
1

Lei Huang
Barbara Chapman
University of Houston

Acknowledgements: Tim Mattson (Intel), Rud van der Paas (Sun),
OpenMP ARB

Parallel Computing, threads, and OpenMP
The important constructs of OpenMP
OpenMP Practices for optimizations
Hybrid MPI/OpenMP Applications
Case Studies and Examples

2

3

4

OpenMP: An API for Writing Multithreaded
Applications

A set of compiler directives and library
routines for parallel application programmers
Greatly simplifies writing multi-threaded (MT)

programs in Fortran, C and C++
Standardizes last 20 years of SMP practice

• Version 3.0 has been released May 2008

The compiler may not be able to do the
parallelization in the way you like to see it:
› It can not find the parallelism

The data dependence analysis is not able to
determine whether it is safe to parallelize or not

› The granularity is not high enough
The compiler lacks information to parallelize at the
highest possible level

This is when explicit parallelization through
OpenMP directives comes into the picture

5

Good performance and scalability
› If you do it right
De-facto and mature standard
An OpenMP program is portable
› Supported by a large number of compilers
Requires moderate programming effort
Allows the program to be parallelized
incrementally

6

OpenMP provides thread programming
model at a “high level”.
› The user does not need to specify all the details

Assignment of work to threads
Creation of threads

User makes strategic decisions

Compiler figures out details
› Compiler flags enable OpenMP (e.g. –openmp,

-xopenmp, -fopenmp, -mp)

7

provides the means to:
create and destroy threads
assign / distribute work to threads
specify which data is shared and which
is private to a thread
coordinate actions of threads on shared
data

8

OpenMP is a shared memory model.
Threads communicate by sharing variables.

Synchronization protects data conflicts.
› Synchronization is expensive.

Change how data is accessed to minimize the
need for synchronization.

9

10

Fork-Join Parallelism:
Master thread spawns a team of threads as needed.

Parallelism is added incrementally until desired
performance is achieved: i.e. the sequential program
evolves into a parallel program.

Parallel Regions

Master
Thread A Nested

Parallel
region

A Nested
Parallel
region

11

Runtime library

OS/system support for shared memory.

Directives,
Compiler OpenMP library Environment

variables

Application

End User

Sy
st

em
 la

ye
r

P r
o g

. L
ay

er

(O
p e

n M
P

A
PI

)
U

se
r l

a y
e r

Most of the constructs in OpenMP are compiler
directives or pragmas.
› For C and C++, the pragmas take the form:

#pragma omp construct [clause [clause]…]
› For Fortran, the directives take one of the forms:

Fixed form
*$OMP construct [clause [clause]…]
C$OMP construct [clause [clause]…]
Free form (but works for fixed form too)
!$OMP construct [clause [clause]…]

Include file and the OpenMP lib module
#include <omp.h>
use omp_lib

12

In C/C++: a block is a single statement or a group of
statements between brackets {}

13

In Fortran: a block is a single statement or a group of
statements between directive/end-directive pairs.

C$OMP PARALLEL
10 wrk(id) = garbage(id)

res(id) = wrk(id)**2
if(.not.conv(res(id)) goto 10

C$OMP END PARALLEL

C$OMP PARALLEL
10 wrk(id) = garbage(id)

res(id) = wrk(id)**2
if(.not.conv(res(id)) goto 10

C$OMP END PARALLEL

C$OMP PARALLEL DO
do I=1,N

res(I)=bigComp(I)
end do

C$OMP END PARALLEL DO

C$OMP PARALLEL DO
do I=1,N

res(I)=bigComp(I)
end do

C$OMP END PARALLEL DO

#pragma omp parallel
{

id = omp_thread_num();
res(id) = lots_of_work(id);

}

#pragma omp parallel
{

id = omp_thread_num();
res(id) = lots_of_work(id);

}

#pragma omp parallel for
for(I=0;I<N;I++){

res[I] = big_calc(I);
A[I] = B[I] + res[I];

}

#pragma omp parallel for
for(I=0;I<N;I++){

res[I] = big_calc(I);
A[I] = B[I] + res[I];

}

14

lexical
extent of
parallel
region

C$OMP PARALLEL
call whoami

C$OMP END PARALLEL

subroutine whoami
external omp_get_thread_num
integer iam, omp_get_thread_num
iam = omp_get_thread_num()

C$OMP CRITICAL
print*,’Hello from ‘, iam

C$OMP END CRITICAL
return
end

+

Orphan directives
can appear outside a
parallel region

Dynamic extent
of parallel
region includes
lexical extent

bar.f
foo.f

OpenMP constructs can span multiple source files.

