1 L2_INST_DEMAND_READS

5405 [
206 (3.812%) |

53.99
2.027 (3.762%) |

LOOP #133 [filecdiff_coefff =128, 2038>] == LOOP #5 [file:dif_coeflf <223, 288%]

LOOP #8 [file:diff_coefff=292, 356=] —

53.89

| E— - _ i
2027 (37023 | L0OF #133 Mot coefff <128, 203621 =» LOOP #3 fleift_soeftf <293, 355-]

11872 [.
2103 ¢17.717% | COCF #2AIECITcosfif <154, 218+] 2202 Lz DATA_REFEREMNCES_L2_aL
1372 B 86.9 L3_REFEREMCES
2103 (17 7175 | LOOP #133 lei_cosfif <128, 20365] == LOOP #2 flecof_saeff <154, 2105 765 L2 INST_PREFETCHES
2409 [B5.7 BE_L1D_FPU_BUBBLE_L1D_FUL

LOOP #1071 [file:dif_coefff <1483, 1623=]

5811 (69.110%) @ 1335 BE_L1D_FPU_BUBELE_L1D_LZ2E

2408 @ » . 929 LZ2_MISSES
5811 (69.119%) B LOOP #133 [filecdiff_coefff <128, 2036=] == LOOP #101 [file:dif_coeflf <1483, 1623=] 3145 Lz REFERENCES
5324] 3.1 BEE_L1D_FPU_BUBELE_FFU

LOOP #43 [file:dif_coefff <1471, 1479=]

2063 (38.753%) | 166.3 BE_L1D_FPU_BUBBLE_L1D_DC

2063 (38 ?5332; Dl LOOP #133 [filecdif_coeff <128, 2038>] == LOOP #33 [file:dif_coeff=1471, 1479z il 0 EELLE AR EEELE (LD
063 (38,) 11436 BE_L1D_FPU_BUBELE_L1D_TL
1303 | LOOP #104 [fle:dif_coafff <1631, 16375] 21022 ITLB_MISSES_FETCH_ALL

0617 (47.372%) | 5256 LZDTLE_MISSES

80.7 L3_MISSES

7619.1 FE_BUBELE_BR&NCH
G974 FE_EUBELE_BUBELE
143635.3 FE_BUBBLE_FEFLUSH
3611.3 FE_BUBBLE_IMISS

a62.0 BE_EXE_BUBBLE_FRALL
8655.9 BE_EXE_BUBELE_GRALL
18.6 BE_EXE_BUBBLE_GRGR

1303 |

Some loops are 27 times slower in OpenMP (1x8) than
MPI (8x1). These loops contains large amounts of
Stalling due to remote memory accesses to the shared heap.

oD deEdideEdE oo og

on psudo-code: Privatization & First Touch

er thread

hared Arrays

ISSUES:

» Shared arrays initialized incorrectly
(first touch policy)

* Delays in remote memory accesses are
probable causes by saturation of

interconnect

OpenMP:

Privatizing the arrays improved the performance of
the whole program by 30% and a speedup of 10 for
the procedure.

*Now procedure only takes 5% of total time

£

x\\\“‘?— & SFR =

Stall Cycle Breakdown for Non-Privatized (NP) and
Privatized (P) Versions of diff_coeff

-

D-cach stalls

misprediction
Instruction
miss stall
FLP Units

e of synchronization

Icks to directives

ation overhead can be
OpenMP within the

READ (required, provided, ierr)
esired level of thread support (integer).
ovided level of thread support (integer).
gVvbe less than required.

one thread will execute.

s may be multi-threaded, but
all MPI calls are "funneled”

2 multi-threaded,
o at a time: MPI
Rads (all MPI

D SERIALIZED is required.

s needed since OMP_SINGLE only
yronization at the end.

A threads are sleeping!

I$SOMP BARRIER
ISOMP SINGLE

call MPI1_xxx(...)
I$SOMP END SINGLE

2ast MPI_THREAD_ MULTIPLE
ap computations and

ISOMP PARALLEL You may create

if (thread _id .eq. id1) then OMP tasks to

call mpi_routinel() do the MPI

else If (thr_ead_iq .e.q. 1d2) then communication
call mpi_routine2() .

else
do_compute()
endif
ISOMP END PARALLEL

Timings and Improvements of GenlDLest

B8.27
pc 10881
752 B OpenMP version{Optimized)

1.366
restart_read 11.096

1.335 B OpenMP Version (original)

11.793
pc_implicit 13938

109091 B MPI Version

mativec_implct

diff_coeff

w M = £E &M s O = T

mpi_sendrecv_ko

*Pure MPI faster 16%
than pure OpenMP but
OpenMP uses 30% lesq
memory. Reason: Need
to merge more parallel
regions and reduce
synchronization.

*Other hybrid
configurations may
benefit from reduced
communication and
less memory footprint.
2X4, 4x2

a 5 10 15 20 25

Exclusive time (Seconds)

Less Communication with OpenMP: Required replacing send/recv buffers

with direct memory copies

30

D use OpenMP Best Practices
aleve good performance

emely important for

or Implicit Data

ajlzations

Repage www.openmp.org:

2 Of information about OpenMP and its

DMPunity) Homepage

abriele Jost, Ruud Van
007, ISBN: 978-

