

Gaining Insight into Parallel Program Performance Using Sampling

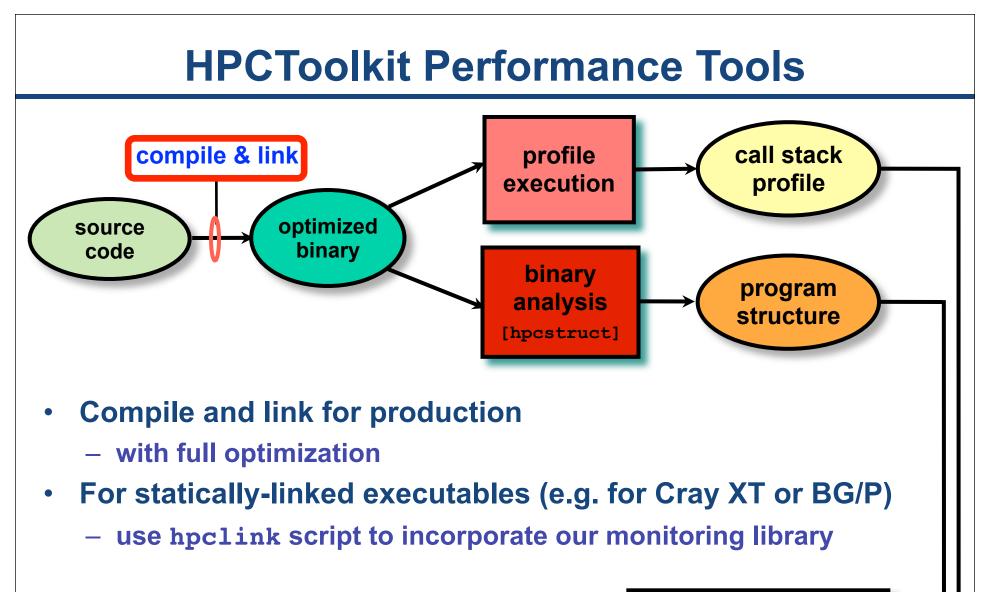
John Mellor-Crummey

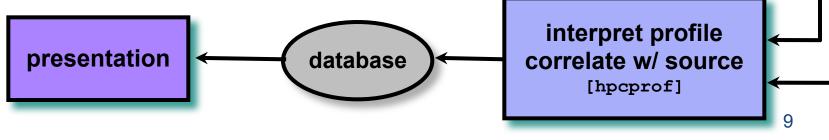
DOE Center for Scalable Application Development Software johnmc@cs.rice.edu

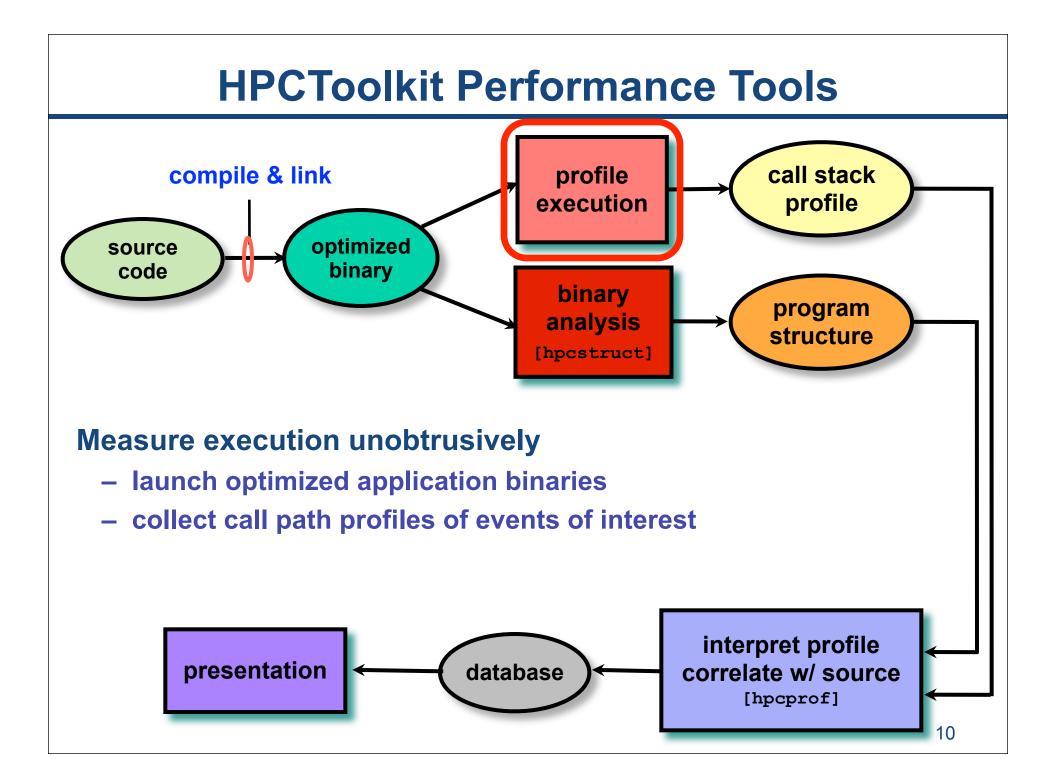
Collaborators: Nathan Tallent, Michael Fagan, Mark Krentel, Laksono Adhianto, Xu Liu, Reed Landrum, Michael Franco

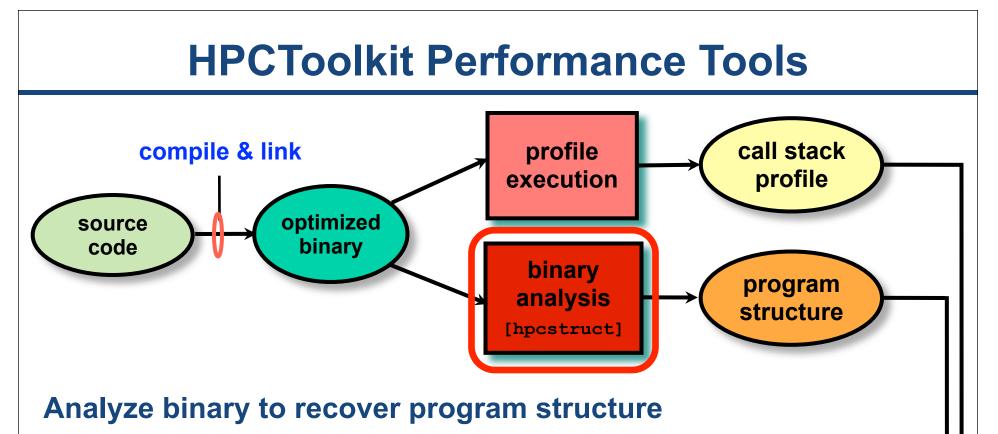
hpctoolkit.org

Motivation

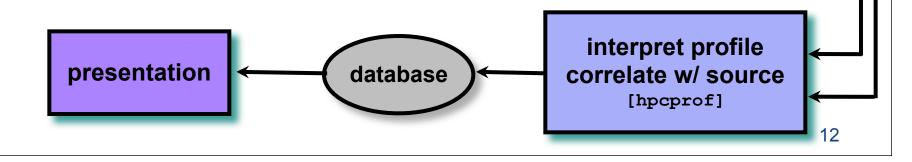

- Complex hardware
 - multi-level parallelism
 - ILP, short vectors, multiple cores, multiple sockets, multiple nodes
 - large-scale parallelism
- Sophisticated software
 - multiphysics, multiscale, adaptive
- Wide gap between peak and typical performance

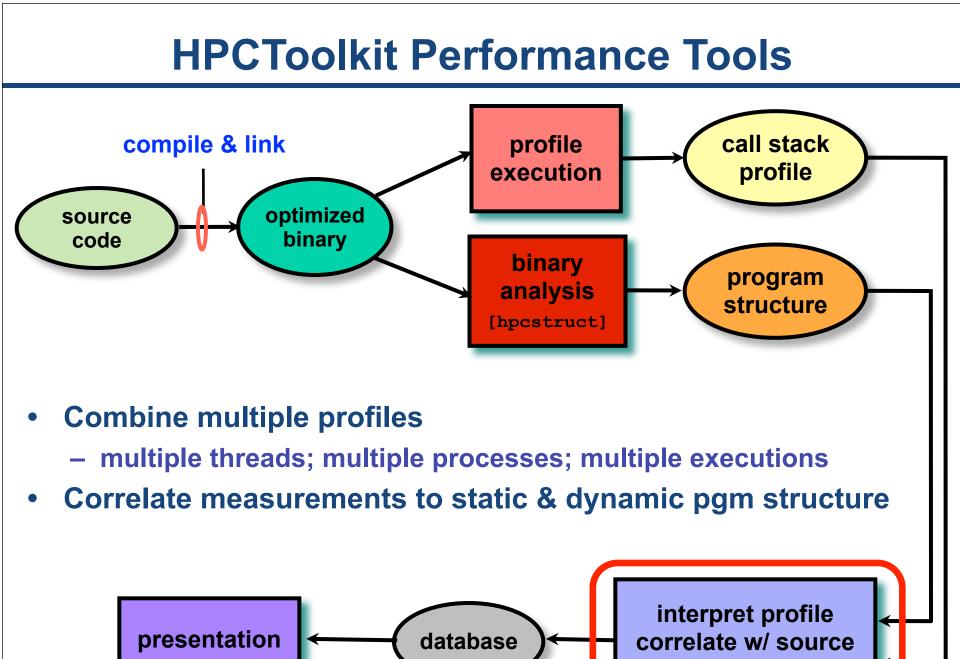

Challenges

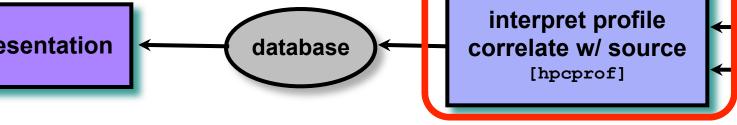

- Understand where and why performance losses occur in sophisticated parallel codes on complex parallel hardware
- Identify opportunities for improvement
- Quantify potential benefits

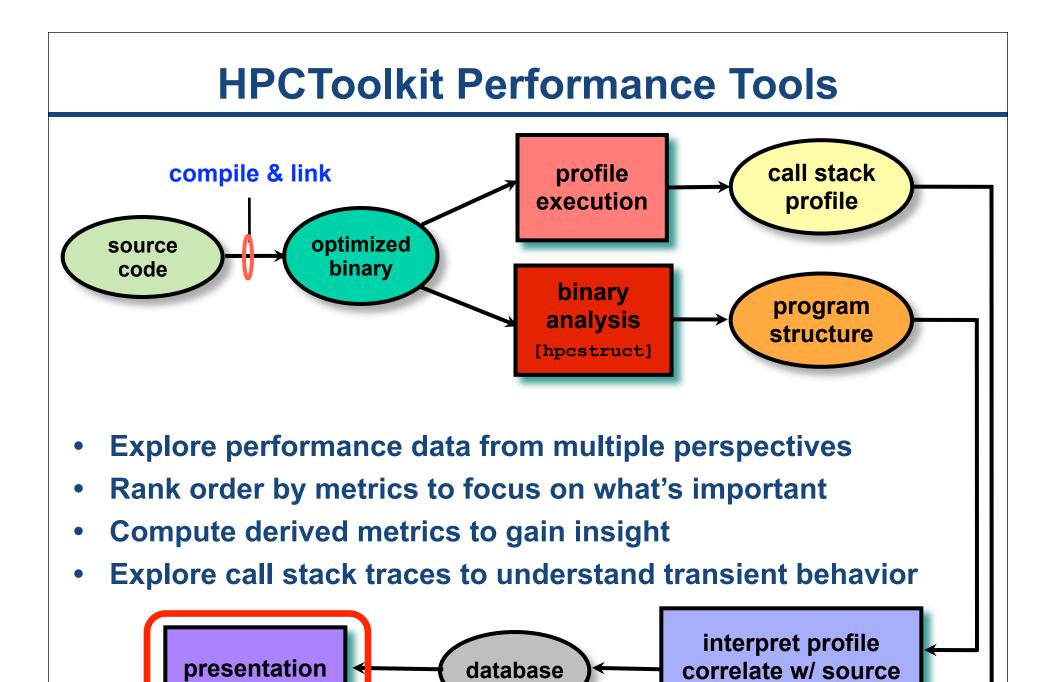

Performance Analysis Goals

- Accurate measurement of parallel scientific codes
 - large, multi-lingual programs
 - fully optimized code: loop optimization, templates, inlining
 - binary-only libraries, sometimes partially stripped
 - complex execution environments
 - dynamic loading or static binaries
 - SPMD parallel codes with threaded node programs
 - batch jobs
 - production executions
- Effective performance analysis
 - pinpoint and explain problems
 - intuitive enough for scientists and engineers
 - detailed enough for compiler writers
 - yield actionable results
- Scalable to petascale systems