The “for” Work-Sharing construct splits up
loop iterations among the threads in a
team

15

#pragma omp parallel
#pragma omp for

for (I=0;I<N;I++){
work(I);

}
By default, there is a barrier at the end of the
“omp for”. Use the “nowait” clause to turn off
the barrier.

#pragma omp for nowait

“nowait” is useful between two consecutive,
independent omp for loops.

16

for(i=0;I<N;i++) { a[i] = a[i] + b[i];}for(i=0;I<N;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel
{

int id, i, Nthrds, istart, iend;
id = omp_get_thread_num();
Nthrds = omp_get_num_threads();
istart = id * N / Nthrds;
iend = (id+1) * N / Nthrds;
for(i=istart;I<iend;i++) { a[i] = a[i] + b[i];}

}

#pragma omp parallel
{

int id, i, Nthrds, istart, iend;
id = omp_get_thread_num();
Nthrds = omp_get_num_threads();
istart = id * N / Nthrds;
iend = (id+1) * N / Nthrds;
for(i=istart;I<iend;i++) { a[i] = a[i] + b[i];}

}

#pragma omp parallel
#pragma omp for schedule(static)

for(i=0;I<N;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel
#pragma omp for schedule(static)

for(i=0;I<N;i++) { a[i] = a[i] + b[i];}

Sequential code

OpenMP parallel
region

OpenMP parallel
region and a
work-sharing for-
construct

17

Schedule Clause When To Use

STATIC Pre-determined and
predictable by the
programmer

DYNAMIC Unpredictable, highly
variable work per
iteration

GUIDED Special case of dynamic
to reduce scheduling
overhead

The OpenMP APIThe OpenMP API

OpenMP For/Do schedule clauseOpenMP For/Do schedule clause

Least work at
runtime :
scheduling
done at
compile-time

Least work at
runtime :
scheduling
done at
compile-time

Most work at
runtime :
complex
scheduling
logic used at
run-time

Most work at
runtime :
complex
scheduling
logic used at
run-time

The schedule clause affects how loop iterations are
mapped onto threads
› schedule(static [,chunk])

Deal-out blocks of iterations of size “chunk” to each
thread.

› schedule(dynamic[,chunk])
Each thread grabs “chunk” iterations off a queue until all
iterations have been handled.

› schedule(guided[,chunk])
Threads dynamically grab blocks of iterations. The size of
the block starts large and shrinks down to size “chunk” as
the calculation proceeds.

› schedule(runtime)
Schedule and chunk size taken from the
OMP_SCHEDULE environment variable.

18

19

Auto
› The compiler (or runtime system) decides

what is best to use
› Choice could be implementation

dependent

20

21

The Sections work-sharing construct
gives a different structured block to
each thread.

22

#pragma omp parallel
#pragma omp sections
{
#pragma omp section

X_calculation();
#pragma omp section

y_calculation();
#pragma omp section

z_calculation();
}

#pragma omp parallel
#pragma omp sections
{
#pragma omp section

X_calculation();
#pragma omp section

y_calculation();
#pragma omp section

z_calculation();
}By default, there is a barrier at the end of the “omp

sections”. Use the “nowait” clause to turn off the barrier.

The master construct denotes a structured
block executed by the master thread. The
other threads just skip it (no synchronization
is implied).

23

#pragma omp parallel private (tmp)
{

do_many_things();
#pragma omp master

{ exchange_boundaries(); }
#pragma barrier

do_many_other_things();
}

The single construct denotes a block of
code that is executed by only one thread.
A barrier is implied at the end of the single
block.

24

#pragma omp parallel private (tmp)
{

do_many_things();
#pragma omp single

{ exchange_boundaries(); }
do_many_other_things();

}

The task construct defines an explicit
task.

