An Overview of the
Blackcomb Simulator

4444
,,,,,,,,,

Gabriel Marin
in collaboration with Collin McCurdy

. U.S. DEPARTMENT OF

OAK RIDGE NATIONAL LABORATORY
© ENERGY ¥ :

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY




Blackcomb Overview

 Indentify opportunities for byte-addressable
NVRAM in Exascale architectures

— Memory size/core projected to drop by x100
« DRAM power usage constraints
« Impact on performance and application design

— Investigate use of NVRAM beyond disk
replacement

 Integrate NVRAM into the node design such that it is
byte-accessible by applications

 Characterize key DOE applications and investigate
how they are impacted by these new technologies



Understanding Application Impact

« Understand impact on performance and
power of different design choices

« Considered existing modeling and simulation
techniques/tools
— Empirical modeling
 Limited to existing systems/designs
— Cross-architecture analytical modeling
« Difficult to capture overlap between miss events

— Simulators

« Published but unavailable, cumbersome to use,
cycle accurate useful but expensive



Blackcomb Simulator

« Use an additive performance model
T(x) =1,(x)+ DynMissPenalty
T(x) =1,(x)+ ICacheP(x)+ DCacheP(x)+ BrMissP(x)

« T (x)— instruction schedule cost w/o dynamic

misses
— Use modeling and static analysis to reduce simulation
overhead
« Use a functional directed simulator to understand
overlapped miss events
— first order model to estimate computation overlap



Blackcomb Simulator Diagram
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Machine Specific
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Capturing Dynamic Miss Events

COTSon simulator

e Use COTSon infrastructure

Blackcomb

— HP’s open source research | plugin
simulator
— Built on top of SimNow .
1mNow

— Supports multicore systems and
multi-threaded applications

— Extensible using plugins



Blackcomb COTSon Module

« Functional-directed simulation, no timings
— Cache simulator
— Branch predictor
— Prefetch predictor (planned)

e Output profile at instruction level
— Only branch and memory instructions
— Include distribution of overlapped misses



Dynamic Analysis

Dynamic Analysis: Machine Independent
-incremental CFG Application Profile
-edge counts

 Light weight tool on top of PIN

— Discover CFGs incrementally at run-time

— Selectively insert counters on edges
— Save CFGs and select edge counts



Static Analysis: Baseline Performance

Machipe Ipdependent S Static Analysis: N
Application Profile _loop nests
-executed paths & freq
-instruction dependencies
. -instruction schedule cost

e Input:
— CFGs with select edge counts
e Methodology:
— Recover execution counts for all blocks and edges
— Compute loop nesting structures
— Infer executed paths and their execution frequencies
— Compute instruction schedule for executed paths




Computing Instruction Schedule

— Build dependence graph for path
— Native instructions — generic instruction types

— Machine description language — model architecture
— Instantiate scheduler with architecture description

« Modulo instruction scheduler

— Critical path based, bidirectional scheduler
« Similar to [Huffg3]
« Aggressive scheduler to model effect of OoOE

— Compute SESE regions in dependence graph
 Cuts # distinct recurrences to be tracked
« Compute modulo schedule even for large outer loops



Estimating Dynamic Miss Penalty

Machine Specific 4 h
Miss Events Static Analysis: -

-mechanistic processor

\ /

e Use mechanistic model [Kharkanis&Smith 2004,
Eyerman et al. 2009]

branch
A missprediction data cache miss

/MY

o Stalls on two CPU resources

time

 Instruction window empty
« .Reorder buffer (ROB) full



Branch Missprediction Penalty

misspredicted branch
A branch dispatched executes
IPC
' --------
branch I front-end
resolution : refill .
time
>
penalty

penalty=window drain + front-end refill

 Original model:

— window drains at dispatch width rate

— window full when branch enters window
— penalty=W,./D + c;, (front-end pipeline length)

o Extensions

— window drains at rate given by IPC computed for loop

— num instructions = min(W

1ze’

instructions since previous miss event)
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Isolated Data Cache Miss Penalty
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penalty=miss latency — useful dispatch

 Original model:
— useful dispatch = W/D — ¢, (load resolution time)

« useful dispatch << miss latency - useful dispatch = 0

— penalty=miss latency

« Extensions
— useful dispatch = instructions since previous miss / D
o [Chen & Aamodt 2008]

— window drains at rate given by IPC computed for loop
b ,,13



Penalty of Parallel Data Cache Misses
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o Misses must occur within an interval of W instructions
— Misses must be independent

« Penalties overlap completely

« Model generalizes to any number of independent misses
within W instructions

« penalty = penalty of an independent miss
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Blackcomb COTSon Module

 Functional-directed simulation
— Cache simulator
— Branch predictor

— Simple dependence tracking
« Understand serialized vs. parallel miss events

« Branch instructions
— Number of misspredictions
— Number of instructions since previous miss

« Memory operations
— Number of cache misses
— Number of instructions since previous miss
— Include distribution of overlapped misses
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Machine Description Language

« List of execution units (EU)
 Restrictions between EUs

o Instruction templates

o Instruction replacement rules

« Memory hierarchy characteristics
« Front-end pipeline length

« Window/ROB size



Cycle Accounting From Scheduler

Execution time
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Machine Description Language

« List of execution units (EU)

CpuUnits = U Alu * 6, U Int * 2, U IShift, U Mem * 4,
U PAlu * 6, U PSMU * 2, U PMult, U PopCnt,
U FMAC * 2, U FMisc * 2, U Br * 3,
IM*4, I I *2, I F*2, IB* 3;

* Restrictions between EUs

Maximum 6 from I M, I I, I F, I B {"at most 6
instructions 1issued per cycle"};



Machine Description Language

 Instruction templates
Instruction LoadFp template = I M + U Mem, NOTHING*5;

Instruction StoreFp template = U Mem[2:3] (1)+I M[2:3] (1)
Instruction LoadGp template = U Mem[O0:1] (1)+I M[O:1] (1)
Instruction StoreGp template = U Mem[2:3] (1)+I M[2:3] (1)

* Replacement rules

Replace

FpMult $fX, $fY -> $fZ + FpAdd $f7, S$fT -> SfD with

FpMultAdd $fX, S$fy, S$fT -> S$fD {"MultiplyAdd rule"};

Replace
GetF

Replace
SetF
SetF

StoreFp S$fX -> [$rY] + LoadGp [SrY] -> S$SrZ with
SEX -> $SrZ {"GetF rule"};

IntMult32 S$SrX, SrY -> SrZ with
SrX -> Sfl1 +
SrY -> $Sf2 +

FpMultAdd $f1, $f2 -> $£f3 +

Getlt

Sf3 -> Sr7;



Machine Description Language

* List of memory hierarchy levels (MHL)

/* For each level, parameters are: [numBlocks, blockSize,
* assoc, bdwth from a lower level bytes/cyc),

* level to go for miss at this level,

* penalty 1in cycles for going to next level ]

*/
MemoryHierarchy = L1D [256, 64, 4, 32, L2D, 4],
L2D [2048, 128, 8, 32, L3D, 8],
L3D [12288, 128, 6, 6, DRAM, 1107,
DRAM [*, 16384, *, 0.04, DISK, 100007,
TLB [128, 8, *, 8, L2D, 25]1;



Summary

« Work still in progress

— Use static analysis to compute instruction
schedule cost

— Use functional simulation to capture dynamic
miss statistics

« Future work
— Prefetch predictor
— Shared caches
— Remote memory access
— Stalls on store buffers



