
1

Gaining Insight into Parallel Program
Performance Using Sampling

John Mellor-Crummey
DOE Center for Scalable Application Development Software

johnmc@cs.rice.edu

hpctoolkit.org

Collaborators: Nathan Tallent, Michael Fagan,
Mark Krentel, Laksono Adhianto, Xu Liu, Reed

Landrum, Michael Franco

2

Motivation
• Complex hardware

— multi-level parallelism
• ILP, short vectors, multiple cores, multiple sockets, multiple nodes

— large-scale parallelism

• Sophisticated software
— multiphysics, multiscale, adaptive

• Wide gap between peak and typical performance

Challenges

• Understand where and why performance losses occur in
sophisticated parallel codes on complex parallel hardware

• Identify opportunities for improvement

• Quantify potential benefits

3

Performance Analysis Goals
• Accurate measurement of parallel scientific codes

— large, multi-lingual programs
— fully optimized code: loop optimization, templates, inlining
— binary-only libraries, sometimes partially stripped
— complex execution environments

• dynamic loading or static binaries
• SPMD parallel codes with threaded node programs
• batch jobs

— production executions

• Effective performance analysis
— pinpoint and explain problems

• intuitive enough for scientists and engineers
• detailed enough for compiler writers

— yield actionable results

• Scalable to petascale systems

source
code

optimized
binary

compile & link call stack
profile

profile
execution

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
presentation

program
structure

• Compile and link for production
– with full optimization

• For statically-linked executables (e.g. for Cray XT or BG/P)
– use hpclink script to incorporate our monitoring library

database

HPCToolkit Performance Tools

9

source
code

optimized
binary

compile & link call stack
profile

profile
execution

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
presentation

program
structure

Measure execution unobtrusively
– launch optimized application binaries
– collect call path profiles of events of interest

database

HPCToolkit Performance Tools

10

12

source
code

optimized
binary

compile & link call stack
profile

profile
execution

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
presentation

program
structure

Analyze binary to recover program structure
– analyze machine code, line map, and debugging information
– extract loop nesting information and identify inlined procedures
– map transformed loops and procedures back to source

database

HPCToolkit Performance Tools

13

source
code

optimized
binary

compile & link call stack
profile

profile
execution

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
presentation

program
structure

• Combine multiple profiles
– multiple threads; multiple processes; multiple executions

• Correlate measurements to static & dynamic pgm structure

database

HPCToolkit Performance Tools

14

source
code

optimized
binary

compile & link call stack
profile

profile
execution

binary
analysis

[hpcstruct]

interpret profile
correlate w/ source

[hpcprof]
presentation

program
structure

• Explore performance data from multiple perspectives
• Rank order by metrics to focus on what’s important
• Compute derived metrics to gain insight
• Explore call stack traces to understand transient behavior

database

HPCToolkit Performance Tools

Attribution to Static + Dynamic Context

costs for
• inlined procedures
• loops
• function calls in full context

calling context
view

• Call path profiling in HPCToolkit

• Pinpointing and quantifying scalability bottlenecks

• Blame shifting
— analyzing multithreaded computations based on work stealing
— quantifying the impact of lock contention on threaded code
— pinpointing load imbalance in parallel codes

• Understanding execution behavior over time

• Associating memory hierarchy inefficiency with data

• Conclusions

• Challenges ahead

• Related work

10

Outline

• Sample timer or hardware counter overflows

• Gather calling context using stack unwinding

Measure and attribute costs in their calling context

Call Path Profiling

11

Call path sample Calling Context Tree (CCT)

Overhead proportional to sampling frequency...
...not call frequency

instruction pointer

return address

return address

return address

Unwinding Fully-optimized Parallel Code
Unwinding using demand-driven binary analysis

• Identify procedure bounds
— for dynamically-linked code, do this at runtime
— for statically-linked code, do this at compile time

• Compute unwind recipes for a procedure on the fly
— scan the procedure’s object code, tracking the locations of

• caller’s program counter
• caller’s frame and stack pointer

— create unwind recipes between pairs of frame-relevant instructions
• Processors: x86-64, PowerPC (BG/P), MIPS (SiCortex)
• Results

— accurate call path profiles
— overheads of < 2% for sampling frequencies of 200/s

12

Nathan Tallent, John Mellor-Crummey, and Michael Fagan. Binary analysis for measurement and
attribution of program performance. PLDI 2009, Dublin, Ireland, Distinguished Paper Award.