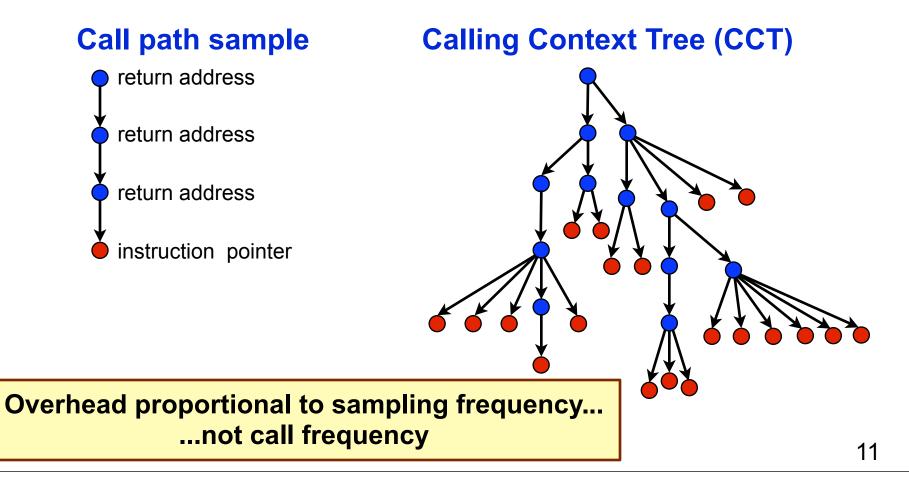


- analyze machine code, line map, and debugging information
- extract loop nesting information and identify inlined procedures
- map transformed loops and procedures back to source

[hpcprof]

14

Attribution to Static + Dynamic Context


hpcviewer: MOAB: mbperf_iMesh 200	B (Barcelona 2360 SE) calling context
👻 mbperf_iMesh.cpp 🖾 🞯 TypeSequenceManager.hpp 🖾 🞯 stl_tree.	
22 * Define less-than comparison for EntitySequence po 23 * of the entity handles in the pointed-to EntitySeq 24 */	
<pre>25 class SequenceCompare { 26 public: bool operator()(const EntitySequence* a, 27 { return a->end_handle() < b->start_handle(); } 28 };</pre>	 costs for inlined procedures
Calling Context View Callers View 👫 Flat View	 loops function calls in full context
] 🕆 🐣 🌜 f 🐼 📝	
Scope	PAPI_L1_DCM (I) V PAPI_TOT_CYC (I) P
▼ main	8.63e+08 100 % 1.13e+11 100 %
testB(void*, int, double const*, int const*)	8.35e+08 96.7% 1.10e+11 97.6%
inlined from mbperf_iMesh.cpp: 261	6.81e+08 78.9% 0.98e+11 86.5%
loop at mbperf_iMesh.cpp: 280-313	3.43e+08 39.8% 3.37e+10 29.9%
Imesh_getvtxarrcoords_	3.20e+08 37.1% 2.18e+10 19.3%
MBCore::get_coords(unsigned long const*, in	t, double*) cc 3.20e+08 37.1% 2.16e+10 19.1%
Ioop at MBCore.cpp: 681–693	3.20e+08 37.1% 2.16e+10 19.1%
inlined from stl_tree.h: 472	2.04e+08 23.7% 9.38e+09 8.3%
V loop at stl_tree.h: 1388	2.04e+08 23.6% 9.37e+09 8.3%
inlined from TypeSequenceMan	ager.hpp: 27 1.78e+08 20.6% 8.56e+09 7.6%
TypeSequenceManager.hp	-
)4 ►(

- Call path profiling in HPCToolkit
- Pinpointing and quantifying scalability bottlenecks
- Blame shifting
 - analyzing multithreaded computations based on work stealing
 - quantifying the impact of lock contention on threaded code
 - pinpointing load imbalance in parallel codes
- Understanding execution behavior over time
- Associating memory hierarchy inefficiency with data
- Conclusions
- Challenges ahead
- Related work

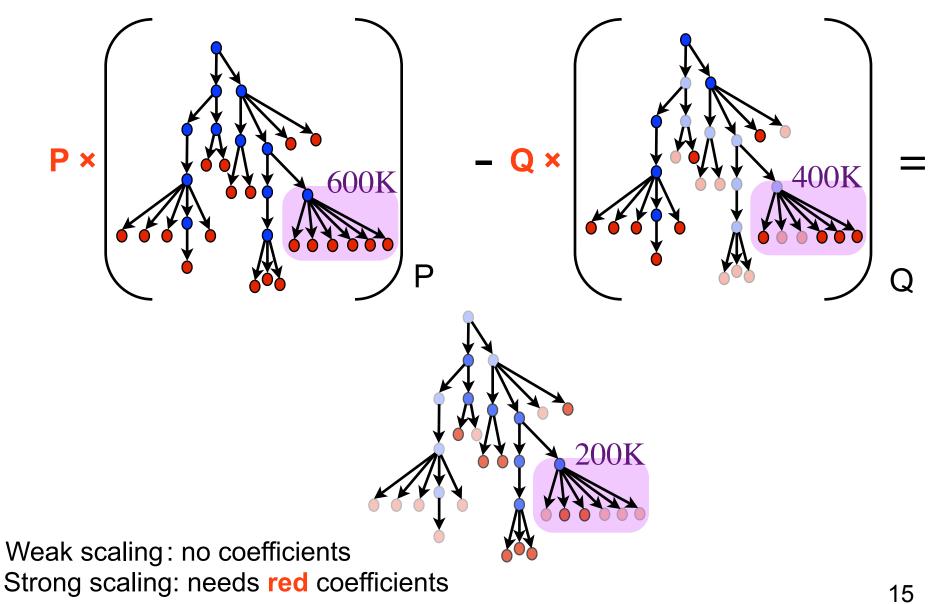
Call Path Profiling

Measure and attribute costs in their calling context

- Sample timer or hardware counter overflows
- Gather calling context using stack unwinding

Unwinding Fully-optimized Parallel Code

Unwinding using demand-driven binary analysis

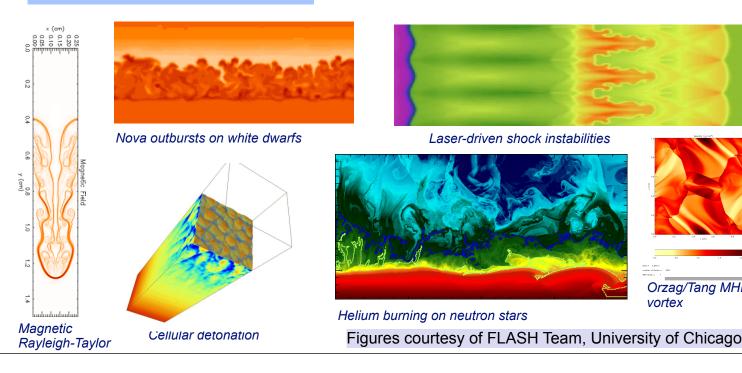

- Identify procedure bounds
 - for dynamically-linked code, do this at runtime
 - for statically-linked code, do this at compile time
- Compute unwind recipes for a procedure on the fly
 - scan the procedure's object code, tracking the locations of
 - caller's program counter
 - caller's frame and stack pointer
 - create unwind recipes between pairs of frame-relevant instructions
- Processors: x86-64, PowerPC (BG/P), MIPS (SiCortex)
- Results
 - accurate call path profiles
 - overheads of < 2% for sampling frequencies of 200/s</p>

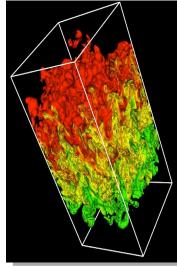
Nathan Tallent, John Mellor-Crummey, and Michael Fagan. Binary analysis for measurement and attribution of program performance. PLDI 2009, Dublin, Ireland, **Distinguished Paper Award.**

- Call path profiling in HPCToolkit
- Pinpointing and quantifying scalability bottlenecks
- Blame shifting
 - analyzing multithreaded computations based on work stealing
 - quantifying the impact of lock contention on threaded code
 - pinpointing load imbalance in parallel codes
- Understanding execution behavior over time
- Associating memory hierarchy inefficiency with data
- Conclusions
- Challenges ahead
- Related work

The Problem of Scaling Losses 1.00 .75 Efficiency .50 **Ideal efficiency Actual efficiency** .25 .00 4096 1638A ~6 0 64 250 N 1024 65536 **CPUs** Note: higher is better 14

Pinpointing and Quantifying Scalability Bottlenecks

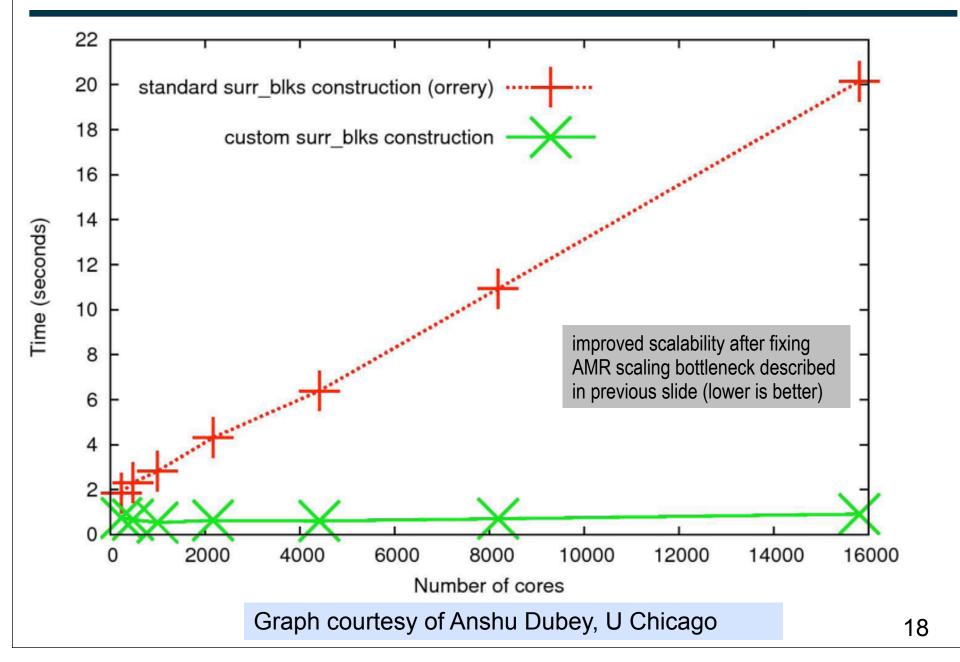

Scalability Analysis of Flash


Code: Simulation: **Platform: Experiment: Scaling type:**

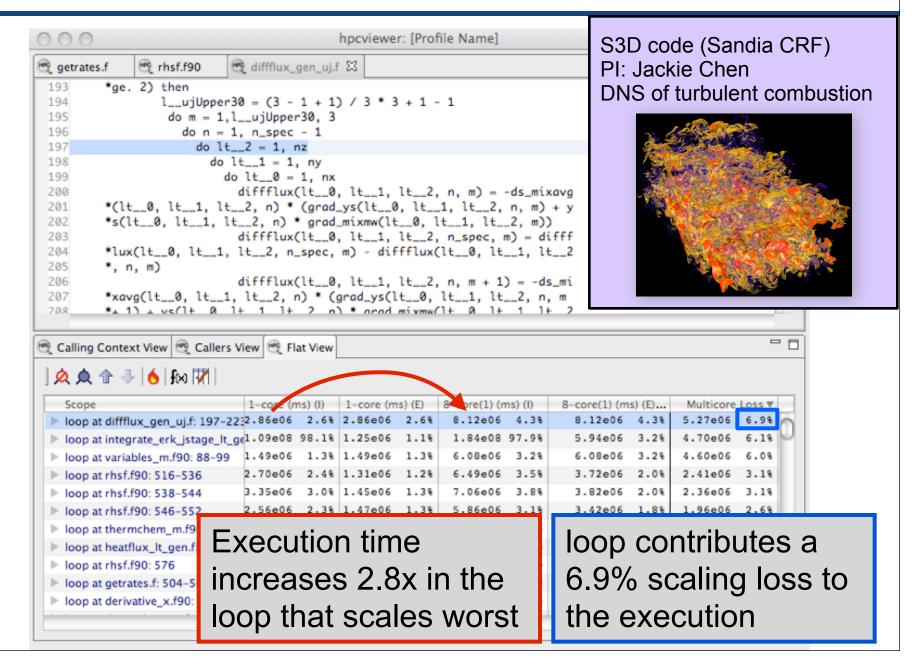
University of Chicago FLASH white dwarf detonation Blue Gene/P 8192 vs. 256 processors weak

