Alexandre Eichenberger - Kevin O’ Brien
6/26/12

A Lightweight OpenMP Runtime

-- OpenMP for Exascale Architectures --

T.J. Watson, IBM Research

© 2011 IBM Corporation

* Thread-rich computing environments are becoming more prevalent
—more computing power, more threads
—less memory relative to compute

» There is parallelism, it comes in many forms
—hybrid MPI - OpenMP parallelism
—mixed mode OpenMP / Pthread parallelism
—nested OpenMP parallelism

= Have to exploit parallelism efficiently
—providing ease of use for casual programmers
— providing full control for power programmers
— providing timing feedback

2 26 June 2012 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

» Handle more threads
—lower OpenMP overheads
* lower scalar overheads (Amdal’ s law)
* better scaling of overheads (more threads)
—develop new algorithms inside research runtime

* Handle nested parallelism: more control with thread affinity
—more user input on how to map computation to threads
« currently: no affinity support provided by user
—proposed a new thread-affinity to OpenMP standard committee
—contributed reference implementation in research runtime

» Todo: Provide timing feedback
—user want to know where is the time spent
—feedback at little overheads

3 26 June 2012 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

* Impact of overheads
= Approach for near constant-time parallel-region creation
* Results on BGQ

4 26 June 2012 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

Impact of Overhead in Prevalent Threading Model

Programming Model Parallelism Overheads

lots low impact

= MPI

—distributed process across/within nodes
—explicit user-managed communication

» Coarse-grain Parallel (OpenMP/Auto)
—shared memory within nodes/cores
—for outer parallel-loops

» Fine-grain Parallel (OpenMP/Auto)
—shared memory within cores/nodes
—for inner parallel-loops

Y
dINuadQ jo jJoeduwij

/

little high impact

5 26 June 2012 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

Basic OpenMP Operation: Parallel Region

master thread

(O 12 t3 t4>

sequential work .l worker threads

parallel work]:[][

sequential work B useful work [overhead

6 26 June 2012 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

Action Time line Data used

t0O 11 t2 t3 t4 t0 t1 t2 t3 t4
sequential work - beginning region
1. find 3 avail threads . avail: 0 1 1 0 1
2. assign thread IDs . tid: 0 1 2 3
3. assign work . work: [?] 9]¢ (| |] work descriptors:
4. signal ready . = — <] | fct loopinfo|state
5. init. thread state AV . state: |fls|fls|fls|«|fls

parallel work

end region
1
6. barrier sequential overheads
7. cleanup parallel overheads
| |

sequential work . B useful work

7 26 June 2012 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

Optimized OpenMP Runtime Design

Systematic re-design to lower overheads

» Eliminate sequential overhead
—reuse previous thread allocations
—in practice, near 100% hit

= Extremely compact state [l
—minimize initialization/cleanup

= Use hardware support L]
—atomic instructions (atomic increment / xor)

8 26 June 2012 IBM - OpenMP for Exascale - Alexandre Eichenberger

find avail threads=

assign IDs

assign work‘
signal re
initialize st

parallel work

barri
cleanu

© 2011 IBM Corporation

» Cache configurations to eliminate computation & communication
—reuse as much as possible when nothing has changed

= Minimum locking
—one lock for protecting thread allocation data structure
—locked only on thread recruiting / freeing
—rest use atomic operations

» Use global state sparingly
—work descriptor is only used for parallel region
—most other OpenMP constructs use no work descriptors

= Allocate state statically, initialize mostly statically
—barriers use counters initialized when initializing OpenMP
—some local state is only initialized on first use

9 26 June 2012 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

Example: Caching Worker Configurations

Initial state End parallel for t4, t8 . Start parallel for t0, t4
° o
\0\\9* RS AN o & @ee;;g*q,

[~
N
|Lo.\||03|m.oa|r\)|-x—_.6

o|~[olofs]o|n][]o]

@ > o 9
e 10[10

11 11]41

' 12|12
@% 13[13
\‘B 14[14

15[15

* When freeing workers
—leave workers in reserved state (A: end t8)

= When recruiting workers
—avoid stealing workers that were reserved by others (B: start t0)
—aim at reusing workers that were previously reserved by this master (C: start t4)

10 26 June 2012 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

OpenMP Micro-Benchmark (EPCC) Results _

= Contributions of individual optimizations

6000

s 8 &

Overheads in ns

:

1000

1 26 June 2012

“ Original
& + Thread Allocation Caching

assign work

signal ready

find avail threads .

assign IDs

initialize state

v

A 4

+ Work Description Caching
“ + Bitvector Go-Ahead Signaling

“ + New Interface

parallel work I.

barrier I:l

cleanup|:|

Threads

IBM - OpenMP for Exascale - Alexandre Eichenberger

© 2011 IBM Corporation

Overhead Scaling for Parallel Region (ECPP)

* Nearly constant overhead over wide range of thread counts

2000
1800

1600
1400
1000
800
600
400
200
0

& barrier “parallel only

Rl 16 64

LOMP is an experimental runtime that implements a subset of all OpenMP
functionality. Performance will be impacted until full functionality is provided

12 26 June 2012 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

= Creating a parallel region with 4 to 64 threads
—overhead are now reduced to below 2K cycles
—preliminary numbers, will change as we support full OpenMP

= While we have reduced overheads by 4x — 10x
—remaining overheads are due to the OpenMP standard
—others are due to necessary locks / barriers / msyncs
—compiler optimization can further reduce overheads in some cases

