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Motivation
• Complex hardware

— multi-level parallelism
• ILP, short vectors, multiple cores, multiple sockets, multiple nodes

— large-scale parallelism

• Sophisticated software
— multiphysics, multiscale, adaptive

• Wide gap between peak and typical performance

Challenges 

• Understand where and why performance losses occur in 
sophisticated parallel codes on complex parallel hardware

• Identify opportunities for improvement

• Quantify potential benefits
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Performance Analysis Goals
• Accurate measurement of parallel scientific codes

— large, multi-lingual programs
— fully optimized code: loop optimization, templates, inlining
— binary-only libraries, sometimes partially stripped
— complex execution environments 

• dynamic loading or static binaries
• SPMD parallel codes with threaded node programs
• batch jobs

— production executions

• Effective performance analysis
— pinpoint and explain problems

• intuitive enough for scientists and engineers
• detailed enough for compiler writers

— yield actionable results

• Scalable to petascale systems
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• Compile and link for production 
– with full optimization

• For statically-linked executables (e.g. for Cray XT or BG/P)
– use hpclink script to incorporate our monitoring library

database

HPCToolkit Performance Tools
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Measure execution unobtrusively
– launch optimized application binaries
– collect call path profiles of events of interest

database
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Analyze binary to recover program structure
– analyze machine code, line map, and debugging information
– extract loop nesting information and identify inlined procedures
– map transformed loops and procedures back to source

database
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• Combine multiple profiles
– multiple threads; multiple processes; multiple executions

• Correlate measurements to static & dynamic pgm structure

database
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• Explore performance data from multiple perspectives
• Rank order by metrics to focus on what’s important
• Compute derived metrics to gain insight
• Explore call stack traces to understand transient behavior

database

HPCToolkit Performance Tools



Attribution to Static + Dynamic Context

costs for
• inlined procedures
• loops
• function calls in full context

calling context
view



• Call path profiling in HPCToolkit

• Pinpointing and quantifying scalability bottlenecks

• Blame shifting
— analyzing multithreaded computations based on work stealing
— quantifying the impact of lock contention on threaded code
— pinpointing load imbalance in parallel codes

• Understanding execution behavior over time

• Associating memory hierarchy inefficiency with data

• Conclusions

• Challenges ahead

• Related work
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• Sample timer or hardware counter overflows

• Gather calling context using stack unwinding

Measure and attribute costs in their calling context

Call Path Profiling
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Call path sample  Calling Context Tree (CCT)

Overhead proportional to sampling frequency... 
...not call frequency

instruction  pointer

return address

return address

return address



Unwinding Fully-optimized Parallel Code
Unwinding using demand-driven binary analysis 

• Identify procedure bounds
— for dynamically-linked code, do this at runtime
— for statically-linked code, do this at compile time

• Compute unwind recipes for a procedure on the fly
—  scan the procedure’s object code, tracking the locations of 

• caller’s program counter
• caller’s frame and stack pointer

— create unwind recipes between pairs of frame-relevant instructions
• Processors: x86-64, PowerPC (BG/P), MIPS (SiCortex)
• Results

— accurate call path profiles
— overheads of < 2% for sampling frequencies of 200/s 
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Nathan Tallent, John Mellor-Crummey, and Michael Fagan. Binary analysis for measurement and 
attribution of program performance. PLDI 2009, Dublin, Ireland,  Distinguished Paper Award.