Orzag/Tang MHD

vortex



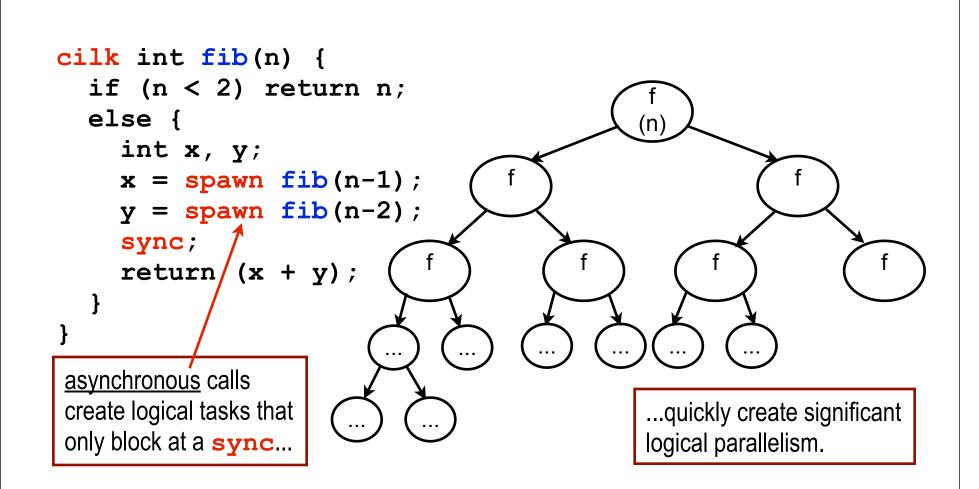
Rayleigh-Taylor instability


System-wide Scaling Losses in Flash

niver_initFlash.F90 🛛 🞯 local_tree_build.F90 🔀 🞯 Driver_evolveFl	ash.F90						-	
207!Second pass add the rest of the blocks.	^	13.4% of	the scalin	ig losse	es in F	Flash execution	on are	; d
208 Do ipass = 1,2		to the use of a "digital orrery" all-to-all communication						
209			•		•			
210 lnblocks_old = lnblocks		battern as	s part of a	laptive	mes	h refinement.	INIS	
211 proc = mype 212!Loop through all processors		shows up in the code as a loop over all processors						
212 Do iproc = 0, nprocs-1		containing pairwise communication. This single						
214			• •			•	•	
215 If (iproc -= 0) Then	ŗ	oroblem a	accounts f	for almo	ost 1/-	4 of the scala	bility l	0
216 off_proc = .False. 217 Else		during Ela	ash's evol	ution pł	าลรค		•	
217 Else 218 off_proc = .True.		auning i ie			1000.			
210 End TF								
		This prob	lem cause	ed a 21	% sc	alability loss i	n the	
Calling Context View 🔨 Callers View 📊 Flat View		This problem caused a 21% scalability loss in the initialization phase as well						
😪 Calling Context View 💦 Callers View 📊 Flat View		•						
		•						
Calling Context View 🔧 Callers View 👫 Flat View	i	nitializati	on phase	as well				
] 1 4 5 foo foo foo foo foo	i %	nitializati	on phase	as well	us) (l)	8192/WALLCLOCK ((us) (l)	
] 1 I I I I I I I I I I I I I I I I I I	i %	nitializati scalality loss	on phase ((🛪 🛛 256/w/ 0 8	as well	us) (l) 100 %	8192/WALLCLOCK (6.71e+08	(us) (l) 100 %	
] 1 4 5 for the second	j % 2 2	nitializati scalality loss 2.46e+01 10 2.46e+01 10	on phase	ALLCLOCK (5.07e+08 5.07e+08	us)(l) 100 % 100 %	8192/WALLCLOCK (6.71e+08 6.71e+08	(us) (l) 100 % 100 %	0
] 1 I I I I I I I I I I I I I I I I I I	j % 2 2 1	nitializati scalality loss 2.46e+01 10 2.46e+01 10 1.41e+01 57	on phase	as well	us)(I) <mark>100 %</mark> 100 % 88.1%	8192/WALLCLOCK (6.71e+08 6.71e+08 5.41e+08	(us) (l) 100 % 100 % 80.6%	0
] ☆ ♣ I fix I III III A+ A- Scope Experiment Aggregate Metrics ♥flash ♥ B> driver_evolveflash ♥ loop at Driver_evolveFlash.F90: 92	j % 2 2 1 1	nitializati scalality loss .46e+01 10 2.46e+01 10 1.41e+01 57 1.41e+01 57	on phase ((, v 256/w/ 0 % .5% .5%	as well	us)(l) 100 % 100 % 88.1% 88.1%	8192/WALLCLOCK (6.71e+08 6.71e+08 5.41e+08 5.41e+08	(us) (l) 100 % 100 % 80.6% 80.6%	0
] ☆ ♣ Image: Im	i % 2 2 1 1 3	scalality loss .46e+01 10 .46e+01 10 .41e+01 57 .41e+01 57 .89e+00 15	on phase	as well	us)(l) 100 % 100 % 88.1% 88.1% 4.4%	8192/WALLCLOCK (6.71e+08 6.71e+08 5.41e+08 5.41e+08 4.84e+07	(us) (l) 100 % 100 % 80.6% 80.6% 7.2%	0
]	i % 2 2 1 1 1 3 3	scalality loss .46e+01 10 2.46e+01 10 1.41e+01 57 1.41e+01 57 3.89e+00 15 3.77e+00 15	on phase	as well ALLCLOCK (5.07e+08 4.46e+08 4.46e+08 2.24e+07 2.52e+06	us)(I) 100 % 88.1% 88.1% 4.4% 0.5%	8192/WALLCLOCK (6.71e+08 6.71e+08 5.41e+08 5.41e+08 4.84e+07 2.78e+07	(us) (l) 100 % 100 % 80.6% 80.6% 7.2% 4.1%	0
] ☆ ♣ Image: At A- Scope Experiment Aggregate Metrics ♥flash ♥ Bod driver_evolveflash ♥ loop at Driver_evolveFlash.F90: 92 ♥ Bogrid_updaterefinement ♥ Bogr_updaterefinement ♥ Bogr_updaterefinement ♥ Bogr_updaterefinement	j % 22 11 1 3 3 3 3	scalality loss 46e+01 10 46e+01 10 44e+01 57 44e+01 57 889e+00 15 77e+00 15 864e+00 14	on phase () 256/W/ 0 % .5% .5% .8% .4% .8%	ALLCLOCK (5.07e+08 5.07e+08 4.46e+08 4.46e+08 2.24e+07 2.52e+06 5.75e+05	us)(I) 100 % 100 % 88.1% 4.4% 0.5% 0.1%	8192/WALLCLOCK (6.71e+08 6.71e+08 5.41e+08 5.41e+08 4.84e+07 2.78e+07 2.50e+07	(us) (l) 100 % 100 % 80.6% 7.2% 4.1% 3.7%	0
Image: Section of the section of t	i % 2 1 1 1 3 3 3 3 3	scalality loss .46e+01 10 2.46e+01 10 1.41e+01 57 1.41e+01 57 3.89e+00 15 3.77e+00 15	on phase	as well ALLCLOCK (5.07e+08 4.46e+08 4.46e+08 2.24e+07 2.52e+06	us) (I) 100 % 88.1% 88.1% 4.4% 0.5% 0.1% 0.1%	8192/WALLCLOCK (6.71e+08 6.71e+08 5.41e+08 5.41e+08 4.84e+07 2.78e+07 2.50e+07 2.32e+07	(us) (l) 100 % 80.6% 80.6% 7.2% 4.1% 3.7% 3.5%	0
] ☆ ↔ fx M A A A Scope Experiment Aggregate Metrics ▼flash ▼ B driver_evolveflash ▼ loop at Driver_evolveFlash.F90: 92 ▼ B grid_updaterefinement ▼ B gr_updaterefinement ▼ B amr_refine_derefine ▼ B amr_morton_process ▼ B find_surrblks	i % 22 11 13 33 33 33 33	scalality loss 46e+01 10 46e+01 10 44e+01 57 41e+01 57 89e+00 15 77e+00 15 664e+00 14	on phase ((256/W/ 0 % .5% .5% .5% .8% .4% .9% .4%	ALLCLOCK (5.07e+08 5.07e+08 4.46e+08 4.46e+08 2.24e+07 2.52e+06 5.75e+05 2.65e+05	us) (l) 100 % 88.1% 88.1% 4.4% 0.5% 0.1% 0.1% 0.0%	8192/WALLCLOCK (6.71e+08 6.71e+08 5.41e+08 4.84e+07 2.78e+07 2.50e+07 2.32e+07 2.24e+07	(us) (l) 100 % 80.6% 80.6% 7.2% 4.1% 3.7% 3.5% 3.3%	0
Image: Second State Image: Second State Image: Second State Image: Second State Scope Experiment Aggregate Metrics Image: Second State Image: Second State	i % 2 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	scalality loss .46e+01 10 2.46e+01 10 1.41e+01 57 1.41e+01 57 3.89e+00 15 3.77e+00 15 3.64e+00 14 3.42e+00 13 3.30e+00 13	on phase ((256/W/ 0 % .5% .5% .5% .4% .9% .4%	ALLCLOCK (5.07e+08 5.07e+08 4.46e+08 4.46e+08 2.24e+07 2.52e+06 5.75e+05 2.65e+05 2.50e+05	us)(I) 100 % 100 % 88.1% 4.4% 0.5% 0.1% 0.0% 0.0%	8192/WALLCLOCK (6.71e+08 6.71e+08 5.41e+08 4.84e+07 2.78e+07 2.50e+07 2.32e+07 2.24e+07 2.24e+07	(us) (l) 100 % 80.6% 7.2% 4.1% 3.7% 3.5% 3.3% 3.3%	
Image: Section of the section of	i % 2 2 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	scalality loss 46e+01 10 46e+01 10 41e+01 57 41e+01 57 89e+00 15 77e+00 15 64e+00 14 442e+00 13 30e+00 13 229e+00 13	on phase (() 256/W/ 0 8 0 8 .58 .58 .48 .98 .48 .48 .48 .48	ALLCLOCK (5.07e+08 5.07e+08 4.46e+08 2.24e+07 2.52e+06 5.75e+05 2.65e+05 2.50e+05 2.40e+05	us) (l) 100 % 88.1% 88.1% 4.4% 0.5% 0.1% 0.0% 0.0% 0.0%	8192/WALLCLOCK (6.71e+08 6.71e+08 5.41e+08 4.84e+07 2.78e+07 2.50e+07 2.32e+07 2.24e+07 2.24e+07 2.24e+07	(us) (l) 100 % 100 % 80.6% 7.2% 4.1% 3.7% 3.5% 3.3% 3.3% 3.3%	0
Image: State of the state	i % 2 2 1 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	scalality loss 46e+01 10 46e+01 10 41e+01 57 41e+01 57 89e+00 15 677e+00 15 664e+00 14 4242e+00 13 8.30e+00 13 8.29e+00 13	on phase (() 256/W/ 0 8 0 8 .58 .58 .48 .98 .48 .98 .48 .48 .48 .48 .48	ALLCLOCK (5.07e+08 5.07e+08 4.46e+08 4.46e+08 2.24e+07 2.52e+06 5.75e+05 2.65e+05 2.50e+05 2.40e+05	us) (l) 100 % 100 % 88.1% 4.4% 0.5% 0.1% 0.0% 0.0% 0.0% 0.0%	8192/WALLCLOCK (6.71e+08 6.71e+08 5.41e+08 4.84e+07 2.78e+07 2.50e+07 2.32e+07 2.24e+07 2.24e+07 2.24e+07 2.24e+07	(us) (l) 100 % 80.6% 7.2% 4.1% 3.7% 3.5% 3.3% 3.3% 3.3% 3.3%	