= Barriers becoming the dominant factor at higher thread counts

13 26 June 2012 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

= Examples of requests that are not currently possible
—get threads on separate cores to get more L1 cache
—get threads collocated on same core to maximize cache reuse

= Current runtimes have a fixed policy
—runtime tries to even out load balance across the machine
—this works well for single level of parallelism,
—not as well for nested parallelism

= Want to allow users to specify where to get threads
—broad policies that cover most cases

= Want to allow users to specify where threads are allowed to migrate
—for load balancing purpose

14 26 June 2012 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

» Define the concept of an OpenMP Place
—a set of one or more logical processors on which OpenMP-threads execute
— OpenMP-threads may migrate within one place

» Let the user specify its own set of places
— Dby default, the system defines its own list of places
—in MPI hybrid mode, the “mpi-run” script would defines the set of places

» L et the user specify how to recruit threads for OpenMP parallel
—MASTER: put threads in same place as master
— CLOSE: put threads close to master
* reduce false sharing, distribute among places
—SPREAD: spread threads across the machine
 reduce overheads of threads sharing the same core
 optimize memory bandwidth by exploiting cores/sockets

15 26 June 2012 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

» Consider a system with 2 chips, 4 cores, and 8 hardware-threads

—One place per hardware-thread
« OMP_PLACES=hwthread
« OMP_PLACES=(0),(1),(2),...(15)

—One place per core, including both hardware-threads
« OMP_PLACES=core
« OMP_PLACES=(0,1),(2,3),(4,5)...(14,15)

— One place per chip, excluding first hardware-thread
« OMP_PLACES=(1,2,...,7),(9,10,11,..15)

16 26 June 2012 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

CLOSE Policy

Compact selects OpenMP threads in the same place as the master
—consider the next place(s) when master place is full

= Example with OMP_PLACES=hwthread

chip O chip 1
core 0 core 1 core 2 core 3 core 4 core 5 core 6 core 7
o]t 21113 t4 t5 6] t7 81119 t10] 1t11 t12) 1113 t14] |1t15
*
—close 2 . . 2] 1t3 t4|]1t5 6| t7 8] t9 t10] [t11 t12] |t13 t14] It15
—close 4 |15 6| t7 it |t1ol ft11] Izl lt13| |14l |15

—C|03e4 to)|t1 21 t3 t4 (] t5 6| t7 t12] 1t13 t14) 1115

* technically “omp parallel num_threads(2) affinity(close)” Baster Cbrker

17 26 June 2012 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

SPREAD Policy

» Spread OpenMP threads as evenly as possible among places

= Example with OMP_PLACES=hwthread

chip O chip 1
core 0 core 1 core 2 core 3 core 4 core 5 core 6 core 7
t0 || t1 2|3 ta)|1t5 t6||t7 8 to]]|||t1of ft11) || It12f [t13) | | |t14] |t15
—spread 2* . nl lellel lulls]l |6l 8l lvollt1l luzl sl |ua s
—spread 4 . t1 2|3 4] t5 t6 || t7 8|to] [tol|t11] |2l [t13] [t14] |t15
—spread 8 . t1 213 t4||t5 6] t7 8)lto] Jt10f jt11] |12 |t13] |t14] |15
* technically “omp parallel num_threads(2) affinity(spread)” B master [worker

18 26 June 2012 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

Spread Policy Partition the Machine

= Spread also implicitly partition the machine
—so that nested parallel-regions get threads only from its subset of the machine

= Example: spread with nested, compact, parallel-regions

chip O chip 1
core 0 core 1 core 2 core 3 core 4 core 5 core 6 core 7
o]t 21113 t4 t5 6] t7 81119 t10] 1t11 t12) 1113 t14] |1t15

—initial

spread 4

—close 4

19 26 June 2012 IBM - OpenMP for Exascale - Alexandre Eichenberger pa I"tltlon . © 2011 IBM Corporation

= Give the user more fine-grain control
—which hardware thread / core / chip to use
—which thread to select for a given parallel region
 €.g. spread vs. compact
—where threads are allowed to migrate (within a place)

= Ongoing work
—implemented in our research OpenMP runtime
—currently under review with the OpenMP Standard Language Committee

20 26 June 2012 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

» Possible approaches
— callbacks
— statistical sampling (requires interrupt support)
—embedded timing (using low overhead hardware timers)

= Experimented with second approach
—approximate overheads: 100 cycles per OpenMP constructs
— (for ref: 64-thread barrier 800-1000 cycles, parallel region 1800-2000 cycles)

» Questions:
—what is needed by users
—what is needed by tool developers
—what can info can be provided cheaply

21 26 June 2012 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

» Timing is relatively cheap on POWER

—get a local timer (register move)
—save difference of 2 timer values (one store)

» Saving a current state (idle-barrier/idle-lock)

—one store per transition

= Callbacks

22

—load value of “enabled/disabled”, one branch
—BUT having a call has performance impact on optimized runtime
* in optimized runtime, everything is inlined (except call outlined functions)
« calls force caller-saved register back into memory (potentially 10+ load/
store)
« have seen overhead in 100+ cycles just for one additional function call
—cheaper if are located just before/after outlined function calls

26 June 2012 IBM - OpenMP for Exascale - Alexandre Eichenberger © 2011 IBM Corporation

