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•  Indentify opportunities for byte-addressable 
NVRAM in Exascale architectures 
– Memory size/core projected to drop by x100 

• DRAM power usage constraints 
•  Impact on performance and application design 

– Investigate use of NVRAM beyond disk 
replacement 

•  Integrate NVRAM into the node design such that it is 
byte-accessible by applications 

•  Characterize key DOE applications and investigate 
how they are impacted by these new technologies 
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•  Understand impact on performance and 
power of different design choices 

•  Considered existing modeling and simulation 
techniques/tools 
– Empirical modeling 

•  Limited to existing systems/designs 

– Cross-architecture analytical modeling 
• Difficult to capture overlap between miss events 

– Simulators 
•  Published but unavailable, cumbersome to use, 

cycle accurate useful but expensive 
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•  Use an additive performance model 

•  T0(x) – instruction schedule cost w/o dynamic 
misses 
– Use modeling and static analysis to reduce simulation 

overhead 

•  Use a functional directed simulator to understand 
overlapped miss events 
–  first order model to estimate computation overlap 
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€ 

T(x) = T0(x) +DynMissPenalty

€ 

T(x) = T0(x) + ICacheP(x) +DCacheP(x) + BrMissP(x)
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Dynamic Analysis: 
-incremental CFG 
-edge counts 

Static Analysis: 
-loop nests 
-executed paths & freq 
-instruction dependencies 
-instruction schedule cost 
-mechanistic model 

Functional-directed 
Simulator: 
-branch misspredictions 
-cache misses 
-cache miss bursts 

Machine Specific 
Miss Events 

Application 
Object Code 

Architecture 
Description 

Performance Prediction: 
-baseline performance 
-dynamic miss penalties 

Machine Independent 
Application Profile 
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•  Use COTSon infrastructure 
– HP’s open source research 

simulator 
– Built on top of SimNow 
– Supports multicore systems and 

multi-threaded applications 
– Extensible using plugins 
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COTSon simulator 

Blackcomb 
plugin 

SimNow 
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•  Functional-directed simulation, no timings 
– Cache simulator 
– Branch predictor 
– Prefetch predictor (planned) 

•  Output profile at instruction level 
– Only branch and memory instructions 
– Include distribution of overlapped misses 
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•  Light weight tool on top of PIN 
– Discover CFGs incrementally at run-time 
– Selectively insert counters on edges 
– Save CFGs and select edge counts 
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Dynamic Analysis: 
-incremental CFG 
-edge counts 

Application 
Object Code 

Machine Independent 
Application Profile 
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•  Input: 
– CFGs with select edge counts 

•  Methodology: 
– Recover execution counts for all blocks and edges 
– Compute loop nesting structures 
–  Infer executed paths and their execution frequencies 
– Compute instruction schedule for executed paths 
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Static Analysis: 
-loop nests 
-executed paths & freq 
-instruction dependencies 
-instruction schedule cost 

Architecture 
Description 

Baseline Performance 
Prediction 

Machine Independent 
Application Profile 
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– Build dependence graph for path 
– Native instructions → generic instruction types 
– Machine description language → model architecture 
–  Instantiate scheduler with architecture description 

•  Modulo instruction scheduler 
– Critical path based, bidirectional scheduler 

•  Similar to [Huff93] 
•  Aggressive scheduler to model effect of OoOE 

– Compute SESE regions in dependence graph 
•  Cuts # distinct recurrences to be tracked 
•  Compute modulo schedule even for large outer loops  
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•  Use mechanistic model [Kharkanis&Smith 2004, 
Eyerman et al. 2009] 
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Static Analysis: 
-mechanistic processor 
model Architecture 

Description 

Dynamic Miss Penalty 

Machine Specific 
Miss Events 

IPC 

time 

branch 
missprediction data cache miss 

•  Stalls on two CPU resources 
•  Instruction window empty 
•  Reorder buffer (ROB) full 
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•  Original model: 
–  window drains at dispatch width rate 
–  window full when branch enters window 
–  penalty=Wsize/D + cfe (front-end pipeline length) 