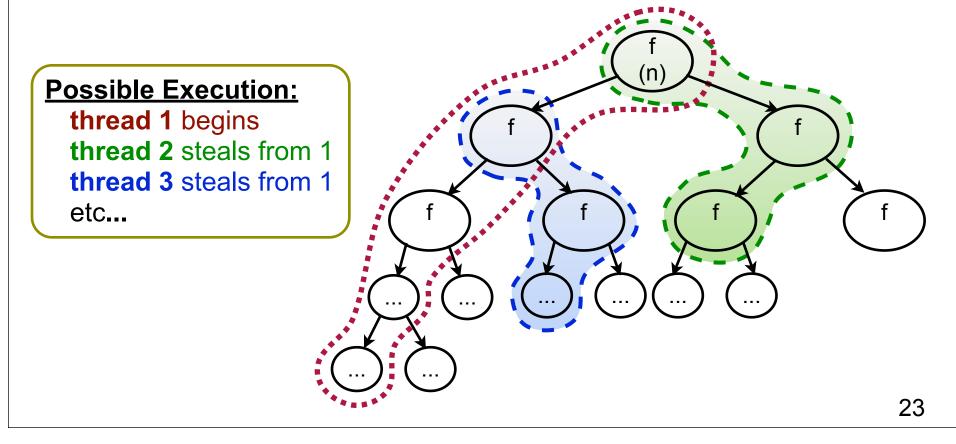
Improved Flash Scaling of AMR Setup

Scalability Losses at the Loop Level

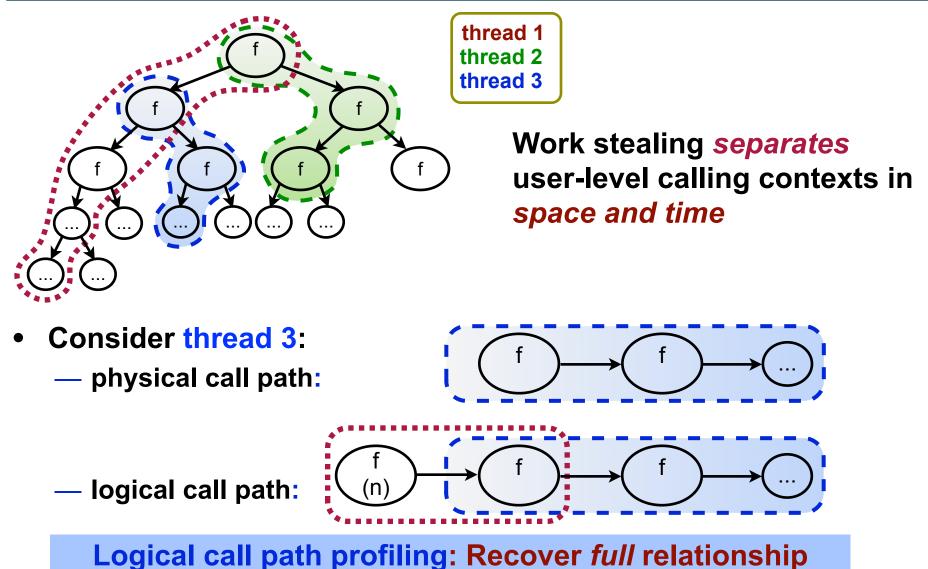


- Call path profiling in HPCToolkit
- Pinpointing and quantifying scalability bottlenecks
- Blame shifting
 - analyzing multithreaded computations based on work stealing
 - quantifying the impact of lock contention on threaded code
 - pinpointing load imbalance in parallel codes
- Understanding execution behavior over time
- Associating memory hierarchy inefficiency with data
- Conclusions
- Challenges ahead
- Related work

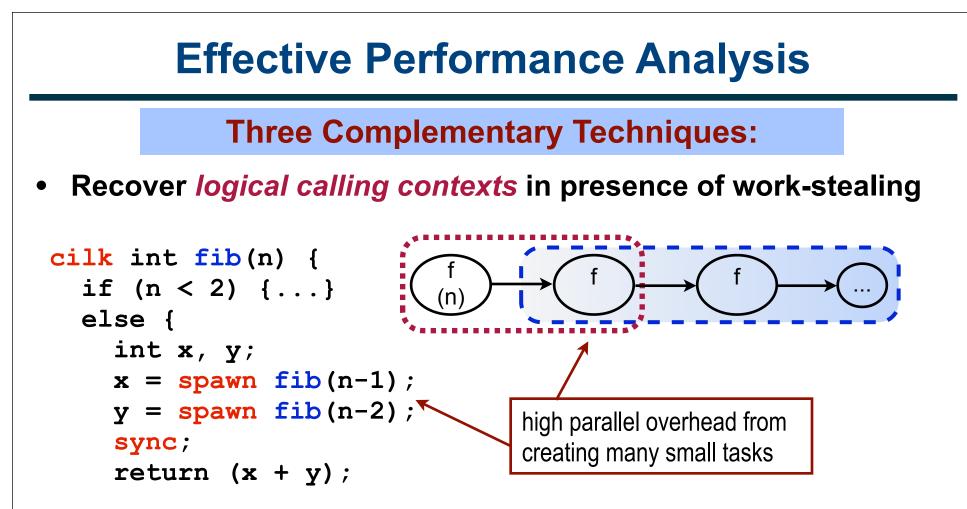
Blame Shifting


- Problem: in many circumstances sampling measures symptoms of performance losses rather than causes
 - worker threads waiting for work
 - threads waiting for a lock
 - MPI process waiting for peers in a collective communication
- Approach: shift blame for losses from victims to perpetrators
- Flavors
 - active measurement
 - analysis only

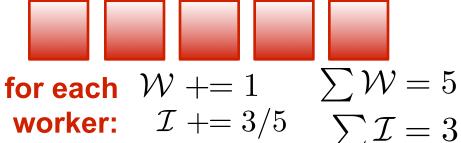
Cilk: A Multithreaded Language



Cilk Program Execution using Work Stealing


- Challenge: Mapping logical tasks to compute cores
- Cilk approach:
 - lazy thread creation plus work-stealing scheduler
 - spawn: a potentially parallel task is available
 - an idle thread steals tasks from a random working thread

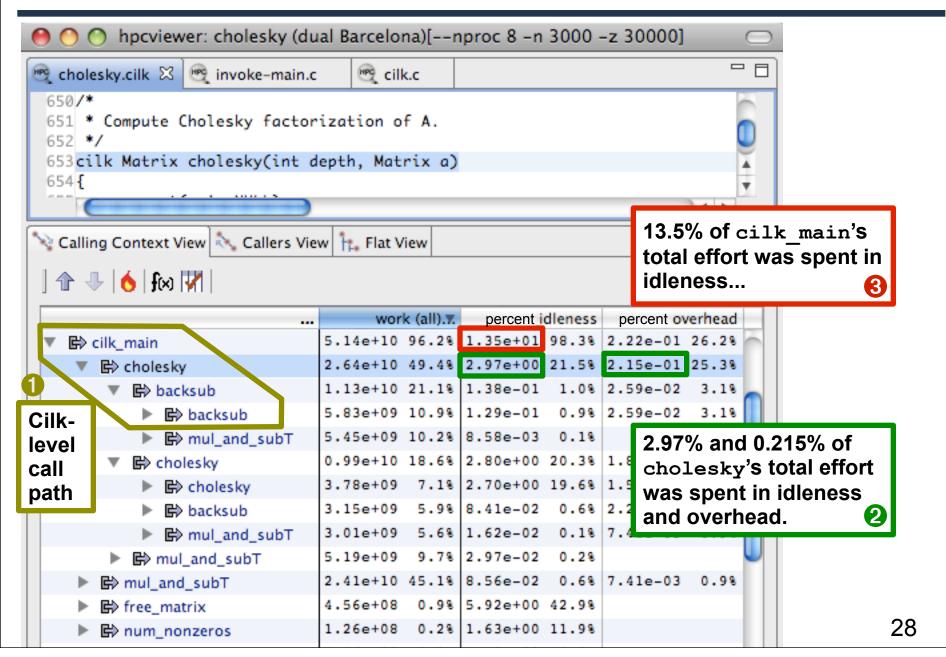
Wanted: Call Path Profiles of Cilk


between physical and user-level execution

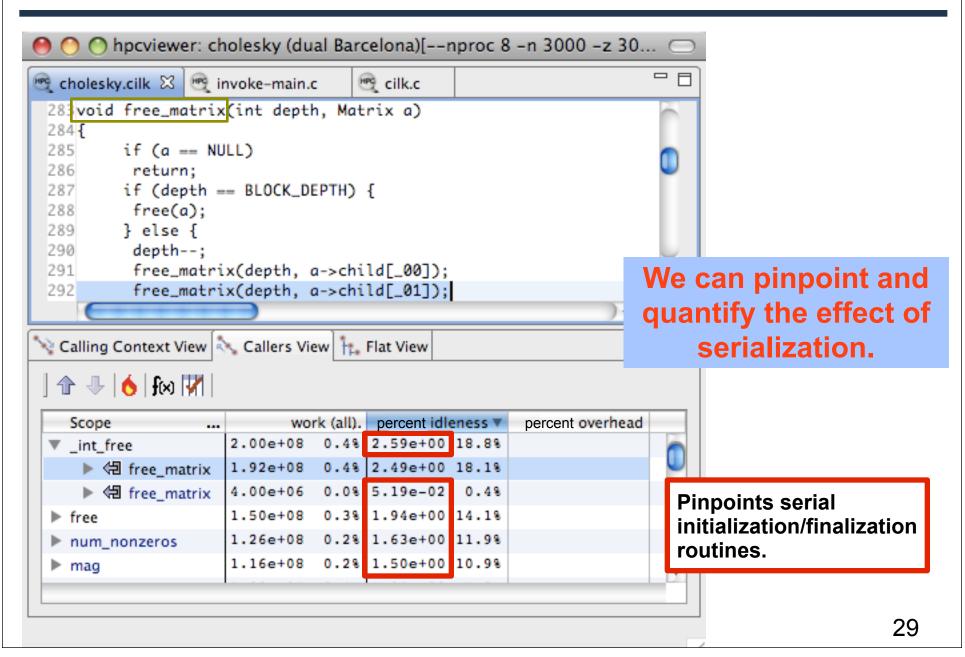
- Quantify *parallel idleness* (insufficient parallelism)
- Quantify parallel overhead
- Attribute *idleness* and *overhead* to *logical contexts* — at the source level

Measuring & Attributing Parallel Idleness

- Metrics: Effort = "work" + "idleness"
 - associate metrics with user-level calling contexts
 - insight: attribute idleness to its cause: context of working thread
 - a thread looks past itself when 'bad things' happen to <u>others</u>
- Work stealing-scheduler: one thread per core
 - maintain W (# working threads) and I (# idling threads)
 - slight modifications to work-stealing run time
 - atomically incr/decr W when thread exits/enters scheduler
 - when a sample event interrupts a working thread
 - -I = #cores W
 - apportion <u>others</u>' idleness to <u>me</u>: I / W
- Example: Dual quad-cores; on a sample, 5 are working:


idle: drop sample (it's in the scheduler!)

26


Parallel Overhead

- Parallel overhead
 - when a thread works on something other than user code
 - (we classify waiting for work as idleness)
- Pinpointing overhead with call path profiling
 - impossible, without prior arrangement
 - work and overhead are both machine instructions
 - insight: have compiler tag instructions as overhead
 - quantify samples attributed to instructions that represent ovhd
 - use post-mortem analysis

Top-down Work for Cilk 'Cholesky'

Bottom-up Idleness for Cilk 'Cholesky'

Using Parallel Idleness & Overhead

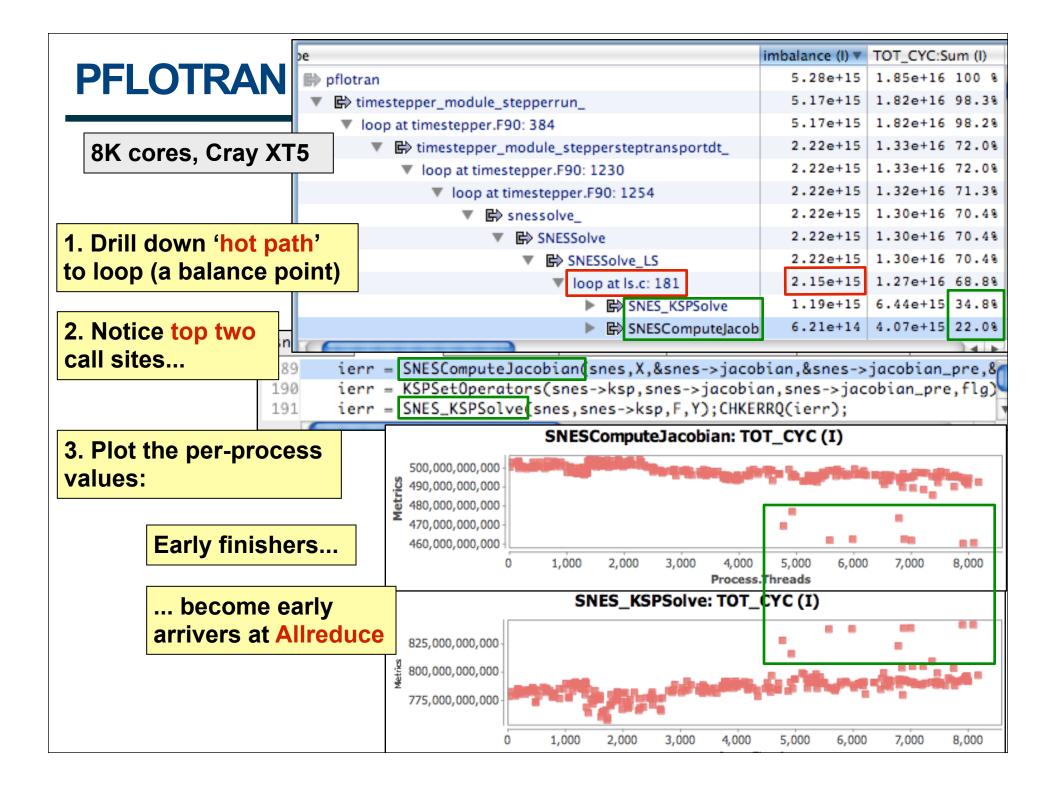
- Total effort = useful work + idleness + overhead
- Enables powerful and precise interpretations

idleness	overhead	interpretation
low	low	effectively parallel
low	high	coarsen concurrency granularity
high	low	refine concurrency granularity
high	high	switch parallelization strategies

- Normalize w.r.t. total effort to create
 - percent idleness or percent overhead

Nathan Tallent, John Mellor-Crummey. Effective performance measurement and analysis of multithreaded applications. PPoPP 2009, Raleigh, NC.