25

#pragma omp task [clause[[,] clause] ...]
{

do_a_task();
}

where clause is one of the following:
•if(scalar-expression)
•untied
•default(shared | none)
•private(list)
•firstprivate(list)
•shared(list)

At implicit thread barrier
At explicit thread barrier
› C/C++: #pragma omp barrier
› Fortran: !$omp barrier
At task barrier
› C/C++: #pragma omp taskwait
› Fortran: !$omp taskwait

26

27

void increment_list_items(node * head)
{
#pragma omp parallel
{

#pragma omp single
{

node * p = head;
while (p) {

#pragma omp task // p is firstprivate by default
process(p);

p = p->next;
}

}
}

}

Hard to do before
OpenMP 3.0

28

Tasks are tied by default
› Tied tasks are executed always by the same

thread
› Tied tasks have scheduling restrictions

Deterministic scheduling points (creation,
synchronization, ...)
Another constraint to avoid deadlock problems

› Tied tasks may run into performance problems
Programmer can use untied clause to lift all
restrictions
› Note: Mix very carefully with threadprivate,

critical and thread-ids

29

30

Implemente
d in OpenUH

If the expression of a IF clause evaluates
to false
› The encountering task is suspended
› The generated task is executed immediately

with its own data environment
different task with respect to synchronization

› The parent task resumes when the task
finishes

› Allows implementations to optimize task
creation

31

Granularity is a key performance factor
› Tasks tend to be fine-grained
› Try to “group“ tasks together
› Use if clause or manual transformations

32

33

Shared Memory programming model:
Most variables are shared by default

Global variables are SHARED among threads
Fortran: COMMON blocks, SAVE variables, MODULE
variables
C: File scope variables, static

But not everything is shared...
Stack variables in sub-programs called from parallel
regions are PRIVATE
Automatic variables defined inside the parallel region
are PRIVATE.

34

Shared Data
a[size][size]

b=?

Private
Data

b’=?

Private
Data

b’=?

T0 T1 T2 T3

double a[size][size], b=4;
#pragma omp parallel private(b)
{ }

Private
Data

b’=?

Private
Data

b’=?

Local copies
of b

b becomes undefined

Relaxed-consistency, shared-memory model
All threads have access to a “main memory” and its
own “temporary” view of memory for shared data
› Temporary view can be any intervening structure between

threads and main memory, e.g. cache, registers, or other
local storage

› Synchronization between temporary view and main memory
done through hardware, or specified by user

Main
Memory

Temp View
1

Temp View
2

Thread
1

Thread
1

Thread
2

private

private
Synchronization

A variable reference can be shared or
private with respect to a parallel region
Key problem: When should the
temporary view of a shared variable
synchronize with main memory? Range
of possibilities:
› Always synchronized (i.e. no temp view)
› Based on H/W coherence scheme
› Only synchronize when FLUSH is explicitly or

implicitly specified in OpenMP

38

program sort
common /input/ A(10)
integer index(10)

C$OMP PARALLEL
call work(index)

C$OMP END PARALLEL
print*, index(1)

subroutine work (index)
common /input/ A(10)
integer index(*)
real temp(10)
integer count
save count

…………

temp

A, index, count

temp temp

A, index, count

A, index and count are
shared by all threads.

temp is local to each
thread

A, index and count are
shared by all threads.

temp is local to each
thread

* Third party trademarks and names are the property of their respective owner.

One can selectively change storage attributes
constructs using the following clauses*

SHARED
PRIVATE
FIRSTPRIVATE
THREADPRIVATE

The value of a private inside a parallel loop can be
transmitted to a global value outside the loop with:

LASTPRIVATE
The default status can be modified with:

DEFAULT (PRIVATE | SHARED | NONE)

39

All the clauses on this page
only apply to the lexical extent
of the OpenMP construct.

All the clauses on this page
only apply to the lexical extent
of the OpenMP construct.

All data clauses apply to parallel regions and worksharing constructs except
“shared” which only applies to parallel regions.

private(var) creates a local copy of var for each
thread.

The value is uninitialized
Private copy is not storage-associated with the original
The original is undefined at the end

40

program wrong
IS = 0

C$OMP PARALLEL DO PRIVATE(IS)
DO J=1,1000

IS = IS + J
END DO
print *, IS

IS was not
initialized
IS was not
initialized

IS is undefined
here
IS is undefined
here

Firstprivate is a special case of private.
○ Initializes each private copy with the corresponding

value from the master thread.