• Call path profiling in HPCToolkit

• Pinpointing and quantifying scalability bottlenecks

• Blame shifting
— analyzing multithreaded computations based on work stealing
— quantifying the impact of lock contention on threaded code
— pinpointing load imbalance in parallel codes

• Understanding execution behavior over time

• Associating memory hierarchy inefficiency with data

• Conclusions

• Challenges ahead

• Related work
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The Problem of Scaling Losses
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Pinpointing and Quantifying Scalability Bottlenecks

200K

400K600K =

P Q

Weak scaling

−P ×        Q ×

                       : no coefficients
 Strong scaling: needs red coefficients

C. Coarfa et al.  Scalability 
analysis of SPMD codes 
using expectations. ICS 
2007, Seattle, WA.

N. Tallent et al.  
Diagnosing scalability 
bottlenecks in emerging 
petascale applications.  
SC 2009, Portland, OR.



• Parallel, adaptive-mesh refinement (AMR) code
• Block structured AMR; a block is the unit of computation
• Designed for compressible reactive flows
• Can solve a broad range of (astro)physical problems
• Portable: runs on many massively-parallel systems
• Scales and performs well
• Fully modular and extensible: components can be 

combined to create many different applications
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Scalability Analysis of Flash

Cellular detonation
Helium burning on neutron stars

Laser-driven shock instabilitiesNova outbursts on white dwarfs

Rayleigh-Taylor instability
Orzag/Tang MHD
vortex

Magnetic
Rayleigh-Taylor Figures courtesy of FLASH Team, University of Chicago

Code:   University of Chicago FLASH
Simulation:  white dwarf detonation
Platform:  Blue Gene/P 
Experiment:  8192 vs. 256 processors
Scaling type:  weak



System-wide Scaling Losses in Flash
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13.4% of the scaling losses in Flash execution are due 
to the use of a “digital orrery” all-to-all communication 
pattern as part of adaptive mesh refinement. This 
shows up in the code as a loop over all processors 
containing pairwise communication. This single 
problem accounts for almost 1/4 of the scalability loss 
during Flash’s evolution phase. 

This problem caused a 21% scalability loss in the 
initialization phase as well



Improved Flash Scaling of AMR Setup

18Graph courtesy of Anshu Dubey, U Chicago

improved scalability after fixing 
AMR scaling bottleneck described 
in previous slide (lower is better)



       Scalability Losses at the Loop Level
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Execution time 
increases 2.8x in the 
loop that scales worst 

loop contributes a 
6.9% scaling loss to 
the execution

S3D code (Sandia CRF)
PI: Jackie Chen
DNS of turbulent combustion



• Call path profiling in HPCToolkit

• Pinpointing and quantifying scalability bottlenecks

• Blame shifting
— analyzing multithreaded computations based on work stealing
— quantifying the impact of lock contention on threaded code
— pinpointing load imbalance in parallel codes

• Understanding execution behavior over time

• Associating memory hierarchy inefficiency with data

• Conclusions

• Challenges ahead

• Related work
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Blame Shifting
• Problem: in many circumstances sampling measures 

symptoms of performance losses rather than causes
— worker threads waiting for work
— threads waiting for a lock
— MPI process waiting for peers in a collective communication

• Approach: shift blame for losses from victims to perpetrators

• Flavors
— active measurement
— analysis only

21



Cilk: A  Multithreaded Language
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cilk int fib(n) {
  if (n < 2) return n;
  else {
    int x, y;
    x = spawn fib(n-1);
    y = spawn fib(n-2);
    sync;
    return (x + y);
  }
}

f

f
(n)

f

ff ff

...... ...... ......

......

asynchronous calls 
create logical tasks that 
only block at a sync...

...quickly create significant 
logical parallelism.



Cilk Program Execution using Work Stealing
• Challenge: Mapping logical tasks to compute cores

• Cilk approach: 
— lazy thread creation plus work-stealing scheduler

• spawn: a potentially parallel task is available
• an idle thread steals tasks from a random working thread
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Possible Execution:
thread 1 begins
thread 2 steals from 1
thread 3 steals from 1
etc...

f

f
(n)

f

ff ff

...... ...... ......

......



Wanted: Call Path Profiles of Cilk

• Consider thread 3:
— physical call path:

— logical call path:
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thread 1
thread 2
thread 3

f f ...

f
(n)

f f ...

Logical call path profiling: Recover full relationship 
between physical and user-level execution

Work stealing separates
user-level calling contexts in
space and time

f

f

f

ff ff

...... ...... ......

......