•  Extensions 
–  window drains at rate given by IPC computed for loop 
–  num instructions = min(Wsize, instructions since previous miss event) 
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IPC 

time 

misspredicted 
branch dispatched 

branch 
executes 

branch 
resolution 

front-end 
refill 

penalty 

penalty=window drain + front-end refill 



13  Managed by UT-Battelle 
 for the U.S. Department of Energy CScADS Workshop 2011 

•  Original model: 
–  useful dispatch = W/D – clr (load resolution time) 

•  useful dispatch << miss latency  useful dispatch = 0 

–  penalty=miss latency 

•  Extensions 
–  useful dispatch = instructions since previous miss / D 

•  [Chen & Aamodt 2008] 

–  window drains at rate given by IPC computed for loop 
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•  Misses must occur within an interval of W instructions 
–  Misses must be independent 

•  Penalties overlap completely 
•  Model generalizes to any number of independent misses 

within W instructions 
•  penalty = penalty of an independent miss 
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•  Functional-directed simulation 
– Cache simulator 
– Branch predictor 
– Simple dependence tracking 

•  Understand serialized vs. parallel miss events 

•  Branch instructions 
– Number of misspredictions 
– Number of instructions since previous miss 

•  Memory operations 
– Number of cache misses 
– Number of instructions since previous miss 
–  Include distribution of overlapped misses 
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•  List of execution units (EU) 
•  Restrictions between EUs 
•  Instruction templates 
•  Instruction replacement rules 
•  Memory hierarchy characteristics 
•  Front-end pipeline length 
•  Window/ROB size 
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Execution time 

dynamic miss 
penalty 

schedule 
time 

penalty for each 
miss type 

application 
dependence time 

bottleneck on 
resources time 

scheduling extra 
time 

bottleneck per each 
resource 

extra time due to 
each resource 
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•  List of execution units (EU) 
CpuUnits = U_Alu * 6, U_Int * 2, U_IShift, U_Mem * 4,  
           U_PAlu * 6, U_PSMU * 2, U_PMult, U_PopCnt,  
           U_FMAC * 2, U_FMisc * 2, U_Br * 3, 
           I_M * 4, I_I * 2, I_F * 2, I_B * 3; 

•  Restrictions between EUs 
Maximum 6 from I_M, I_I, I_F, I_B {"at most 6 
instructions issued per cycle"};	





19  Managed by UT-Battelle 
 for the U.S. Department of Energy CScADS Workshop 2011 

•  Instruction templates 
Instruction LoadFp template = I_M + U_Mem, NOTHING*5; 
Instruction StoreFp template = U_Mem[2:3](1)+I_M[2:3](1); 
Instruction LoadGp template = U_Mem[0:1](1)+I_M[0:1](1); 
Instruction StoreGp template = U_Mem[2:3](1)+I_M[2:3](1);	



•  Replacement rules 
Replace FpMult $fX, $fY -> $fZ + FpAdd $fZ, $fT -> $fD with  
   FpMultAdd $fX, $fY, $fT -> $fD {"MultiplyAdd rule"}; 

Replace StoreFp $fX -> [$rY] + LoadGp [$rY] -> $rZ with 
   GetF $fX -> $rZ {"GetF rule"}; 

Replace IntMult32 $rX, $rY -> $rZ with  
   SetF $rX -> $f1 +  
   SetF $rY -> $f2 + 
   FpMultAdd $f1, $f2 -> $f3 + 
   GetF $f3 -> $rZ; 
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•  List of memory hierarchy levels (MHL) 
/* For each level, parameters are: [numBlocks, blockSize, 
 * assoc, bdwth from a lower level bytes/cyc),  
 * level to go for miss at this level,  
 * penalty in cycles for going to next level ] 
 */ 
MemoryHierarchy = L1D [256, 64, 4, 32, L2D, 4],  
                  L2D [2048, 128, 8, 32, L3D, 8],  
                  L3D [12288, 128, 6, 6, DRAM, 110],  
                  DRAM [*, 16384, *, 0.04, DISK, 10000],  
                  TLB [128, 8, *, 8, L2D, 25]; 
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•  Work still in progress 
– Use static analysis to compute instruction 

schedule cost 
– Use functional simulation to capture dynamic 

miss statistics 

•  Future work 
– Prefetch predictor 
– Shared caches 
– Remote memory access 
– Stalls on store buffers 
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