41

Regardless of initialization, IS is
undefined at this point
Regardless of initialization, IS is
undefined at this point

program almost_right
IS = 0

C$OMP PARALLEL DO FIRSTPRIVATE(IS)
DO J=1,1000

IS = IS + J
1000 CONTINUE

print *, IS

Each thread gets its own IS
with an initial value of 0
Each thread gets its own IS
with an initial value of 0

Lastprivate passes the value of a private from the
last iteration to a global variable.

42

IS is defined as its value at the last
iteration (I.e. for J=1000)
IS is defined as its value at the last
iteration (I.e. for J=1000)

program closer
IS = 0

C$OMP PARALLEL DO FIRSTPRIVATE(IS)
C$OMP& LASTPRIVATE(IS)

DO J=1,1000
IS = IS + J

1000 CONTINUE
print *, IS

Each thread gets its own IS
with an initial value of 0
Each thread gets its own IS
with an initial value of 0

43

Here is the correct way to parallelize this code.

program closer
IS = 0

C$OMP PARALLEL DO REDUCTION(+:IS)
DO J=1,1000

IS = IS + J
1000 CONTINUE

print *, IS

A range of associative operands can be
used with reduction:
Initial values are the ones that make sense
mathematically.

44

Operand Initial value

+ 0

* 1

- 0

.AND. All 1’s

Operand Initial value

.OR. 0

MAX 1

MIN 0

// All 1’s

Makes global data private to a thread
› Fortran: COMMON blocks
› C: File scope and static variables

Different from making them PRIVATE
› with PRIVATE global variables are masked.
› THREADPRIVATE preserves global scope within each

thread
Threadprivate variables can be initialized using
COPYIN or by using DATA statements.

45

46

parameter (N=1000)
common/buf/A(N)

C$OMP THREADPRIVATE(/buf/)

C Initialize the A array
call init_data(N,A)

C$OMP PARALLEL COPYIN(A)
… Now each thread sees threadprivate array A initialied
… to the global value set in the subroutine init_data()
C$OMP END PARALLEL
....
C$OMP PARALLEL
... Values of threadprivate are persistent across parallel regions
C$OMP END PARALLEL

end

parameter (N=1000)
common/buf/A(N)

C$OMP THREADPRIVATE(/buf/)

C Initialize the A array
call init_data(N,A)

C$OMP PARALLEL COPYIN(A)
… Now each thread sees threadprivate array A initialied
… to the global value set in the subroutine init_data()
C$OMP END PARALLEL
....
C$OMP PARALLEL
... Values of threadprivate are persistent across parallel regions
C$OMP END PARALLEL

end

You initialize threadprivate data using a copyin clause.

47

Static int *tmp;
#pragma omp threadprivate(tmp)
#pragma omp parallel
{

tmp = (int *)malloc(size); /* tmp is a
thread private pointer, each thread has its
own memory allocation */
#pragma omp for

for(i=0;i<N;i++)
tmp[i]=…

}

High level synchronization:
critical section
atomic
barrier
Ordered
taskwait

Low level synchronization
flush
locks (both simple and nested)

48

Only one thread at a time can enter a
critical section.

49

C$OMP PARALLEL DO PRIVATE(B)
C$OMP& SHARED(RES)

DO 100 I=1,NITERS
B = DOIT(I)

C$OMP CRITICAL
CALL CONSUME (B, RES)

C$OMP END CRITICAL
100 CONTINUE

Atomic is a special case of a critical section
that can be used for certain simple
statements.
It applies only to the update of a memory
location (the update of X in the following
example)

50

C$OMP PARALLEL PRIVATE(B)
B = DOIT(I)

tmp = big_ugly();

C$OMP ATOMIC
X = X + temp

C$OMP END PARALLEL

Barrier: Each thread waits until all threads
arrive.