- Call path profiling in HPCToolkit
- Pinpointing and quantifying scalability bottlenecks
- Blame shifting
 - analyzing multithreaded computations based on work stealing
 - quantifying the impact of lock contention on threaded code
 - pinpointing load imbalance in parallel codes
- Understanding execution behavior over time
- Associating memory hierarchy inefficiency with data
- Conclusions
- Challenges ahead
- Related work


Understanding Lock Contention

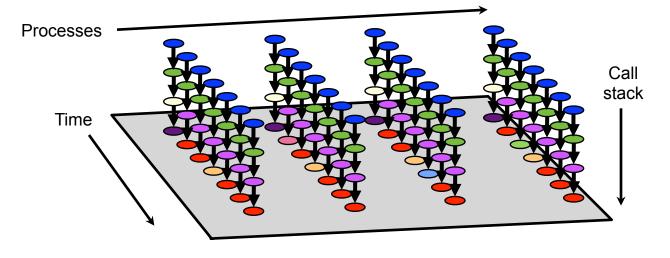
- Lock contention causes idleness
 - explicitly threaded programs (Pthreads, etc)
 - implicitly threaded programs (critical sections in OpenMP, Cilk...)
- Use "blame-shifting" to shift blame from victim to perpetrator — use shared state (locks) to communicate blame
- How it works
 - consider spin-waiting*
 - sample a working thread:
 - charge to 'work' metric
 - sample an idle thread
 - accumulate in idleness counter assoc. with lock (atomic add)
 - working thread releases a lock
 - atomically swap 0 with lock's idleness counter
 - exactly represents contention while that thread held the lock
 - unwind the call stack to attribute lock contention to a calling context

Lock contention in MADNESS

578 add(MEMFUN_OBJT(memfunT)& obj,						
579 memfunT memfun,						
580 const arg1T& arg1, const arg2T& arg2, const arg3T& arg3, const TaskAttributes&						
581 Future <remfuture(memfun_returnt(memfunt))> result;</remfuture(memfun_returnt(memfunt))>						
582 add(new TaskMemfun <memfunt>(result,obj,memfun,arg1,arg2,arg3,attr)); 583 return result;</memfunt>						
auontum obomiotav: MDL \pm atbroad						
584 }						
Calling Context View 💫 Callers View 🚏 Flat View						
] 16 cores; 1 thread/core (4 x E	Barcelona)	μs				
Scope	% idleness (all/E).	idleness (all/E)				
Experiment Aggregate Metrics	2.35e+01 100 %	1.57e+09 100 %				
▼ pthread_spin_unlock	2.35e+01 100.0	look contentio	~			
🔻 🖽 madness::Spinlock::unlock() const	2.35e+01 100.0	lock contention				
Inlined from worldmutex.h: 142	1.78e+01 75.6%	accounts for 2				
Madness::ThreadPool::add(madness::PoolTaskInterface*)	1.78e+01 75.6%	of execution ti	me.			
🔻 🖽 inlined from worldtask.h: 581	7.35e+00 31.2%	4.92e+08 31.2%				
madness::Future<> madness::WorldObject<>::task<>	7.35e+00 31.2%	4.92 A dalla a fact				
🔻 ا inlined from worldtask.h: 569	4.56e+00 19.4%	3.05 Adding fut				
madness::Future<> madness::WorldObject<>::task<>	4.56e+00 19.4%	3.05 to shared	-			
Inlined from worlddep.h: 68	1.53e+00 6.5%		e.			
🔻 🖏 inlined from worldtask.h: 570	1.49e+00 6.3%	9.97e+07 6.3%				
madness::Future<> madness::WorldObject<>::task<>	1.49e+00 6.3%	9.97e+07 6.3%				
Inlined from worldtask.h: 558		9.26e+07 5.9%				
Madness::Future<> madness::WorldTaskQueue::add<>(mathematical add)	a 6.72e-01 2.9%	4.49e+07 2.9%				
			^			
			33			

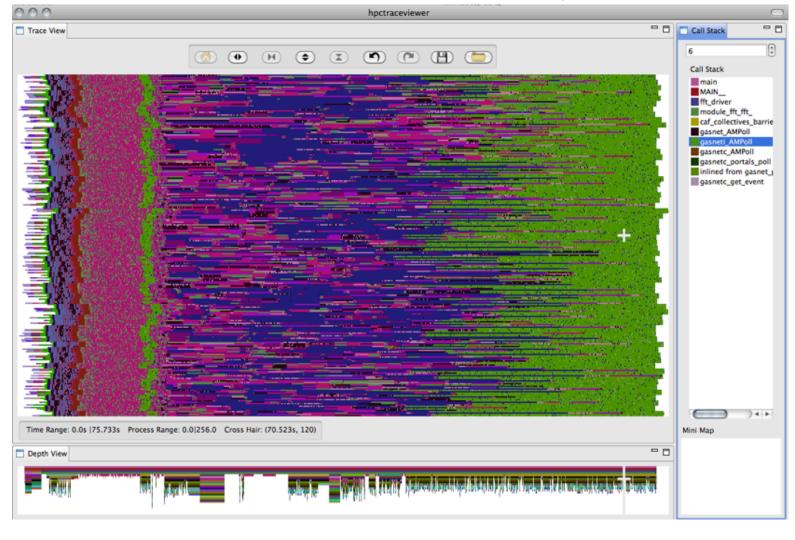
- Call path profiling in HPCToolkit
- Pinpointing and quantifying scalability bottlenecks
- Blame shifting
 - analyzing multithreaded computations based on work stealing
 - quantifying the impact of lock contention on threaded code
 - pinpointing load imbalance in parallel codes
- Understanding execution behavior over time
- Associating memory hierarchy inefficiency with data
- Conclusions
- Challenges ahead
- Related work

- Call path profiling in HPCToolkit
- Pinpointing and quantifying scalability bottlenecks
- Blame shifting
 - analyzing multithreaded computations based on work stealing
 - quantifying the impact of lock contention on threaded code
 - pinpointing load imbalance in parallel codes
- Understanding execution behavior over time
- Associating memory hierarchy inefficiency with data
- Conclusions
- Challenges ahead
- Related work


Understanding Temporal Behavior

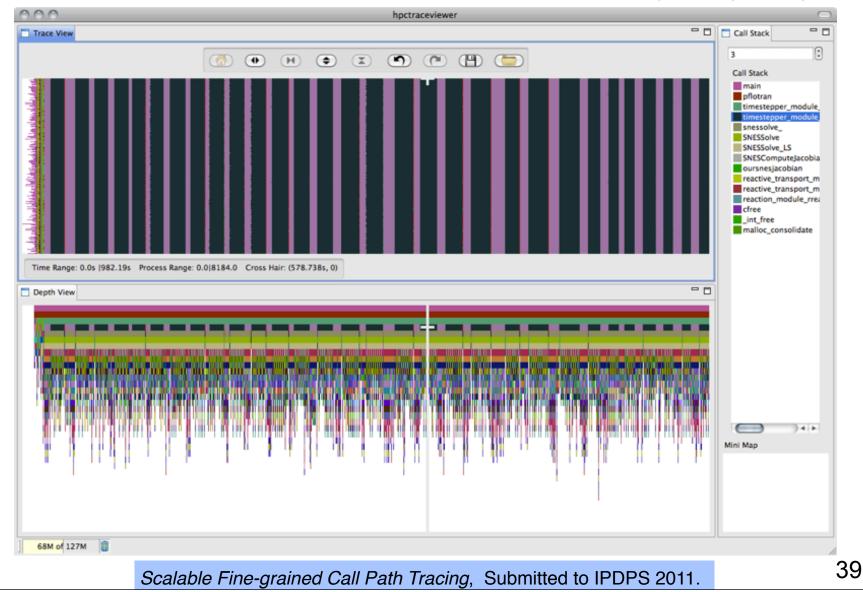
- Profiling compresses out the temporal dimension
 —temporal patterns, e.g. serialization, are invisible in profiles
- What can we do? Trace call path samples

-sketch:

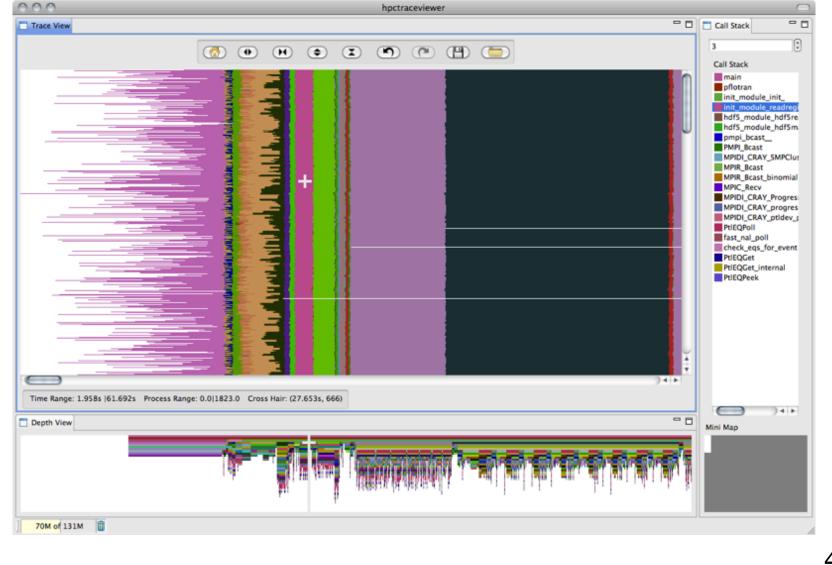

- N times per second, take a call path sample of each thread
- organize the samples for each thread along a time line
- view how the execution evolves left to right
- what do we view?

assign each procedure a color; view a depth slice of an execution

Call Path Tracing for Parallel Programs


1D FFT, CAF 2.0, 256 processes, Cray XT, 128M/core

Scalable Fine-grained Call Path Tracing, Submitted to IPDPS 2011.


Call Path Tracing for Parallel Programs

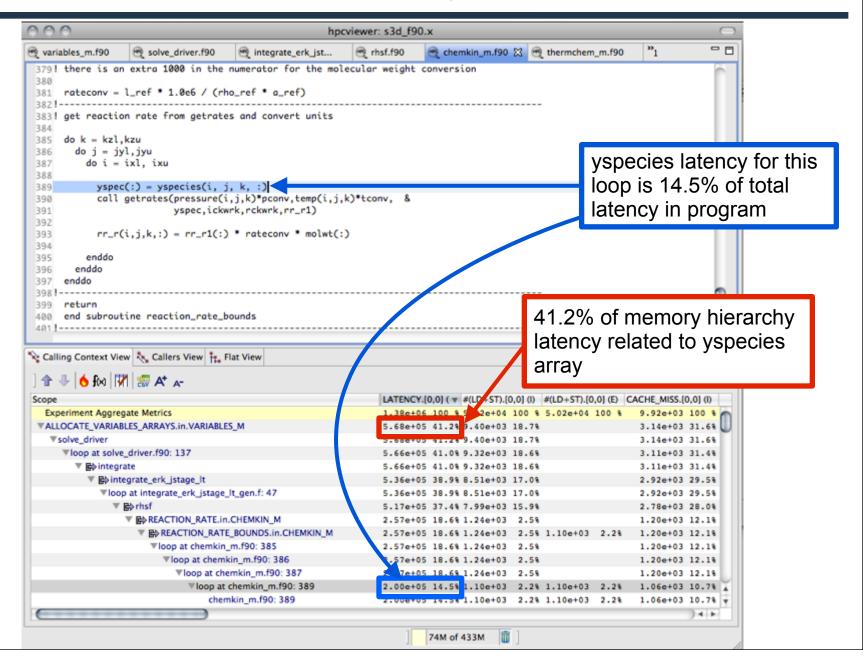
PFLOTRAN: Fortran+MPI, 8184 cores, Cray XT (982s)

Call Path Tracing for Parallel Programs

PFLOTRAN: Fortran+MPI, 8184 cores, Cray XT (1st minute)

Outline

- Call path profiling in HPCToolkit
- Pinpointing and quantifying scalability bottlenecks
- Blame shifting
 - analyzing multithreaded computations based on work stealing
 - quantifying the impact of lock contention on threaded code
 - pinpointing load imbalance in parallel codes
- Understanding execution behavior over time
- Associating memory hierarchy inefficiency with data
- Conclusions
- Challenges ahead
- Related work


Data Centric Analysis

• Goal: associate memory hierarchy performance losses with data

• Approach

- intercept allocations to associate with their data ranges
- associate latency with data using "instruction-based sampling" on AMD Opteron CPUs
 - identify instances of loads and store instructions
 - identify the data structure an access touches based on L/S address
 - measure the total latency associated with each L/S
 - present quantitative results using hpcviewer