• Call path profiling in HPCToolkit

• Pinpointing and quantifying scalability bottlenecks

• Blame shifting
— analyzing multithreaded computations based on work stealing
— quantifying the impact of lock contention on threaded code
— pinpointing load imbalance in parallel codes

• Understanding execution behavior over time

• Associating memory hierarchy inefficiency with data

• Conclusions

• Challenges ahead

• Related work

13

Outline

14

The Problem of Scaling Losses

.00

.25

.50

.75

1.00

1 4 16 64 25
6

10
24

40
96

16
38

4
65

53
6

Ef
fic

ie
nc

y

CPUs

Ideal efficiency
Actual efficiency

?

Note: higher is better

15

Pinpointing and Quantifying Scalability Bottlenecks

200K

400K600K =

P Q

Weak scaling

−P × Q ×

 : no coefficients
 Strong scaling: needs red coefficients

C. Coarfa et al. Scalability
analysis of SPMD codes
using expectations. ICS
2007, Seattle, WA.

N. Tallent et al.
Diagnosing scalability
bottlenecks in emerging
petascale applications.
SC 2009, Portland, OR.

• Parallel, adaptive-mesh refinement (AMR) code
• Block structured AMR; a block is the unit of computation
• Designed for compressible reactive flows
• Can solve a broad range of (astro)physical problems
• Portable: runs on many massively-parallel systems
• Scales and performs well
• Fully modular and extensible: components can be

combined to create many different applications

16

Scalability Analysis of Flash

Cellular detonation
Helium burning on neutron stars

Laser-driven shock instabilitiesNova outbursts on white dwarfs

Rayleigh-Taylor instability
Orzag/Tang MHD
vortex

Magnetic
Rayleigh-Taylor Figures courtesy of FLASH Team, University of Chicago

Code: University of Chicago FLASH
Simulation: white dwarf detonation
Platform: Blue Gene/P
Experiment: 8192 vs. 256 processors
Scaling type: weak

System-wide Scaling Losses in Flash

17

13.4% of the scaling losses in Flash execution are due
to the use of a “digital orrery” all-to-all communication
pattern as part of adaptive mesh refinement. This
shows up in the code as a loop over all processors
containing pairwise communication. This single
problem accounts for almost 1/4 of the scalability loss
during Flash’s evolution phase.

This problem caused a 21% scalability loss in the
initialization phase as well

Improved Flash Scaling of AMR Setup

18Graph courtesy of Anshu Dubey, U Chicago

improved scalability after fixing
AMR scaling bottleneck described
in previous slide (lower is better)

 Scalability Losses at the Loop Level

19

Execution time
increases 2.8x in the
loop that scales worst

loop contributes a
6.9% scaling loss to
the execution

S3D code (Sandia CRF)
PI: Jackie Chen
DNS of turbulent combustion

• Call path profiling in HPCToolkit

• Pinpointing and quantifying scalability bottlenecks

• Blame shifting
— analyzing multithreaded computations based on work stealing
— quantifying the impact of lock contention on threaded code
— pinpointing load imbalance in parallel codes

• Understanding execution behavior over time

• Associating memory hierarchy inefficiency with data

• Conclusions

• Challenges ahead

• Related work

20

Outline

Blame Shifting
• Problem: in many circumstances sampling measures

symptoms of performance losses rather than causes
— worker threads waiting for work
— threads waiting for a lock
— MPI process waiting for peers in a collective communication

• Approach: shift blame for losses from victims to perpetrators

• Flavors
— active measurement
— analysis only

21

Cilk: A Multithreaded Language

22

cilk int fib(n) {
 if (n < 2) return n;
 else {
 int x, y;
 x = spawn fib(n-1);
 y = spawn fib(n-2);
 sync;
 return (x + y);
 }
}

f

f
(n)

f

ff ff

......

......

asynchronous calls
create logical tasks that
only block at a sync...

...quickly create significant
logical parallelism.