51

#pragma omp parallel shared (A, B, C) private(id)
{

id=omp_get_thread_num();
A[id] = big_calc1(id);

#pragma omp barrier
#pragma omp for

for(i=0;i<N;i++){C[i]=big_calc3(I,A);}
#pragma omp for nowait

for(i=0;i<N;i++){ B[i]=big_calc2(C, i); }
A[id] = big_calc3(id);

}
implicit barrier at the end
of a parallel region
implicit barrier at the end
of a parallel region

implicit barrier at the
end of a for work-
sharing construct

implicit barrier at the
end of a for work-
sharing construct

no implicit barrier
due to nowait
no implicit barrier
due to nowait

The ordered construct enforces the
sequential order for a block.

52

#pragma omp parallel private (tmp)
#pragma omp for ordered

for (I=0;I<N;I++){
tmp = NEAT_STUFF(I);

#pragma ordered
res += consum(tmp);

}

The taskwait construct specifies a wait
on the completion of child tasks
generated since the beginning of the
current task.

53

#pragma omp taskwait
newline

Note: no specific traverse order guaranteed

54

void traverse(struct node *p) {
if (p->left)

#pragma omp task // p is firstprivate by
default

traverse(p->left);
if (p->right)

#pragma omp task // p is firstprivate by
default

traverse(p->right);
process(p);

}

Note: post-order traverse guaranteed
55

void traverse(struct node *p) {
if (p->left)

#pragma omp task // p is firstprivate by
default

traverse(p->left);
if (p->right)

#pragma omp task // p is firstprivate by
default

traverse(p->right);
#pragma omp taskwait

process(p);
}

The flush construct denotes a sequence point where
a thread tries to create a consistent view of memory.

All memory operations (both reads and writes) defined
prior to the sequence point must complete.
All memory operations (both reads and writes) defined
after the sequence point must follow the flush.
Variables in registers or write buffers must be updated in
memory.

Arguments to flush specify which variables are
flushed. No arguments specifies that all thread visible
variables are flushed.

56

57

This example shows how flush is used to implement
pair-wise synchronization.

integer ISYNC(NUM_THREADS)
C$OMP PARALLEL DEFAULT (PRIVATE) SHARED (ISYNC)

IAM = OMP_GET_THREAD_NUM()
ISYNC(IAM) = 0

C$OMP BARRIER
CALL WORK()
ISYNC(IAM) = 1 ! I’m all done; signal this to other threads

C$OMP FLUSH(ISYNC)
DO WHILE (ISYNC(NEIGH) .EQ. 0)

C$OMP FLUSH(ISYNC)
END DO

C$OMP END PARALLEL

Make sure other threads can
see my write.

Make sure the read picks up a
good copy from memory.

Note: OpenMP’s flush is analogous to a fence in
other shared memory API’s.

Note: OpenMP’s flush is analogous to a fence in
other shared memory API’s.

Simple Lock routines:
A simple lock is available if it is unset.

omp_init_lock(), omp_set_lock(),
omp_unset_lock(), omp_test_lock(),
omp_destroy_lock()

Nested Locks
A nested lock is available if it is unset or if it is set but
owned by the thread executing the nested lock
function

omp_init_nest_lock(), omp_set_nest_lock(),
omp_unset_nest_lock(),
omp_test_nest_lock(),
omp_destroy_nest_lock()

58

Note: a thread always accesses the most recent copy of the
lock, so you don’t need to use a flush on the lock variable.

Protect resources with locks.

59

omp_lock_t lck;
omp_init_lock(&lck);

#pragma omp parallel private (tmp, id)
{

id = omp_get_thread_num();
tmp = do_lots_of_work(id);
omp_set_lock(&lck);

printf(“%d %d”, id, tmp);
omp_unset_lock(&lck);

}
omp_destroy_lock(&lck);

Wait here for
your turn.
Wait here for
your turn.

Release the lock
so the next thread
gets a turn.

Release the lock
so the next thread
gets a turn.

Free-up storage when done.Free-up storage when done.

Runtime environment routines:
Modify/Check the number of threads

omp_set_num_threads(),
omp_get_num_threads(),
omp_get_thread_num(),
omp_get_max_threads()

Are we in a parallel region?
omp_in_parallel()

How many processors in the system?
omp_num_procs()

60

Set the default number of threads to use.
OMP_NUM_THREADS int_literal

Control how “omp for
schedule(RUNTIME)” loop iterations are
scheduled.