Data Centric Analysis of S3D

Conclusions

- Obtain insight, accuracy & precision by combining call path profiling, binary analysis, and blame shifting
- Show surprisingly effective measurement and source-level attribution for fully optimized code (1-3% overhead)
 - statements in their full static and dynamic context
 - project low-level measurements to much higher levels
- Sampling-based measurements can deliver insight into a range of phenomena
 - scalability bottlenecks
 - where insufficient parallelism lurks
 - sources of lock contention
 - load imbalance
 - temporal dynamics
 - problematic data structures

Some Challenges Ahead

- Support characteristics of emerging hardware and software
 - heterogeneous hardware
 - manycore, CPU+GPU
 - dynamic power and frequency scaling
 - software
 - one-sided communication
 - asynchronous operations
 - dynamic parallelism
 - adaptation
 - failure recovery
- Augment monitoring capabilities throughout the stack — hardware, OS, runtime, language-level API
- Improve data management for extreme scale parallelism
- Transition from descriptive to prescriptive feedback
- Guide online adaptation and tuning

Some Related Work

• Sampling

- e.g., gprof, Speedshop, Shark, PTU, DCPI, Oprofile, CrayPat

• Instrumentation

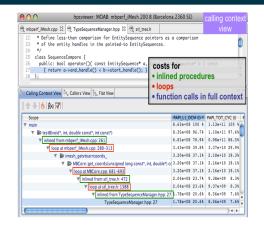
- e.g., Tau, Vtune, IBM HPC Toolkit, Dyninst, CrayPat, Pin

• Tracing

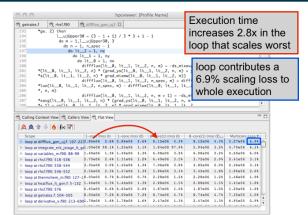
- e.g., vt, Tau, CEBPA,

- Call stack profiling — e.g., mpiP, Tau, PTU, Shark
- Visualization

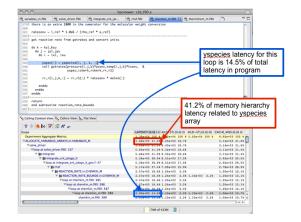
- e.g., Paraver, Projections, Vampir, Jumpshot, EXPERT


Parallel Analysis

— e.g., Scalasca

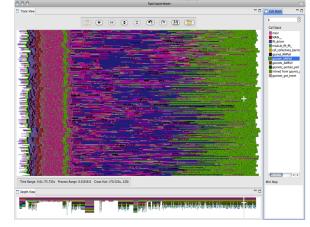

• Analysis

- e.g., IBM HPCS Toolkit, Cray Apprentice, EXPERT, PerfExpert 46

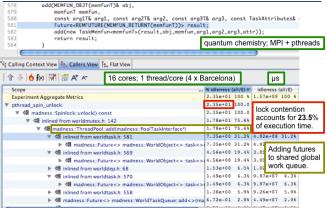

HPCToolkit Capabilities at a Glance

Attribute Costs to Code

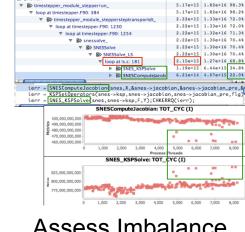
Pinpoint & Quantify **Scaling Bottlenecks**



Associate Costs with Data


B pflotran

ce (I) TOT_CYC:Sum (I 5.28e+15 1.85e+16 100


5,17e+15 1,82e+16 98,38

Analyze Behavior over Time

Shift Blame from Symptoms to Causes

Assess Imbalance and Variability

hpctoolkit.org

HPCToolkit Publications

Measurement

- Binary analysis for (1) recovering functions in partially stripped code, (2) unwinding fully-optimized code, (3) recovering program structure
- Nearly perfect call stack sampling of fully optimized code with low overhead

Binary Analysis for Measurement and Attribution of Program Performance, PLDI, June 2009. Distinguished Paper Award.

> Pinpointing Locality Problems Using Data-centric Analysis, Submitted to CGO 2011, April 2011

Pinpoint Scalability Bottlenecks using Differential Profiling

Scalability Analysis of SPMD Codes using Expectations, ICS, June 2007

Pinpoint Performance Losses in Multithreaded Executions

Effective Performance Measurement and Analysis of Multithreaded Applications, PPoPP, February 2009.

Analyzing Lock Contention in Multithreaded Applications,

PPoPP, January 2010

Novel Capabilities of HPCToolkit - II

Performance Analysis using Sampling on Leadership Platforms

Diagnosing Performance Bottlenecks in Emerging Petascale Applications, SC09, November 2009

Scalable Identification of Load Imbalance using Call Path Profiles, SC10, November 2010

User Interfaces

Effectively Presenting Call Path Profiles of Application Performance, PSTI, September 2010.

Scalable Fine-grained Call Path Tracing, Submitted to IPDPS 2011.

Overview Paper

HPCToolkit: Tools for performance analysis of optimized parallel programs, Concurrency & Computation: Practice and Experience, January 2010

Additional Tool Screenshots

Execution Cost Breakdown (Routine-Level)

Flash on Blue Gene/P, 8K cores, white dwarf detonation

		viewer: FLASH/wh				
👰 local_tree_build.F90	👻 Grid_updateRefine	👻 rieman.F90	🤓 states.F90	🞅 Eos.F90	🞅 eos_helm.F90 🔀 🔭	-
80						
81 subroutine eos_	helm(eos_jlo,eos_jhi,ma	isk)				
	ONLY: eos_f, eos_ft, e	os_ftt, eos_fd.	eos_fdd, eos_fd	lt. &	Costs sorted by exc	clusive time
	, eos_fdtt, eos_fddtt,	- , - ,	,	., .	spent in individual	
	, eos_dpdft, eos_dpdfd,				Note: only the rout	
	ombMult, eos_dLo, eos_t			&	~	
	os_dd, eos_ddInv, eos_t r, eos_dtSqrInv, eos_dd		a		in blue are user coo	
00 005_0054	·, cos_ucsqr1nv, cos_uc	Sqr, a			BG/P DCMF Com	munication
	× (-	1			Layer costs	
Calling Context View	Callers View 🙀 Flat View	1				
Experiment Aggregate	Metrics Send::TreeAllreduceShortRecv	PostMessage::advanc	e(unsigned int. DC	AE::Oueueing::	6.71e+08 100 % 1.07e+08 16.0%	6.71e+08 100 %
		PostMessage: advanc	elunsigned int. DC	AE::Oueueino::		
▶eos_helm					1.54e+08 22.9%	8.26e+07 12.3%
▶ DCMF::BGPLockManag	er::globalBarrierQueryDone()				4.62e+07 6.9%	4.62e+07 6.9%
DMA_RecFifoSimplePo	llNormalFifoById				3.22e+07 4.8%	3.08e+07 4.6%
▶_xlddpow					6.31e+07 9.4%	2.85e+07 4.2%
DCMF::Queueing::GI::	giMessage::advance()				7.15e+07 10.6%	2.52e+07 3.8%
▶expinner2					1.94e+07 2.9%	1.94e+07 2.9%
▶ rieman					2.12e+07 3.2%	1.82e+07 2.7%
▶loginner2					1.56e+07 2.3%	1.56e+07 2.3%
▶ states					1.51e+07 2.2%	1.36e+07 2.0%
▶amr_perm_to_1blk					1.30e+07 1.9%	1.30e+07 1.9%
▶xl_log					1.27e+07 1.9%	1.27e+07 1.9%
b seems at the local sector of the sector of	odule_NMOD_search_and_prur	ne_local_tree			1.24e+07 1.8%	1.24e+07 1.8%
▶IPRA.Slocal_tree_mo					1.20e+07 1.8%	1.20e+07 1.8%
▶amr_restrict_unk_gen						
	idvance()				5.71e+07 8.5%	1.20e+07 1.8% 1.12e+07 1.7%

Execution Cost Attribution (Callers View)

Flash on Blue Gene/P, 8K cores, white dwarf detonation

00	hpcviewer: FLASH/white dwarf: I	BM BG/P, weak	256->8192				1
mpi_an	mr_comm_setup.F90 🛱						
418	<pre>itemp = max(sum(commatrix_send), sum(commatrix_recv))</pre>						
419	Call MPI_ALLREDUCE (itemp,	&	Looki	ng up the call	chain to see		
420	max_blks_sent,	&		the callers the		+- +-	
21	1,	&	where	the callers that	ii caused cos	sis ic)
22	MPI_INTEGER,	&	be incl	urred for tree	reductions N	Aost	F
23	MPI_MAX,	&				1000	ľ
24	MPI_COMM_WORLD,	8	of the	cost is incurre	d by guard d	cell	
25	ierror)	_	filling	and flux conse	arvation		
26			mmg	and nux conse			
Calling	Context View 📉 Callers View 👬 Flat View						6
							-
₽ - ↓	<mark>6</mark> f∞ 177 57 ∧*						
Scope				8192/WALLCLOCK (us) (I)	8192/WALLCLOCK (-
	ment Aggregate Metrics			6.76e+08 100			
	Protocol::MultiSend::TreeAllreduceShortRecvPostMessage::advance(unsigned int, DCMF::Qu	eueing::Tree::Tree	MsgContext)	1.07e+08 15.9			-
	I inlined from Device.cc: 432			1.07e+08 15.9			ł
	7 In DCMF::Queueing::Tree::Device::postRecv(DCMF::Queueing::Tree::TreeRecvMessage&)			1.07e+08 15.9 1.07e+08 15.9			1
	▼ 4 inlined from Message.h: 516			1.07e+08 15.9			ł
	▼ ≪ DCMF_GlobalAllreduce			1.05e+08 15.5			1
	MPIDO_Allreduce_global_tree MPIDO_Allreduce			1.05e+08 15.5			ł
	T I PMPLAllreduce			1.05e+08 15.5			ł
	v (pmpi_allreduce			1.05e+08 15.5		15.5%	ł
	V Campi_amr_comm_setup			9.51e+07 14.1	9.51e+07	14.18	ľ
	► 🗟 amr_flux_conserve_udt			5.84e+07 8.6	\$ 5.84e+07	8.6%	1
	► 🗐 amr_guardcell			3.63e+07 5.4	3.63e+07	5.48	î
	► 🖶 amr_flux_conserve_udt			3.45e+05 0.1	3.45e+05	0.1%	ł
				6.50e+04 0.0	6.50e+04	0.0%	1
	▶ 4 mpi_amr_1blk_restrict		1				h
	▶ 4 mpi_amr_1blk_restrict ▶ 4 amr_refine_derefine			5.04e+06 0.7	\$ 5.04e+06	0.78	U.
				5.04e+06 0.7 2.08e+06 0.3			ľ
	Amr_refine_derefine				8 2.08e+06	0.3%	

Execution Cost Attribution (Top Down)

Flash on Blue Gene/P, 8K cores, white dwarf detonation

hpcviewer: FLASH/white dwarf: IBM BG/P, weak 2	56->8192
<pre> mpi_amr_comm_setup.F90</pre>	Looking up down the call chain to see where the most of the time wa spent. 80.5% is spent in the loop that calls the hydrodynamics simulation. 52.4% of the time is spent in the hydro routine (or below). The rest is spent in other
N Calling Context View N Callers View H. Flat View] ☆ ♣ 6 f∞ 17 27 A* A-	routines called from the main loop
Scope 8192/V Experiment Aggregate Metrics ▼ flash ▼ loop at Driver_evolveFlash.F90: 92 ▼ loop at hy_ppm_sweep ▶ loop at hy_ppm_sweep.F90: 222 ▶ loop at hy_ppm_sweep.F90: 520 ▶ loop at hy_ppm_sweep ▶ loop at hy_ppm_sweep ▶ loop at hy_ppm_sweep ▶ loop at hy_ppm_sweep	WALLCLOCK (us) (I) = 8192/WALLCLOCK (us) (E) 6.76e+08 100 % 6.76e+08 100 % 5.44e+08 80.5% 5.44e+08 80.5% 1.78e+08 26.4% 5.99e+07 8.9% 2.50e+04 0.0% 2.04e+07 3.0% 5.00e+03 0.0% 1.65e+07 2.4% 1.36e+07 2.0% 9.45e+06 1.4% 5.98e+07 8.8% 1.50e+04 0.0% 5.86e+07 8.7% 1.50e+04 0.0%
	6.07e+07 9.0% 2.00e+04 0.0% 5.91e+07 8.7% 1.50e+04 0.0% 5.58e+07 8.2% 1.50e+04 0.0%

Execution Cost Attribution (Top-Down)