Three Complementary Techniques:

Effective Performance Analysis

• Recover logical calling contexts in presence of work-stealing

• Quantify parallel idleness (insufficient parallelism)

• Quantify parallel overhead

• Attribute idleness and overhead to logical contexts
— at the source level
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cilk int fib(n) {
  if (n < 2) {...}
  else {
    int x, y;
    x = spawn fib(n-1);
    y = spawn fib(n-2);
    sync;
    return (x + y);

high parallel overhead from 
creating many small tasks 

f
(n)

f f ...



 

• Metrics: Effort = “work” + “idleness”
— associate metrics with user-level calling contexts
— insight: attribute idleness to its cause: context of working thread

• a thread looks past itself when ‘bad things’ happen to others

• Work stealing-scheduler: one thread per core
— maintain W (# working threads) and I (# idling threads)

• slight modifications to work-stealing run time
 – atomically incr/decr W when thread exits/enters scheduler

• when a sample event interrupts a working thread 
 – I ﹦ #cores − W 

 – apportion others’ idleness to me: I / W

• Example: Dual quad-cores; on a sample, 5 are working:

Measuring & Attributing Parallel Idleness

26

idle: drop sample
(it’s in the scheduler!) 

W += 1
I += 3/5

�
W = 5�
I = 3

for each
worker:



Parallel Overhead
• Parallel overhead 

— when a thread works on something other than user code
• (we classify waiting for work as idleness)

• Pinpointing overhead with call path profiling
— impossible, without prior arrangement

• work and overhead are both machine instructions
— insight: have compiler tag instructions as overhead
— quantify samples attributed to instructions that represent ovhd

• use post-mortem analysis

27



Top-down Work for Cilk ‘Cholesky’

28

13.5% of cilk_main’s 
total effort was spent in 
idleness...

2.97% and 0.215% of 
cholesky’s total effort 
was spent in idleness 
and overhead.

Cilk-
level 
call 
path

➊

➋

➌
percent percent



Bottom-up Idleness for Cilk ‘Cholesky’

29

Pinpoints serial 
initialization/finalization 
routines.

We can pinpoint and 
quantify the effect of 

serialization.

percentpercent



Using Parallel Idleness & Overhead
• Total effort = useful work + idleness + overhead

• Enables powerful and precise interpretations

• Normalize w.r.t. total effort to create
— percent idleness or percent overhead

30

idleness overhead interpretation

low low effectively parallel

low high coarsen concurrency granularity

high low refine concurrency granularity

high high switch parallelization strategies

Nathan Tallent, John Mellor-Crummey. Effective performance measurement 
and analysis of multithreaded applications. PPoPP 2009, Raleigh, NC.



• Call path profiling in HPCToolkit

• Pinpointing and quantifying scalability bottlenecks

• Blame shifting
— analyzing multithreaded computations based on work stealing
— quantifying the impact of lock contention on threaded code
— pinpointing load imbalance in parallel codes

• Understanding execution behavior over time

• Associating memory hierarchy inefficiency with data

• Conclusions

• Challenges ahead

• Related work
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Understanding Lock Contention
• Lock contention causes idleness

— explicitly threaded programs (Pthreads, etc)
— implicitly threaded programs (critical sections in OpenMP, Cilk...)

• Use “blame-shifting” to shift blame from victim to perpetrator
— use shared state (locks) to communicate blame

• How it works
— consider spin-waiting* 
— sample a working thread:

• charge to ‘work’ metric
— sample an idle thread

• accumulate in idleness counter assoc. with lock (atomic add)
— working thread releases a lock

• atomically swap 0 with lock’s idleness counter
• exactly represents contention while that thread held the lock
• unwind the call stack to attribute lock contention to a calling context

32*different technique handles blocking



Lock contention in MADNESS
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lock contention 
accounts for 23.5% 
of execution time.

Adding futures 
to shared global 
work queue.

