
1 Managed by UT-Battelle
 for the U.S. Department of Energy CScADS Workshop 2011 1

Gabriel Marin
in collaboration with Collin McCurdy

2 Managed by UT-Battelle
 for the U.S. Department of Energy CScADS Workshop 2011

•  Indentify opportunities for byte-addressable
NVRAM in Exascale architectures
– Memory size/core projected to drop by x100

• DRAM power usage constraints
•  Impact on performance and application design

– Investigate use of NVRAM beyond disk
replacement

•  Integrate NVRAM into the node design such that it is
byte-accessible by applications

•  Characterize key DOE applications and investigate
how they are impacted by these new technologies

2

3 Managed by UT-Battelle
 for the U.S. Department of Energy CScADS Workshop 2011

•  Understand impact on performance and
power of different design choices

•  Considered existing modeling and simulation
techniques/tools
– Empirical modeling

•  Limited to existing systems/designs

– Cross-architecture analytical modeling
• Difficult to capture overlap between miss events

– Simulators
•  Published but unavailable, cumbersome to use,

cycle accurate useful but expensive
3

4 Managed by UT-Battelle
 for the U.S. Department of Energy CScADS Workshop 2011

•  Use an additive performance model

•  T0(x) – instruction schedule cost w/o dynamic
misses
– Use modeling and static analysis to reduce simulation

overhead

•  Use a functional directed simulator to understand
overlapped miss events
–  first order model to estimate computation overlap

4

€

T(x) = T0(x) +DynMissPenalty

€

T(x) = T0(x) + ICacheP(x) +DCacheP(x) + BrMissP(x)

5 Managed by UT-Battelle
 for the U.S. Department of Energy CScADS Workshop 2011

5

Dynamic Analysis:
-incremental CFG
-edge counts

Static Analysis:
-loop nests
-executed paths & freq
-instruction dependencies
-instruction schedule cost
-mechanistic model

Functional-directed
Simulator:
-branch misspredictions
-cache misses
-cache miss bursts

Machine Specific
Miss Events

Application
Object Code

Architecture
Description

Performance Prediction:
-baseline performance
-dynamic miss penalties

Machine Independent
Application Profile

6 Managed by UT-Battelle
 for the U.S. Department of Energy CScADS Workshop 2011

•  Use COTSon infrastructure
– HP’s open source research

simulator
– Built on top of SimNow
– Supports multicore systems and

multi-threaded applications
– Extensible using plugins

6

COTSon simulator

Blackcomb
plugin

SimNow

7 Managed by UT-Battelle
 for the U.S. Department of Energy CScADS Workshop 2011

•  Functional-directed simulation, no timings
– Cache simulator
– Branch predictor
– Prefetch predictor (planned)

•  Output profile at instruction level
– Only branch and memory instructions
– Include distribution of overlapped misses

7

8 Managed by UT-Battelle
 for the U.S. Department of Energy CScADS Workshop 2011

•  Light weight tool on top of PIN
– Discover CFGs incrementally at run-time
– Selectively insert counters on edges
– Save CFGs and select edge counts

8

Dynamic Analysis:
-incremental CFG
-edge counts

Application
Object Code

Machine Independent
Application Profile

9 Managed by UT-Battelle
 for the U.S. Department of Energy CScADS Workshop 2011

•  Input:
– CFGs with select edge counts

•  Methodology:
– Recover execution counts for all blocks and edges
– Compute loop nesting structures
–  Infer executed paths and their execution frequencies
– Compute instruction schedule for executed paths

9

Static Analysis:
-loop nests
-executed paths & freq
-instruction dependencies
-instruction schedule cost

Architecture
Description

Baseline Performance
Prediction

Machine Independent
Application Profile

10 Managed by UT-Battelle
 for the U.S. Department of Energy CScADS Workshop 2011

– Build dependence graph for path
– Native instructions → generic instruction types
– Machine description language → model architecture
–  Instantiate scheduler with architecture description

•  Modulo instruction scheduler
– Critical path based, bidirectional scheduler

•  Similar to [Huff93]
•  Aggressive scheduler to model effect of OoOE

– Compute SESE regions in dependence graph
•  Cuts # distinct recurrences to be tracked
•  Compute modulo schedule even for large outer loops

11 Managed by UT-Battelle
 for the U.S. Department of Energy CScADS Workshop 2011

•  Use mechanistic model [Kharkanis&Smith 2004,
Eyerman et al. 2009]

11

Static Analysis:
-mechanistic processor
model Architecture

Description

Dynamic Miss Penalty

Machine Specific
Miss Events

IPC

time

branch
missprediction data cache miss

•  Stalls on two CPU resources
•  Instruction window empty
•  Reorder buffer (ROB) full

12 Managed by UT-Battelle
 for the U.S. Department of Energy CScADS Workshop 2011

•  Original model:
–  window drains at dispatch width rate
–  window full when branch enters window
–  penalty=Wsize/D + cfe (front-end pipeline length)

•  Extensions
–  window drains at rate given by IPC computed for loop
–  num instructions = min(Wsize, instructions since previous miss event)