PFLOTRAN, Cray XT, 8184 cores, Hanford problem

00			hpcvi	ewer: pflotran					\subset
bcgs.c		🞅 timestepper.F90 🔀							- [
		= option%tran_dt * 0 ne = option%tran_time				.5% of the o	~	-	
.229 .230 de	0				uie	e transport c	alcula	1011. 30.8	070
231					the	e cycles are	spent ²	in the flow	W
1232	if (option%nfl	lowdof > 0) then				-	spene		••
1233	option%tran_	weight_t0 = (option%		an_dt-start_time)/ 8	cal	culation			
1234			ne-start_time)						
1235	option%tran_	weight_t1 = (option%		1e)/ &					
1236	L cok donašt		ne-start_time)						
1237		ties and saturations	to t	1.1.1.105					٣
		Callers View							- (
1 🕹	Context View 🔧 C			TOT_C	(C:Sum (I)	FP_OP5:Sum (I)	_	mbalance:Sum (I)	·
1 ♣ cope Tmain	of f∞ 🕅 📟 .			TOT_C 1.96e	+16 100 %	3.14e+15 100	8	mbalance:Sum (I) 6.29e+15 100)
train Train Train	6 f⊗ IV 200 2	A* A-		TOT_C 1.96e 1.96e	+16 100 %	3.14e+15 100 3.14e+15 100	8	mbalance:Sum (I) 6.29e+15 100 6.29e+15 100	9
tree to the second sec	f⊗ f⊗ I I II III III III IIII IIII IIII	A ⁺ A-		TOT_C 1.96e 1.96e 1.94e	+16 100 % +16 100 % +16 98.8%	3.14e+15 100	8	mbalance:Sum (I) 6.29e+15 100 6.29e+15 100 6.21e+15 98.6	8
tree to the second sec	filotran ♥ timestepper_mod ▼loop at timestepp	A* A- dule_stepperrun_ ber.F90: 384	1sportdt	TOT_C 1.96e 1.96e 1.94e 1.94e	+16 100 %	3.14e+15 100 3.14e+15 100 3.14e+15 99.9 3.14e+15 99.9	8	mbalance:Sum (I) 6.29e+15 100 6.29e+15 100	9 8 68 68
tree to the second sec	fix III III III IIII IIII IIIIIIIIIIIIII	A ⁺ A ⁻	nsportdt_	TOT_C 1.96e 1.96e 1.94e 1.94e 1.31e	+16 100 % +16 100 % +16 98.8% +16 98.7%	3.14e+15 100 3.14e+15 100 3.14e+15 99.9 3.14e+15 99.9	8	mbalance:Sum (I) 6.29e+15 100 6.29e+15 100 6.21e+15 98.6 6.21e+15 98.6) 8 68 68 48
tree to the second sec	f(X) IV IV ST pflotran stimestepper_mod ▼loop at timestepper ▼ B> timestepper ▶ loop at timestepper	A ⁺ A ⁻ dule_stepperrun_ ber.F90: 384 er_module_steppersteptran:		TOT_C 1.96e 1.96e 1.94e 1.94e 1.31e 1.31e	+16 100 % +16 100 % +16 98.8% +16 98.7% +16 66.5%	3.14e+15 100 3.14e+15 100 3.14e+15 99.9 3.14e+15 99.9 2.94e+15 93.5 2.94e+15 93.5	8 8 98 98 98 98 98 98	mbalance:Sum (I) 6.29e+15 100 6.29e+15 100 6.21e+15 98.6 6.21e+15 98.6 1.97e+15 31.4) 8 68 68 48
tree to the second sec	pflotran ⇒ timestepper_moo ▼loop at timesteppe ▶ loop at timesteppe ▶ loop at timesteppe ▶ loop at timesteppe	A ⁺ A ⁻ dule_stepperrun_ ber.F90: 384 er_module_steppersteptran: estepper.F90: 1230	onlocaltolocal_	TOT_C 1.96e 1.96e 1.94e 1.94e 1.31e 1.31e 8.84e	+16 100 % +16 100 % +16 98.8% +16 98.7% +16 66.5% +16 66.5%	3.14e+15 100 3.14e+15 100 3.14e+15 99.9 3.14e+15 99.9 2.94e+15 93.5 2.94e+15 93.5	8 8 98 98 98 98 98 98	mbalance:Sum (I) 6.29e+15 100 6.29e+15 100 6.21e+15 98.6 6.21e+15 98.6 1.97e+15 31.4) 8 68 68 48
tree to the second sec	pflotran ⇒ timestepper_mod ▼loop at timestepper ▶ loop at timestepper ▶ discretiz ▶ 🖶 discretiz ▶ 🖶 discretiz	A ⁺ A ⁻ dule_stepperrun_ ber.F90: 384 er_module_steppersteptran: estepper.F90: 1230 zation_module_discretizatio	ionlocaltolocal_ ionlocaltolocal_	TOT_C 1.96e 1.96e 1.94e 1.94e 1.31e 1.31e 8.84e 5.56e	+16 100 % +16 100 % +16 98.8% +16 98.7% +16 66.5% +16 66.5% +11 0.0%	3.14e+15 100 3.14e+15 100 3.14e+15 99.9 3.14e+15 99.9 2.94e+15 93.5 2.94e+15 93.5 1.47e+07 0.0	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	mbalance:Sum (I) 6.29e+15 100 6.29e+15 100 6.21e+15 98.6 6.21e+15 98.6 1.97e+15 31.4	9 8 68 68 48 48
train Train Train Train Train Train Train Train Train Train	f(x) []X S Z pflotran ⇒ timestepper_mod ▼loop at timesteppe ▶ loop at time ▶ B discretiz ▶ B discretiz ▶ B timesteppe	A ⁺ A ⁻ dule_stepperrun_ ber.F90: 384 er_module_steppersteptran: estepper.F90: 1230 zation_module_discretizatio zation_module_discretizatio	ionlocaltolocal_ ionlocaltolocal_ vdt_	TOT_C 1.96e 1.96e 1.94e 1.94e 1.31e 1.31e 8.84e 5.56e 6.05e	+16 100 % +16 100 % +16 98.8% +16 98.7% +16 66.5% +16 66.5% +11 0.0%	3.14e+15 100 3.14e+15 100 3.14e+15 99.9 3.14e+15 99.9 2.94e+15 93.5 2.94e+15 93.5 1.47e+07 0.0 4.90e+06 0.0 1.72e+14 5.5	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	mbalance:Sum (I) 6.29e+15 100 6.29e+15 100 6.21e+15 98.6 6.21e+15 98.6 1.97e+15 31.4 1.97e+15 31.4	9 8 68 68 48 48
train Train Train Train Train Train Train Train Train Train	f(x) []X S Z pflotran ⇒ timestepper_mod ▼loop at timesteppe ▶ loop at time ▶ B discretiz ▶ B discretiz ▶ B timesteppe	A ⁺ A ⁻ dule_stepperrun_ ber.F90: 384 er_module_steppersteptran: estepper.F90: 1230 zation_module_discretizatio zation_module_discretizatio er_module_stepperstepflow er_module_stepperupdateso	ionlocaltolocal_ ionlocaltolocal_ vdt_	TOT_C 1.96e 1.96e 1.94e 1.94e 1.31e 1.31e 8.84e 5.56e 6.05e	+16 100 % +16 100 % +16 98.8% +16 98.7% +16 66.5% +16 66.5% +11 0.0% +11 0.0% +15 30.8% +14 1.1%	3.14e+15 100 3.14e+15 100 3.14e+15 99.9 3.14e+15 99.9 2.94e+15 93.5 2.94e+15 93.5 1.47e+07 0.0 4.90e+06 0.0 1.72e+14 5.5 2.95e+13 0.9	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	mbalance:Sum (I) 6.29e+15 100 6.29e+15 100 6.21e+15 98.6 6.21e+15 98.6 1.97e+15 31.4 1.97e+15 31.4	9 8 68 68 48 48
Tree of the second sec	fix IVI STATES pflotran b timestepper_mod vloop at timesteppe v B timesteppe b b discretiz b B discretiz b B timesteppe b B timesteppe b B timesteppe b B timesteppe b B timesteppe b B timesteppe b B timesteppe	A ⁺ A ⁻ dule_stepperrun_ ber.F90: 384 er_module_steppersteptran: estepper.F90: 1230 zation_module_discretizatio zation_module_discretizatio er_module_stepperstepflow er_module_stepperupdateso	ionlocaltolocal_ ionlocaltolocal_ vdt_ olution_	TOT_C 1.96e 1.96e 1.94e 1.94e 1.31e 1.31e 8.84e 5.56e 6.05e 2.24e	+16 100 % +16 100 % +16 98.8% +16 98.7% +16 66.5% +16 66.5% +11 0.0% +11 0.0% +15 30.8% +14 1.1% +13 0.2%	3.14e+15 100 3.14e+15 100 3.14e+15 99.9 3.14e+15 99.9 2.94e+15 93.5 2.94e+15 93.5 1.47e+07 0.0 4.90e+06 0.0 1.72e+14 5.5 2.95e+13 0.9 1.47e+07 0.0	8 8 98 98 98 98 98 98 98 98 98 98 98 98	mbalance:Sum (I) 6.29e+15 100 6.29e+15 100 6.21e+15 98.6 6.21e+15 98.6 1.97e+15 31.4 1.97e+15 31.4	9 8 68 68 48 48
Transformer Contraction Contr	flotran ⇒ timestepper_mod ▼loop at timesteppe ▼loop at timesteppe ► bioop at timesteppe ► biotimesteppe ► bimesteppe ► bimesteppe ► bimesteppe ► bimesteppe ► bimestepper_mod	A ⁺ A ⁻ dule_stepperrun_ ber.F90: 384 er_module_steppersteptran: estepper.F90: 1230 zation_module_discretizatio zation_module_discretizatio er_module_stepperstepflow er_module_stepperupdateso idule_output_	ionlocaltolocal_ ionlocaltolocal_ vdt_ olution_ ition_	TOT_C 1.96e 1.96e 1.94e 1.94e 1.31e 1.31e 8.84e 5.56e 6.05e 2.24e 3.45e	+16 100 % +16 100 % +16 98.8% +16 98.7% +16 66.5% +16 66.5% +11 0.0% +11 0.0% +15 30.8% +14 1.1% +13 0.2% +12 0.0%	3.14e+15 100 3.14e+15 100 3.14e+15 99.9 3.14e+15 99.9 2.94e+15 93.5 2.94e+15 93.5 1.47e+07 0.0 4.90e+06 0.0 1.72e+14 5.5 2.95e+13 0.9 1.47e+07 0.0 8.00e+11 0.0	8 8 98 98 98 98 98 98 98 98 98 98 98 98	mbalance:Sum (I) 6.29e+15 100 6.29e+15 100 6.21e+15 98.6 6.21e+15 98.6 1.97e+15 31.4 1.97e+15 31.4	9 8 68 68 48 48

Execution Cost Attribution (Top-Down)