µs16 cores; 1 thread/core (4 x Barcelona)

quantum chemistry; MPI + pthreads



• Call path profiling in HPCToolkit

• Pinpointing and quantifying scalability bottlenecks

• Blame shifting
— analyzing multithreaded computations based on work stealing
— quantifying the impact of lock contention on threaded code
— pinpointing load imbalance in parallel codes

• Understanding execution behavior over time

• Associating memory hierarchy inefficiency with data
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PFLOTRAN

2. Notice top two 
call sites...

3. Plot the per-process 
values:

Early finishers...

... become early 
arrivers at Allreduce

1. Drill down ‘hot path’ 
to loop (a balance point)

8K cores, Cray XT5 



• Call path profiling in HPCToolkit

• Pinpointing and quantifying scalability bottlenecks

• Blame shifting
— analyzing multithreaded computations based on work stealing
— quantifying the impact of lock contention on threaded code
— pinpointing load imbalance in parallel codes

• Understanding execution behavior over time

• Associating memory hierarchy inefficiency with data

• Conclusions

• Challenges ahead

• Related work
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• Profiling compresses out the temporal dimension
—temporal patterns, e.g. serialization, are invisible in profiles

• What can we do? Trace call path samples
—sketch: 

– N times per second, take a call path sample of each thread
– organize the samples for each thread along a time line
– view how the execution evolves left to right
– what do we view?

 assign each procedure a color; view a depth slice of an execution

3717

Understanding Temporal Behavior

Time

Processes

Call 
stack



Call Path Tracing for Parallel Programs
1D FFT, CAF 2.0, 256 processes, Cray XT, 128M/core

38Scalable Fine-grained Call Path Tracing,  Submitted to IPDPS 2011.



Call Path Tracing for Parallel Programs
PFLOTRAN: Fortran+MPI, 8184 cores, Cray XT (982s)

39Scalable Fine-grained Call Path Tracing,  Submitted to IPDPS 2011.



Call Path Tracing for Parallel Programs
PFLOTRAN: Fortran+MPI, 8184 cores, Cray XT (1st minute)
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• Call path profiling in HPCToolkit

• Pinpointing and quantifying scalability bottlenecks

• Blame shifting
— analyzing multithreaded computations based on work stealing
— quantifying the impact of lock contention on threaded code
— pinpointing load imbalance in parallel codes

• Understanding execution behavior over time

• Associating memory hierarchy inefficiency with data
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• Challenges ahead
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41

Outline



• Goal: associate memory hierarchy performance losses with data

• Approach
— intercept allocations to associate with their data ranges
— associate latency with data using “instruction-based sampling” on 

AMD Opteron CPUs
• identify instances of loads and store instructions
• identify the data structure an access touches based on L/S address
• measure the total latency associated with each L/S

— present quantitative results using hpcviewer

42

Data Centric Analysis



Data Centric Analysis of S3D

43

41.2% of memory hierarchy 
latency related to yspecies 
array

yspecies latency for this 
loop is 14.5% of total 
latency in program



Conclusions
• Obtain insight, accuracy & precision by combining call path 

profiling, binary analysis, and blame shifting

• Show surprisingly effective measurement and source-level 
attribution for fully optimized code (1-3% overhead)
— statements in their full static and dynamic context
— project low-level measurements to much higher levels

• Sampling-based measurements can deliver insight into a 
range of phenomena
— scalability bottlenecks
— where insufficient parallelism lurks
— sources of lock contention
— load imbalance
— temporal dynamics
— problematic data structures

44



Some Challenges Ahead
• Support characteristics of emerging hardware and software

— heterogeneous hardware 
• manycore, CPU+GPU
• dynamic power and frequency scaling

— software
• one-sided communication
• asynchronous operations
• dynamic parallelism
• adaptation
• failure recovery

• Augment monitoring capabilities throughout the stack
— hardware, OS, runtime, language-level API