12

IPC

time

misspredicted
branch dispatched

branch
executes

branch
resolution

front-end
refill

penalty

penalty=window drain + front-end refill

13 Managed by UT-Battelle
 for the U.S. Department of Energy CScADS Workshop 2011

•  Original model:
–  useful dispatch = W/D – clr (load resolution time)

•  useful dispatch << miss latency  useful dispatch = 0

–  penalty=miss latency

•  Extensions
–  useful dispatch = instructions since previous miss / D

•  [Chen & Aamodt 2008]

–  window drains at rate given by IPC computed for loop
13

IPC

time

lo
ad

 m
is

s
di

sp
at

ch

lo
ad

is

su
e

ROB full

penalty

penalty=miss latency – useful dispatch

memory access time

W/D

14 Managed by UT-Battelle
 for the U.S. Department of Energy CScADS Workshop 2011

•  Misses must occur within an interval of W instructions
–  Misses must be independent

•  Penalties overlap completely
•  Model generalizes to any number of independent misses

within W instructions
•  penalty = penalty of an independent miss

14

IPC

time

di
sp

at
ch

 1

is
su

e
1

ROB full

penalty

S < W

memory access time

is
su

e
2

di
sp

at
ch

 2

S/D S/D

S/D

miss 1
returns

miss 2
returns

15 Managed by UT-Battelle
 for the U.S. Department of Energy CScADS Workshop 2011

•  Functional-directed simulation
– Cache simulator
– Branch predictor
– Simple dependence tracking

•  Understand serialized vs. parallel miss events

•  Branch instructions
– Number of misspredictions
– Number of instructions since previous miss

•  Memory operations
– Number of cache misses
– Number of instructions since previous miss
–  Include distribution of overlapped misses

15

16 Managed by UT-Battelle
 for the U.S. Department of Energy CScADS Workshop 2011

•  List of execution units (EU)
•  Restrictions between EUs
•  Instruction templates
•  Instruction replacement rules
•  Memory hierarchy characteristics
•  Front-end pipeline length
•  Window/ROB size

17 Managed by UT-Battelle
 for the U.S. Department of Energy CScADS Workshop 2011

Execution time

dynamic miss
penalty

schedule
time

penalty for each
miss type

application
dependence time

bottleneck on
resources time

scheduling extra
time

bottleneck per each
resource

extra time due to
each resource

18 Managed by UT-Battelle
 for the U.S. Department of Energy CScADS Workshop 2011

•  List of execution units (EU)
CpuUnits = U_Alu * 6, U_Int * 2, U_IShift, U_Mem * 4,
 U_PAlu * 6, U_PSMU * 2, U_PMult, U_PopCnt,
 U_FMAC * 2, U_FMisc * 2, U_Br * 3,
 I_M * 4, I_I * 2, I_F * 2, I_B * 3;

•  Restrictions between EUs
Maximum 6 from I_M, I_I, I_F, I_B {"at most 6
instructions issued per cycle"};	

19 Managed by UT-Battelle
 for the U.S. Department of Energy CScADS Workshop 2011

•  Instruction templates
Instruction LoadFp template = I_M + U_Mem, NOTHING*5;
Instruction StoreFp template = U_Mem[2:3](1)+I_M[2:3](1);
Instruction LoadGp template = U_Mem[0:1](1)+I_M[0:1](1);
Instruction StoreGp template = U_Mem[2:3](1)+I_M[2:3](1);	

•  Replacement rules
Replace FpMult $fX, $fY -> $fZ + FpAdd $fZ, $fT -> $fD with
 FpMultAdd $fX, $fY, $fT -> $fD {"MultiplyAdd rule"};

Replace StoreFp $fX -> [$rY] + LoadGp [$rY] -> $rZ with
 GetF $fX -> $rZ {"GetF rule"};

Replace IntMult32 $rX, $rY -> $rZ with
 SetF $rX -> $f1 +
 SetF $rY -> $f2 +
 FpMultAdd $f1, $f2 -> $f3 +
 GetF $f3 -> $rZ;

20 Managed by UT-Battelle
 for the U.S. Department of Energy CScADS Workshop 2011

•  List of memory hierarchy levels (MHL)
/* For each level, parameters are: [numBlocks, blockSize,
 * assoc, bdwth from a lower level bytes/cyc),
 * level to go for miss at this level,
 * penalty in cycles for going to next level]
 */
MemoryHierarchy = L1D [256, 64, 4, 32, L2D, 4],
 L2D [2048, 128, 8, 32, L3D, 8],
 L3D [12288, 128, 6, 6, DRAM, 110],
 DRAM [*, 16384, *, 0.04, DISK, 10000],
 TLB [128, 8, *, 8, L2D, 25];

21 Managed by UT-Battelle
 for the U.S. Department of Energy CScADS Workshop 2011

•  Work still in progress
– Use static analysis to compute instruction

schedule cost
– Use functional simulation to capture dynamic

miss statistics

•  Future work
– Prefetch predictor
– Shared caches
– Remote memory access
– Stalls on store buffers

21