PFLOTRAN, Cray XT, 8184 cores, Hanford problem

hpcv	iewer: pflotran			
bcgs.c 🔀 👰 zsnesf.c 🛛 👰 timestepper.F90				
<pre>66 ierr = VecSet(V,0.0);CHKERRQ(ierr);</pre>				Ċ.
67 68 i-0:	Л	atailed analy	ysis of the transp	ort
69 do {		•	J 1	
	<- (r,rp) */ Ca	alculation: N	Aost of the time	is
71 beta = (rho/rhoold) * (alpha/omegaold);		ant in the D	ETCo incido tho	
<pre>72 ierr = VecAXPBYPCZ(P,1.0,-omegaold*beta,beta,R,V);CHKER 73 ierr = KSP_PCApplyBAorAB(ksp,P,V,T);CHKERRQ(ierr); /*</pre>		pent in the P	ETSc inside the	
<pre>74 ierr = VecDot(V,RP,&d1);CHKERRQ(ierr); /*</pre>		iconiugate g	gradient solver.	
75 if (d1 -= 0.0) SETERRQ(PETSC_ERR_PLIB, "Divide by zero")		1 J 8 E		
76 alpha = rho / d1; /* a <- rho / (v,rp				÷
77 ionn - VocWAVDV/C alaba V Dl:CUVEDDA/ionnl: /#	• • • • • • /			
			1	
Calling Context View 🥾 Callers View 🙀 Flat View	Overall: 1 FLOP	everv 7.4 c	cycles	
		•	•	
1 🕆 🖖 🧴 fixi 🕎 🐖 🗛 👝		J	·	
	TOT_CYC:Sum (I) =	FP_OPS:Sum (I)		dle
icope		FP_OPS:Sum (I)	imbalance:Sum (I) ic	12
scope ▼ ⊯ pflotran	TOT_CYC:Sum (I) =			.2
icope	TOT_CYC:Sum (I. + 1.96e+16 100 %	FP_OPS:Sum (I) 3.14e+15 100 %	imbalance:Sum (l) ic 6.29e+15 100 % 6.	.2
scope ▼ ■ pflotran ▼ B timestepper_module_stepperrun_	TOT_CYC:Sum (I ¥ 1.96e+16 100 % 1.94e+16 98.8%	FP_OPS:Sum (I) 3.14e+15 100 % 3.14e+15 99.9%	imbalance:Sum (l) id 6.29e+15 100 % 6. 6.21e+15 98.6% 6.	. 2 . 2 . 2
icope ▼ pflotran ▼ timestepper_module_stepperrun_ ▼ loop at timestepper.F90: 384	TOT_CYC:Sum (I, ¥ 1.96e+16 100 % 1.94e+16 98.8% 1.94e+16 98.7%	FP_OPS:Sum (I) 3.14e+15 100 % 3.14e+15 99.9% 3.14e+15 99.9%	imbalance:Sum (l) id 6.29e+15 100 % 6. 6.21e+15 98.6% 6. 6.21e+15 98.6% 6.	. 2 . 2 . 2 . 9
Scope ▼ pflotran ▼ timestepper_module_stepperrun_ ▼ loop at timestepper.F90: 384 ▼ timestepper_module_steppersteptransportdt_	TOT_CYC:Sum (I, ¥ 1.96e+16 100 % 1.94e+16 98.8% 1.94e+16 98.7% 1.31e+16 66.5%	FP_OPS:Sum (I) 3.14e+15 100 % 3.14e+15 99.9% 3.14e+15 99.9% 2.94e+15 93.5%	imbalance:Sum (I) id 6.29e+15 100 % 6. 6.21e+15 98.6% 6. 6.21e+15 98.6% 6. 1.97e+15 31.4% 1.	. 2 . 2 . 2 . 9
<pre>scope</pre>	TOT_CYC:Sum ([.▼ 1.96e+16 100 % 1.94e+16 98.8% 1.94e+16 98.7% 1.31e+16 66.5% 1.31e+16 66.5%	FP_OPS:Sum (I) 3.14e+15 100 % 3.14e+15 99.9% 3.14e+15 99.9% 2.94e+15 93.5% 2.94e+15 93.5%	imbalance:Sum (I) id 6.29e+15 100 % 6 6.21e+15 98.6% 6 6.21e+15 98.6% 6 1.97e+15 31.4% 1 1.97e+15 31.4% 1	· 2 . 2 . 2 . 9 . 9 . 9
<pre>scope</pre>	TOT_CYC:Sum ([. v 1.96e+16 100 % 1.94e+16 98.8% 1.94e+16 98.7% 1.31e+16 66.5% 1.31e+16 66.5% 1.29e+16 65.9%	FP_OPS:Sum (I) 3.14e+15 100 % 3.14e+15 99.9% 3.14e+15 99.9% 2.94e+15 93.5% 2.94e+15 93.5% 2.92e+15 92.9%	imbalance:Sum (I) id 6.29e+15 100 % 6 6.21e+15 98.6% 6 6.21e+15 98.6% 6 1.97e+15 31.4% 1 1.97e+15 31.4% 1 1.97e+15 31.3% 1	. 2 . 2 . 2 . 9 . 9 . 9 . 9 . 9
icope ▼ pflotran ▼ b timestepper_module_stepperrun_ ▼ loop at timestepper.F90: 384 ▼ b timestepper_module_steppersteptransportdt_ ▼ loop at timestepper.F90: 1230 ▼ loop at timestepper.F90: 1254 ▼ b snessolve_	TOT_CYC:Sum ([▼ 1.96e+16 100 % 1.94e+16 98.8% 1.94e+16 98.7% 1.31e+16 66.5% 1.31e+16 66.5% 1.29e+16 65.9% 1.28e+16 65.1%	FP_OPS:Sum (I) 3.14e+15 100 % 3.14e+15 99.9% 3.14e+15 99.9% 2.94e+15 93.5% 2.94e+15 93.5% 2.92e+15 92.9% 2.89e+15 91.9%	imbalance:Sum (l) ic 6.29e+15 100 % 6. 6.21e+15 98.6% 6. 6.21e+15 98.6% 6. 1.97e+15 31.4% 1. 1.97e+15 31.4% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1.	.2 .2 .9 .9 .9 .9 .9
icope	TOT_CYC:Sum ([.▼ 1.96e+16 100 % 1.94e+16 98.8% 1.94e+16 98.7% 1.31e+16 66.5% 1.31e+16 66.5% 1.29e+16 65.9% 1.28e+16 65.1% 1.28e+16 65.1%	FP_OPS:Sum (I) 3.14e+15 100 % 3.14e+15 99.9% 3.14e+15 99.9% 2.94e+15 93.5% 2.94e+15 93.5% 2.92e+15 92.9% 2.69e+15 91.9%	imbalance:Sum (l) ic 6.29e+15 100 % 6. 6.21e+15 98.6% 6. 6.21e+15 98.6% 6. 1.97e+15 31.4% 1. 1.97e+15 31.4% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1.	.2 .2 .9 .9 .9 .9 .9 .9 .9 .9 .9
icope	TOT_CYC:Sum (I v 1.96e+16 100 % 1.94e+16 98.8% 1.94e+16 98.7% 1.31e+16 66.5% 1.31e+16 66.5% 1.29e+16 65.9% 1.28e+16 65.1% 1.28e+16 65.1%	FP_OPS:Sum (I) 3.14e+15 100 % 3.14e+15 99.9% 3.14e+15 99.9% 2.94e+15 93.5% 2.92e+15 93.5% 2.92e+15 92.9% 2.69e+15 91.9% 2.69e+15 91.9%	imbalance:Sum (I) id 6.29e+15 100 % 6. 6.21e+15 98.6% 6. 6.21e+15 98.6% 6. 1.97e+15 31.4% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1.	. 2 . 2 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9
icope	TOT_CYC:Sum (! v 1.96e+16 100 % 1.94e+16 98.8% 1.94e+16 98.7% 1.31e+16 66.5% 1.31e+16 65.5% 1.29e+16 65.9% 1.28e+16 65.1% 1.28e+16 65.1% 1.28e+16 65.1% 1.25e+16 63.6%	FP_OPS:Sum (I) 3.14e+15 100 % 3.14e+15 99.9% 3.14e+15 99.9% 2.94e+15 93.5% 2.94e+15 93.5% 2.92e+15 92.9% 2.89e+15 91.9% 2.89e+15 91.9% 2.89e+15 91.9% 2.84e+15 90.5%	imbalance:Sum (I) id 6.29e+15 100 % 6. 6.21e+15 98.6% 6. 6.21e+15 98.6% 6. 1.97e+15 31.4% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.91e+15 30.3% 1.	.2 .2 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9
scope ▼ pflotran ▼ b timestepper_module_stepperrun_ ▼ loop at timestepper.F90: 384 ▼ b timestepper_module_steppersteptransportdt_ ▼ loop at timestepper.F90: 1230 ▼ loop at timestepper.F90: 1254 ▼ b snessolve_ ▼ b SNESSolve_ ▼ b SNESSolve_LS ▼ loop at ls.c: 181 ▼ b SNES_KSPSolve ▼ b KSPSolve ▼ b KSPSolve_BCGS	TOT_CYC:Sum (! ▼ 1.96e+16 100 % 1.94e+16 98.8% 1.94e+16 98.7% 1.31e+16 66.5% 1.31e+16 65.9% 1.28e+16 65.1% 1.28e+16 65.1% 1.28e+16 65.1% 1.25e+16 63.6% 6.37e+15 32.4%	FP_OPS:Sum (I) 3.14e+15 100 % 3.14e+15 99.9% 3.14e+15 99.9% 2.94e+15 93.5% 2.94e+15 93.5% 2.92e+15 92.9% 2.89e+15 91.9% 2.89e+15 91.9% 2.89e+15 91.9% 2.89e+15 91.9% 2.84e+15 90.5% 1.85e+15 58.9%	imbalance:Sum (I) id 6.29e+15 100 % 6. 6.21e+15 98.6% 6. 6.21e+15 98.6% 6. 1.97e+15 31.4% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.91e+15 30.3% 1. 7.23e+14 11.5% 1.	.2 .2 .9 .9 .9 .9 .9 .9 .9 .9 .9 .1 .1
<pre>scope</pre>	TOT_CYC:Sum (I, ▼ 1.96e+16 100 % 1.94e+16 98.8% 1.94e+16 98.7% 1.31e+16 66.5% 1.31e+16 65.9% 1.28e+16 65.1% 1.28e+16 65.1% 1.28e+16 65.1% 1.25e+16 63.6% 6.37e+15 32.4% 6.37e+15 23.5% 3.90e+15 19.9%	FP_OPS:Sum (I) 3.14e+15 100 % 3.14e+15 99.9% 3.14e+15 99.9% 2.94e+15 93.5% 2.94e+15 93.5% 2.92e+15 91.9% 2.89e+15 91.9% 2.89e+15 91.9% 2.84e+15 90.5% 1.85e+15 58.9% 1.85e+15 58.9% 5.70e+14 18.1% 5.21e+14 16.6%	imbalance:Sum (I) id 6.29e+15 100 % 6. 6.21e+15 98.6% 6. 6.21e+15 98.6% 6. 1.97e+15 31.4% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.97e+15 30.3% 1. 7.23e+14 11.5% 1.	.2 .2 .9 .9 .9 .9 .9 .9 .9 .9 .9 .1 .1
<pre>scope</pre>	TOT_CYC:Sum (() ▼ 1.96e+16 100 % 1.94e+16 98.8% 1.94e+16 98.7% 1.31e+16 66.5% 1.31e+16 65.9% 1.28e+16 65.1% 1.28e+16 65.1% 1.28e+16 65.1% 1.25e+16 63.6% 6.37e+15 32.4% 4.62e+15 23.5% 3.90e+15 19.9% 1.58e+15 8.1%	FP_OPS:Sum (I) 3.14e+15 100 % 3.14e+15 99.9% 3.14e+15 99.9% 2.94e+15 93.5% 2.94e+15 93.5% 2.92e+15 91.9% 2.89e+15 91.9% 2.89e+15 91.9% 2.84e+15 90.5% 1.85e+15 58.9% 1.85e+15 58.9% 5.70e+14 18.1% 5.21e+14 16.6% 2.54e+14 8.1%	imbalance:Sum (I) id 6.29e+15 100 % 6. 6.21e+15 98.6% 6. 6.21e+15 98.6% 6. 1.97e+15 31.4% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.91e+15 30.3% 1. 7.23e+14 11.5% 1. 7.23e+14 11.5% 1. Overall: 1 FLC	.2 .2 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9
iscope ▼ ➡ pflotran ▼ ➡ timestepper_module_stepperrun_ ▼ loop at timestepper_module_steppersteptransportdt_ ▼ loop at timestepper.F90: 1230 ▼ loop at timestepper.F90: 1254 ▼ ➡ snessolve_ ▼ ➡ SNESSolve ▼ ➡ KSPSolve ▼ ➡ KSPSolve_BCCS ▼ loop at bcgs.c: 69 ▶ ➡ PCApplyBAorAB ➡ ➡ PCApplyBAorAB	TOT_CYC:Sum (() ▼ 1.96e+16 100 % 1.94e+16 98.8% 1.94e+16 98.7% 1.31e+16 66.5% 1.31e+16 66.5% 1.29e+16 65.9% 1.28e+16 65.1% 1.28e+16 65.1% 1.28e+16 65.1% 1.25e+16 63.6% 6.37e+15 32.4% 4.62e+15 23.5% 3.90e+15 19.9% 1.58e+15 8.1% 1.58e+15 8.0%	FP_OPS:Sum (I) 3.14e+15 100 % 3.14e+15 99.9% 3.14e+15 99.9% 2.94e+15 93.5% 2.94e+15 93.5% 2.92e+15 91.9% 2.89e+15 91.9% 2.89e+15 91.9% 2.84e+15 90.5% 1.85e+15 58.9% 1.85e+15 58.9% 5.70e+14 18.1% 5.21e+14 16.6% 2.54e+14 8.1%	imbalance:Sum (I) id 6.29e+15 100 % 6. 6.21e+15 98.6% 6. 6.21e+15 98.6% 6. 1.97e+15 31.4% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.91e+15 30.3% 1. 7.23e+14 11.5% 1.	.2 .2 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9
<pre>scope</pre>	TOT_CYC:Sum (() ▼ 1.96e+16 100 % 1.94e+16 98.8% 1.94e+16 98.7% 1.31e+16 66.5% 1.31e+16 65.9% 1.28e+16 65.1% 1.28e+16 65.1% 1.28e+16 65.1% 1.25e+16 63.6% 6.37e+15 32.4% 4.62e+15 23.5% 3.90e+15 19.9% 1.58e+15 8.1%	FP_OPS:Sum (I) 3.14e+15 100 % 3.14e+15 99.9% 3.14e+15 99.9% 2.94e+15 93.5% 2.94e+15 93.5% 2.92e+15 91.9% 2.89e+15 91.9% 2.89e+15 91.9% 2.84e+15 90.5% 1.85e+15 58.9% 1.85e+15 58.9% 5.70e+14 18.1% 5.21e+14 16.6% 2.54e+14 8.1%	imbalance:Sum (I) id 6.29e+15 100 % 6. 6.21e+15 98.6% 6. 6.21e+15 98.6% 6. 1.97e+15 31.4% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.97e+15 31.3% 1. 1.91e+15 30.3% 1. 7.23e+14 11.5% 1. 7.23e+14 11.5% 1. Overall: 1 FLC	.2 .2 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9 .9