• Improve data management for extreme scale parallelism

• Transition from descriptive to prescriptive feedback

• Guide online adaptation and tuning
45



Some Related Work
• Sampling 

— e.g., gprof, Speedshop, Shark, PTU, DCPI, Oprofile, CrayPat

• Instrumentation
— e.g., Tau, Vtune,  IBM HPC Toolkit, Dyninst, CrayPat, Pin

• Tracing
— e.g., vt, Tau, CEBPA,

• Call stack profiling
— e.g., mpiP, Tau,  PTU, Shark

• Visualization 
— e.g., Paraver, Projections,  Vampir, Jumpshot, EXPERT

• Parallel Analysis 
— e.g., Scalasca

• Analysis
— e.g., IBM HPCS Toolkit, Cray Apprentice, EXPERT, PerfExpert 46



HPCToolkit Capabilities at a Glance

Attribute Costs to Code

Analyze Behavior 
over Time

Assess Imbalance 
and Variability 

Associate Costs with Data

Shift Blame from 
Symptoms to Causes 

Pinpoint & Quantify 
Scaling Bottlenecks

hpctoolkit.org



HPCToolkit Publications
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Measurement
• Binary analysis for (1) recovering functions in partially stripped code, (2) 

unwinding fully-optimized code, (3) recovering program structure
• Nearly perfect call stack sampling of fully optimized code with low overhead

Binary Analysis for Measurement and Attribution of Program Performance, 
PLDI, June 2009. Distinguished Paper Award.

Pinpointing Locality Problems Using Data-centric Analysis,
Submitted to CGO 2011, April 2011

Pinpoint Performance Losses in Multithreaded Executions
Effective Performance Measurement and Analysis of Multithreaded 

Applications, PPoPP, February 2009.
Analyzing Lock Contention in Multithreaded Applications, 

PPoPP, January 2010  

Pinpoint Scalability Bottlenecks using Differential Profiling
Scalability Analysis of SPMD Codes using Expectations, ICS, June 2007



Overview Paper
HPCToolkit: Tools for performance analysis of optimized parallel programs,

Concurrency & Computation: Practice and Experience, January 2010

Novel Capabilities of HPCToolkit - II
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User Interfaces
Effectively Presenting Call Path Profiles of Application Performance, PSTI, 

September 2010.
Scalable Fine-grained Call Path Tracing, Submitted to IPDPS 2011.

Performance Analysis using Sampling on Leadership Platforms

Diagnosing Performance Bottlenecks in Emerging Petascale Applications, 
SC09, November 2009 

Scalable Identification of Load Imbalance using Call Path Profiles, SC10, 
November 2010



Additional Tool Screenshots
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Execution Cost Breakdown (Routine-Level)
Flash on Blue Gene/P, 8K cores, white dwarf detonation
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Costs sorted by exclusive time 
spent in individual routines
Note: only the routines shown 
in blue are user code
BG/P DCMF Communication 
Layer costs
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Execution Cost Attribution (Callers View)
Flash on Blue Gene/P, 8K cores, white dwarf detonation

Looking up the call chain to see 
where the callers that caused costs to 
be incurred for tree reductions. Most 
of the cost is incurred by guard cell 
filling and flux conservation.



Execution Cost Attribution (Top Down)
Flash on Blue Gene/P, 8K cores, white dwarf detonation

53

Looking up down the call chain to 
see where the most of the time was 
spent. 80.5% is spent in the loop 
that calls the hydrodynamics 
simulation. 52.4% of the time is 
spent in the hydro routine (or 
below). The rest is spent in other 
routines called from the main loop



Execution Cost Attribution (Top-Down)
PFLOTRAN, Cray XT, 8184 cores, Hanford problem
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66.5% of the cycles are spent in 
the transport calculation. 30.8% of 
the cycles are spent in the flow 
calculation



Execution Cost Attribution (Top-Down)
PFLOTRAN, Cray XT, 8184 cores, Hanford problem
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Detailed analysis of the transport 
calculation: Most of the time is 
spent in the PETSc inside the 
Biconjugate gradient solver.

Overall: 1 FLOP every 7.4 cycles

Overall: 1 FLOP 
every 7.4 cycles