Cilk Program Execution using Work Stealing
• Challenge: Mapping logical tasks to compute cores

• Cilk approach:
— lazy thread creation plus work-stealing scheduler

• spawn: a potentially parallel task is available
• an idle thread steals tasks from a random working thread

23

Possible Execution:
thread 1 begins
thread 2 steals from 1
thread 3 steals from 1
etc...

f

f
(n)

f

ff ff

......

......

Wanted: Call Path Profiles of Cilk

• Consider thread 3:
— physical call path:

— logical call path:

24

thread 1
thread 2
thread 3

f f ...

f
(n)

f f ...

Logical call path profiling: Recover full relationship
between physical and user-level execution

Work stealing separates
user-level calling contexts in
space and time

f

f

f

ff ff

......

......

Three Complementary Techniques:

Effective Performance Analysis

• Recover logical calling contexts in presence of work-stealing

• Quantify parallel idleness (insufficient parallelism)

• Quantify parallel overhead

• Attribute idleness and overhead to logical contexts
— at the source level

25

cilk int fib(n) {
 if (n < 2) {...}
 else {
 int x, y;
 x = spawn fib(n-1);
 y = spawn fib(n-2);
 sync;
 return (x + y);

high parallel overhead from
creating many small tasks

f
(n)

f f ...

• Metrics: Effort = “work” + “idleness”
— associate metrics with user-level calling contexts
— insight: attribute idleness to its cause: context of working thread

• a thread looks past itself when ‘bad things’ happen to others

• Work stealing-scheduler: one thread per core
— maintain W (# working threads) and I (# idling threads)

• slight modifications to work-stealing run time
 – atomically incr/decr W when thread exits/enters scheduler

• when a sample event interrupts a working thread
 – I ﹦ #cores − W

 – apportion others’ idleness to me: I / W

• Example: Dual quad-cores; on a sample, 5 are working:

Measuring & Attributing Parallel Idleness

26

idle: drop sample
(it’s in the scheduler!)

W += 1
I += 3/5

�
W = 5�
I = 3

for each
worker:

Parallel Overhead
• Parallel overhead

— when a thread works on something other than user code
• (we classify waiting for work as idleness)

• Pinpointing overhead with call path profiling
— impossible, without prior arrangement

• work and overhead are both machine instructions
— insight: have compiler tag instructions as overhead
— quantify samples attributed to instructions that represent ovhd

• use post-mortem analysis

27

Top-down Work for Cilk ‘Cholesky’

28

13.5% of cilk_main’s
total effort was spent in
idleness...

2.97% and 0.215% of
cholesky’s total effort
was spent in idleness
and overhead.

Cilk-
level
call
path

➊

➋

➌
percent percent

Bottom-up Idleness for Cilk ‘Cholesky’

29

Pinpoints serial
initialization/finalization
routines.

We can pinpoint and
quantify the effect of

serialization.

percentpercent

Using Parallel Idleness & Overhead
• Total effort = useful work + idleness + overhead

• Enables powerful and precise interpretations

• Normalize w.r.t. total effort to create
— percent idleness or percent overhead

30

idleness overhead interpretation

low low effectively parallel

low high coarsen concurrency granularity

high low refine concurrency granularity

high high switch parallelization strategies

Nathan Tallent, John Mellor-Crummey. Effective performance measurement
and analysis of multithreaded applications. PPoPP 2009, Raleigh, NC.

• Call path profiling in HPCToolkit

• Pinpointing and quantifying scalability bottlenecks

• Blame shifting
— analyzing multithreaded computations based on work stealing
— quantifying the impact of lock contention on threaded code
— pinpointing load imbalance in parallel codes

• Understanding execution behavior over time

• Associating memory hierarchy inefficiency with data

• Conclusions

• Challenges ahead

• Related work

31

Outline

Understanding Lock Contention
• Lock contention causes idleness

— explicitly threaded programs (Pthreads, etc)
— implicitly threaded programs (critical sections in OpenMP, Cilk...)