OMP_SCHEDULE “schedule[, chunk_size]”

61

Relative easy of OpenMP is a mixed
blessing
We can quickly write a correct
OpenMP but without the desired
level of performance.
There are certain “best practices” to
avoid common performance
problems.
Extra work needed for program with
large thread count

Overheads of OpenMP constructs, thread
management
› E.g. dynamic loop schedules have much higher

overheads than static schedules
› Synchronization is expensive, use NOWAIT if possible

Overheads of runtime library routines
› Some are called frequently

Load balance
Cache utilization and false sharing
Large parallel regions help reduce overheads,
enable better cache usage and standard
optimizations

63

0

200000

400000

600000

800000

1000000

1200000

1400000

O
ve

rh
ea

d
(C

yc
le

s)

1 2 4 8 16 32 64 128 256

PARALLEL

PARALLEL FOR

SINGLE

LOCK/UNLOCK

ATOMIC

Number of Threads

OpenMP Overheads
EPCC Microbenchmarks

SGI Altix 3600

PARALLEL

FOR

PARALLEL FOR

BARRIER

SINGLE

CRITICAL

LOCK/UNLOCK

ORDERED

ATOMIC

REDUCTION

Reduce usage of barrier with nowait
clause

#pragma omp parallel
{
#pragma omp for

for(i=0;i<n;i++)
….

#pragma omp for nowait
for(i=0;i<n;i++)

}

#pragma omp parallel private(i)
{
#pragma omp for nowait

for(i=0;i<n;i++)
a[i] +=b[i];

#pragma omp for nowait
for(i=0;i<n;i++)

c[i] +=d[i];
#pragma omp barrier
#pragma omp for nowait reduction(+:sum)

for(i=0;i<n;i++)
sum += a[i] + c[i];

}

Avoid the Ordered Construct
Avoid Large Critical Regions

#pragma omp parallel shared(a,b) private(c,d)
{

….
#pragma omp critical
{

a += 2*c;
c = d*d;

}
}

Move out this
Statement

Maximize Parallel Regions

#pragma omp parallel
{
#pragma omp for
for (…) { /* Work-sharing loop 1 */ }
}
opt = opt + N; //sequential

#pragma omp parallel
#pragma omp for
for(…) { /* Work-sharing loop 2 */ }

#pragma omp for
for(…) { /* Work-sharing loop N */}
}

#pragma omp parallel
{
#pragma omp for
for (…) { /* Work-sharing loop 1 */ }
}
#pragma omp single nowait
opt = opt + N; //sequential

#pragma omp for
for(…) { /* Work-sharing loop 2 */ }

#pragma omp for
for(…) { /* Work-sharing loop N */}
}

Avoid parallel region overheads

Single parallel region enclosing all work-
sharing loops.

for (i=0; i<n; i++)
for (j=0; j<n; j++)

#pragma omp parallel for private(k)
for (k=0; k<n; k++)

{ …….}

#pragma omp parallel private(i,j,k)
{
for (i=0; i<n; i++)
for (j=0; j<n; j++)

#pragma omp for
for (k=0; k<n; k++)

{ …….}

}

Avoid parallel region
overheads

Address load imbalances
Use parallel for dynamic schedules and
different chunk sizes

Smith-Waterman Sequence
Alignment Algorithm

Smith-Waterman Algorithm:
#pragma omp for

for(…)
for(…)

for(…)
for(…)

{ /* compute alignments */ }
#pragma omp critical

{. /* compute scores */ }

Default scheduler
is static even.

Not good for load
imbalance.

1

10

100

2 4 8 16 32 64 128
t hr eads

Speed Up 100
600
1000
I deal

1

10

100

2 4 8 16 32 64 128
t hr eads

Speed Up 100
600
1000
I deal

#pragma omp for

#pragma omp for schedule(dynamic, 1)

Smith-Waterman Sequence
Alignment Algorithm

128 threads with 80% efficiency

0

10000

20000

30000

40000

50000

60000

70000

80000

O
ve

rh
ea

d
(in

 C
yc

le
s)

1 2 4 8 16 32 64 128 256

Default

2

8

32

128

Number of Threads

Chunk Size

Overheads of OpenMP For Static Scheduling
SGI Altix 3600

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

C
yc

le
s

1 2 4 8 16 32 64 128 256

1

4

16

64

Number of Threads

Chunk Size

Overheads of OpenMP For Dynamic Schedule
SGI Altix 3600

Address load imbalances by selecting the
best scheduler and chunk size
Avoid selecting small chunk size when
work in chunk is small.

OpenMP Pipeline Processing to overlap
I/O and Computations

for (i=0; i<N; i++)
{
ReadFromFile(i,…);
for(j=0; j<ProcessingNum; j++)

ProcessData();
WriteResultsToFile(i);

}

#pragma omp parallel
{
#pragma omp single
{ReadFromFile(0,...);}

for (i=0; i<N; i++) {
#pragma omp single nowait
{ReadFromFile(i+1,….);}

#pragma omp for schedule(dynamic)
for (j=0; j<ProcessingNum; j++)
ProcessChunkOfData();

#pragma omp single nowait
{WriteResultsToFile(i);}

}
}

Parallelizing
Pipeline Processing
Pre-fetches I/O
Threads Reading or
Writing files joins the
Computations

Load
Data

Process

Data

Save
Data

Load
Data

Process

Data
Save
Data

Load
Data

Load
Data

Process

Data

Single vs. Master work-sharing.
› Depends on the application
› Master is more efficient but requires

thread 0 to be available
› Single more efficient if master thread not

available but has implicit barrier.

Avoid False Sharing
› Problem when threads access same cache line
› Use array padding/change schedule to fix the

problem.

int a[max_threads];
#pragma omp parallel for schedule(static,1)

for(int i=0; i<N; i++)
a[i] +=i;

int a[max_threads][cache_line_size];
#pragma omp parallel for schedule(static,1)

for(int i=0; i<N; i++)
a[i][0] +=i;

Data placement on NUMA architectures
Use First Touch Policy or system commands
to place data.

Quartet of four dual-core Opteron Processor

NUMA architectures: remote vs. local memory accesses
Excessive remote memory accesses saturates the
interconnect

Quartet of four dual-core Opteron Processor

NUMA architectures
Initialize data consistently with the
computations

#pragma omp parallel for
for(i=0; i<N; i++) {

a[i] = 0.0; b[i] = 0.0 ; c[i] = 0.0; }
readfile(a,b,c);

/* computations */
#pragma omp parallel for
for(i=0; i<N; i++) {

a[i] = b[i] + c[i];
}

Privatize variables as much as possible
Private variables are stored in the local stack
to the thread
Private data close to cache

double a[MaxThreads][N][N]
#pragma omp parallel for
for(i=0; i<MaxThreads; i++)
{ for(int j…)

for(int k…)
a[i][j][k] = …

}

double a[N][N]
#pragma omp parallel private(a)
{
for(int j…)
for(int k…)

a[j][k] = …
}

Example: Hybrid CFD code
MPIxOpenMP

OpenMP version (1x8)

MPI version (8x1)

We find that a single procedure is
responsible for 20% of the total time
the OpenMP version and is 9 times
slower than the MPI version…. Why?

Example: Hybrid CFD code
MPIxOpenMP

When comparing the metrics between OpenMP and
MPI using KOJAK performance algebra.Loop Timings

Some loops are 27 times slower in OpenMP (1x8) than
MPI (8x1). These loops contains large amounts of
Stalling due to remote memory accesses to the shared heap.

We found:

Large # of:

• Exceptions
• Flushes
• Cache Misses
• Pipeline stalls

OpenMP: best practices

CFD application psudo-code: Privatization & First Touch
procedure diff_coeff()
{

allocation of arrays to heap by master thread
initialization of shared arrays

PARALLEL REGION

{
loop lower_bn [my thread id] , upper bound [my thread id]
computation on shared arrays

…..

}
}

Shared Arrays

ISSUES:

• Shared arrays initialized incorrectly
(first touch policy)

• Delays in remote memory accesses are
probable causes by saturation of

interconnect

•Privatizing the arrays improved the performance of
the whole program by 30% and a speedup of 10 for
the procedure.