• Use “blame-shifting” to shift blame from victim to perpetrator
— use shared state (locks) to communicate blame

• How it works
— consider spin-waiting*
— sample a working thread:

• charge to ‘work’ metric
— sample an idle thread

• accumulate in idleness counter assoc. with lock (atomic add)
— working thread releases a lock

• atomically swap 0 with lock’s idleness counter
• exactly represents contention while that thread held the lock
• unwind the call stack to attribute lock contention to a calling context

32*different technique handles blocking

Lock contention in MADNESS

33

lock contention
accounts for 23.5%
of execution time.

Adding futures
to shared global
work queue.

µs16 cores; 1 thread/core (4 x Barcelona)

quantum chemistry; MPI + pthreads

• Call path profiling in HPCToolkit

• Pinpointing and quantifying scalability bottlenecks

• Blame shifting
— analyzing multithreaded computations based on work stealing
— quantifying the impact of lock contention on threaded code
— pinpointing load imbalance in parallel codes

• Understanding execution behavior over time

• Associating memory hierarchy inefficiency with data

• Conclusions

• Challenges ahead

• Related work

34

Outline

35

PFLOTRAN

2. Notice top two
call sites...

3. Plot the per-process
values:

Early finishers...

... become early
arrivers at Allreduce

1. Drill down ‘hot path’
to loop (a balance point)

8K cores, Cray XT5

• Call path profiling in HPCToolkit

• Pinpointing and quantifying scalability bottlenecks

• Blame shifting
— analyzing multithreaded computations based on work stealing
— quantifying the impact of lock contention on threaded code
— pinpointing load imbalance in parallel codes

• Understanding execution behavior over time

• Associating memory hierarchy inefficiency with data

• Conclusions

• Challenges ahead

• Related work

36

Outline

• Profiling compresses out the temporal dimension
—temporal patterns, e.g. serialization, are invisible in profiles

• What can we do? Trace call path samples
—sketch:

– N times per second, take a call path sample of each thread
– organize the samples for each thread along a time line
– view how the execution evolves left to right
– what do we view?

 assign each procedure a color; view a depth slice of an execution

3717

Understanding Temporal Behavior

Time

Processes

Call
stack

Call Path Tracing for Parallel Programs
1D FFT, CAF 2.0, 256 processes, Cray XT, 128M/core

38Scalable Fine-grained Call Path Tracing, Submitted to IPDPS 2011.

Call Path Tracing for Parallel Programs
PFLOTRAN: Fortran+MPI, 8184 cores, Cray XT (982s)

39Scalable Fine-grained Call Path Tracing, Submitted to IPDPS 2011.

Call Path Tracing for Parallel Programs
PFLOTRAN: Fortran+MPI, 8184 cores, Cray XT (1st minute)

40

• Call path profiling in HPCToolkit

• Pinpointing and quantifying scalability bottlenecks

• Blame shifting
— analyzing multithreaded computations based on work stealing
— quantifying the impact of lock contention on threaded code
— pinpointing load imbalance in parallel codes

• Understanding execution behavior over time

• Associating memory hierarchy inefficiency with data

• Conclusions

• Challenges ahead

• Related work

41

Outline

• Goal: associate memory hierarchy performance losses with data

• Approach
— intercept allocations to associate with their data ranges
— associate latency with data using “instruction-based sampling” on

AMD Opteron CPUs
• identify instances of loads and store instructions
• identify the data structure an access touches based on L/S address
• measure the total latency associated with each L/S

— present quantitative results using hpcviewer

42

Data Centric Analysis

Data Centric Analysis of S3D

43

41.2% of memory hierarchy
latency related to yspecies
array

yspecies latency for this
loop is 14.5% of total
latency in program

Conclusions
• Obtain insight, accuracy & precision by combining call path

profiling, binary analysis, and blame shifting

• Show surprisingly effective measurement and source-level
attribution for fully optimized code (1-3% overhead)
— statements in their full static and dynamic context
— project low-level measurements to much higher levels

• Sampling-based measurements can deliver insight into a
range of phenomena
— scalability bottlenecks
— where insufficient parallelism lurks
— sources of lock contention
— load imbalance
— temporal dynamics
— problematic data structures

44

Some Challenges Ahead
• Support characteristics of emerging hardware and software

— heterogeneous hardware
• manycore, CPU+GPU
• dynamic power and frequency scaling

— software
• one-sided communication
• asynchronous operations
• dynamic parallelism
• adaptation
• failure recovery