•Now procedure only takes 5% of total time

•Processor Stalls are reduced significantly

OpenMP Privatized Version

Stall Cycle Breakdown for Non-Privatized (NP) and
Privatized (P) Versions of diff_coeff

0.00E+00
5.00E+09
1.00E+10
1.50E+10
2.00E+10
2.50E+10
3.00E+10
3.50E+10
4.00E+10
4.50E+10
5.00E+10

D
-c

ac
h

st
al

ls

B
ra

nc
h

m
is

pr
ed

ic
tio

n

In
st

ru
ct

io
n

m
is

s
st

al
l

FL
P

 U
ni

ts

Fr
on

t-e
nd

flu
sh

es

C
yc

le
s NP

P

NP-P

OpenMP: best practices

Avoid Thread Migration
› Affects data locality
Bind threads to cores.
Linux:
› numactl –cpubind=0 foobar
› taskset –c 0,1 foobar
SGI Altix
› dplace –x2 foobar

Incorrect use of synchronization
constructs
› Less likely if user sticks to directives
› Erroneous use of NOWAIT
Race conditions (true sharing)
› Can be very hard to find
Wrong “spelling” of sentinel
Use tools to check for data races.

87

Good for:
› MPI communication overhead can be

reduced by using OpenMP within the
node, exploiting shared data

› Application with two levels of
parallelism

› Application with unbalanced work load
at the MPI level.

› Application with limited # of MPI
processes.

Not Good for:
› When MPI library implementation

doesn’t support threads.
› Application with one level of parallelism,

no need for hierarchical parallelism.
› OpenMP is not written correctly,

introducing its drawbacks.
› Implementation of OpenMP is not

scalable.
Compiler dependent.

MPI_INIT_THREAD (required, provided, ierr)
IN: required, desired level of thread support (integer).
OUT: provided, provided level of thread support (integer).
Returned provided maybe less than required.

Thread support levels:
MPI_THREAD_SINGLE: Only one thread will execute.
MPI_THREAD_FUNNELED: Process may be multi-threaded, but
only main thread will make MPI calls (all MPI calls are ’’funneled''
to main thread)..
MPI_THREAD_SERIALIZED: Process may be multi-threaded,
multiple threads may make MPI calls, but only one at a time: MPI
calls are not made concurrently from two distinct threads (all MPI
calls are ’’serialized'').
MPI_THREAD_MULTIPLE: Multiple threads may call MPI, with
no restrictions.

MPI_THREAD_SERIALIZED is required.
OMP_BARRIER is needed since OMP_SINGLE only
guarantees synchronization at the end.
It also implies all other threads are sleeping!

!$OMP BARRIER
!$OMP SINGLE

call MPI_xxx(…)
!$OMP END SINGLE

Need at least MPI_THREAD_MULTIPLE

Good to overlap computations and
communication.

!$OMP PARALLEL
if (thread_id .eq. id1) then

call mpi_routine1()
else if (thread_id .e.q. id2) then

call mpi_routine2()
else

do_compute()
endif
!$OMP END PARALLEL

You may create
OMP tasks to
do the MPI
communication
s

Less Communication with OpenMP: Required replacing send/recv buffers
with direct memory copies

•Pure MPI faster 16%
than pure OpenMP but
OpenMP uses 30% less
memory. Reason: Need
to merge more parallel
regions and reduce
synchronization.

•Other hybrid
configurations may
benefit from reduced
communication and
less memory footprint.
•2x4, 4x2

Important to use OpenMP Best Practices
strategy to achieve good performance
Data locality is extremely important for
OpenMP. Privatization or Implicit Data
Placement.
Important to reduce synchronizations
Hybrid nodes, OpenMP:
› Uses less memory
› Reduces MPI communication overhead.

OpenMP Homepage www.openmp.org:

The primary source of information about OpenMP and its
development.

OpenMP User’s Group (cOMPunity) Homepage
www.compunity.org:

Books:

Using OpenMP, Barbara Chapman, Gabriele Jost, Ruud Van
Der Pas, Cambridge, MA : The MIT Press 2007, ISBN: 978-
0-262-53302-7

Parallel programming in OpenMP, Chandra, Rohit, San
Francisco, Calif. : Morgan Kaufmann ; London : Harcourt,
2000, ISBN: 1558606718

Search: www.google.com: OpenMP

95