• Augment monitoring capabilities throughout the stack
— hardware, OS, runtime, language-level API

• Improve data management for extreme scale parallelism

• Transition from descriptive to prescriptive feedback

• Guide online adaptation and tuning
45

Some Related Work
• Sampling

— e.g., gprof, Speedshop, Shark, PTU, DCPI, Oprofile, CrayPat

• Instrumentation
— e.g., Tau, Vtune, IBM HPC Toolkit, Dyninst, CrayPat, Pin

• Tracing
— e.g., vt, Tau, CEBPA,

• Call stack profiling
— e.g., mpiP, Tau, PTU, Shark

• Visualization
— e.g., Paraver, Projections, Vampir, Jumpshot, EXPERT

• Parallel Analysis
— e.g., Scalasca

• Analysis
— e.g., IBM HPCS Toolkit, Cray Apprentice, EXPERT, PerfExpert 46

HPCToolkit Capabilities at a Glance

Attribute Costs to Code

Analyze Behavior
over Time

Assess Imbalance
and Variability

Associate Costs with Data

Shift Blame from
Symptoms to Causes

Pinpoint & Quantify
Scaling Bottlenecks

hpctoolkit.org

HPCToolkit Publications

29

Measurement
• Binary analysis for (1) recovering functions in partially stripped code, (2)

unwinding fully-optimized code, (3) recovering program structure
• Nearly perfect call stack sampling of fully optimized code with low overhead

Binary Analysis for Measurement and Attribution of Program Performance,
PLDI, June 2009. Distinguished Paper Award.

Pinpointing Locality Problems Using Data-centric Analysis,
Submitted to CGO 2011, April 2011

Pinpoint Performance Losses in Multithreaded Executions
Effective Performance Measurement and Analysis of Multithreaded

Applications, PPoPP, February 2009.
Analyzing Lock Contention in Multithreaded Applications,

PPoPP, January 2010

Pinpoint Scalability Bottlenecks using Differential Profiling
Scalability Analysis of SPMD Codes using Expectations, ICS, June 2007

Overview Paper
HPCToolkit: Tools for performance analysis of optimized parallel programs,

Concurrency & Computation: Practice and Experience, January 2010

Novel Capabilities of HPCToolkit - II

29

User Interfaces
Effectively Presenting Call Path Profiles of Application Performance, PSTI,

September 2010.
Scalable Fine-grained Call Path Tracing, Submitted to IPDPS 2011.

Performance Analysis using Sampling on Leadership Platforms

Diagnosing Performance Bottlenecks in Emerging Petascale Applications,
SC09, November 2009

Scalable Identification of Load Imbalance using Call Path Profiles, SC10,
November 2010

Additional Tool Screenshots

50

Execution Cost Breakdown (Routine-Level)
Flash on Blue Gene/P, 8K cores, white dwarf detonation

51

Costs sorted by exclusive time
spent in individual routines
Note: only the routines shown
in blue are user code
BG/P DCMF Communication
Layer costs

52

Execution Cost Attribution (Callers View)
Flash on Blue Gene/P, 8K cores, white dwarf detonation

Looking up the call chain to see
where the callers that caused costs to
be incurred for tree reductions. Most
of the cost is incurred by guard cell
filling and flux conservation.

Execution Cost Attribution (Top Down)
Flash on Blue Gene/P, 8K cores, white dwarf detonation

53

Looking up down the call chain to
see where the most of the time was
spent. 80.5% is spent in the loop
that calls the hydrodynamics
simulation. 52.4% of the time is
spent in the hydro routine (or
below). The rest is spent in other
routines called from the main loop

Execution Cost Attribution (Top-Down)
PFLOTRAN, Cray XT, 8184 cores, Hanford problem

54

66.5% of the cycles are spent in
the transport calculation. 30.8% of
the cycles are spent in the flow
calculation

Execution Cost Attribution (Top-Down)
PFLOTRAN, Cray XT, 8184 cores, Hanford problem

55

Detailed analysis of the transport
calculation: Most of the time is
spent in the PETSc inside the
Biconjugate gradient solver.

Overall: 1 FLOP every 7.4 cycles

Overall: 1 FLOP
every 7.4 cycles

