A Framework for Binary Code
Analysis, and Static and
Dynamic Patching

Barton P. Miller

University of Wisconsin
bart@cs.wisc.edu

© 2007 Barton P. Miller July 2007 Binary Code Analysis and Editing

Motivation

= Binary code analysis is a basic tool of security
analysts, application developers, system designers and
tool developers.

= Existing binary analysis tools have significant
limitations.

= We are designing and building a new foundation to
support such analysis.

» Multi-platform + Testable
» Open architecture - Suitable for batch processing
- Extensible » Accurate
- Open source - Efficient

© 2007 Barton P. Miller Binary Code Analysis and Editing

Why Binary Code?

= Access to the source code often is not possible:
* Proprietary software packages.
- Stripped executables.

* Proprietary libraries: communication (MPI, PVM), linear
algebra (NGA), database query (SQL libraries).

= Binary code is the only authoritative version of the

program.

» Changes occurring in the compile, optimize and link
steps can create non-trivial semantic differences from
the source and binary.

= Worms and viruses are rarely provided with source
code

© 2007 Barton P. Miller Binary Code Analysis and Editing

Our Starting Point: Dyninst

= A machine-independent library for machine level code
patching.
» Functions for binary code analysis
» Functions for binary code patching

= Clean abstractions to encapsulate the tool complexity.

= Originally designed as part of the Paradyn
performance profiling tool, but now widely used in
many areas, including cyber-security.

© 2007 Barton P. Miller Binary Code Analysis and Editing

Dynamic Instrumentation

= Does not require recompiling or relinking

+ Saves time: compile and link times are
significant in real systems.

» Can instrument without the source code (e.g.,
proprietary libraries).

» Can instrument without linking (relinking is not
always possible.

= Tnstrument optimized code.

© 2007 Barton P. Miller Binary Code Analysis and Editing

Dynamic Instrumentation (con'd)

= Only instrument what you need, when you need
* No hidden cost of latent instrumentation.
» Enables "one pass” tools.

= Can instrument running programs (such as

Web or database servers)

* Production systems.

+ Embedded systems.

+ Systems with complex start-up procedures.

© 2007 Barton P. Miller Binary Code Analysis and Editing

The Basic Mechanism

Application
Program

Trampoline

Function fe® pSyRimentation

Relocated
Instruction(s)

© 2007 Barton P. Miller Binary Code Analysis and Editing

The DynInst Interface

= Machine independent representation

= Write-once, analyze/instrument-many (portable)

= Object-based interface to insert new code: Abstract
Syntax Trees (AST's)

= Hides most of the complexity in the APT

» Easy to build tools: e.g., an MPT tracer: 250 lines of C++
code.

© 2007 Barton P. Miller Binary Code Analysis and Editing

Basic DynInst Operations

= Code query routines:
- Find control-flow elements: modules,
procedures, loops, basic blocks, instructions

- For functions, find entry, exit, call sites.
- For loops, find entry, exit, body.

* Find data elements: variables and parameters
* Call graph (parent/child) queries
* Intra-procedural control-flow graph

© 2007 Barton P. Miller Binary Code Analysis and Editing

Basic DynInst Operations

= Code modification routines:

» Remove Function Call
- Disable an existing function call in the application

* Replace Function Call
- Redirect a function call to a new function

* Replace Function
- Redirect all calls (current and future) to a function to a new

function.
* Replace Instruction
- Code snippet executes instead of specified instruction.

* Wrap Function

- Allow the new function to call the replaced one (potentially with
all its original parameters).

© 2007 Barton P. Miller Binary Code Analysis and Editing

Basic DynInst Operations

= Process control:
- Attach/create process
* Monitor process status changes
» Callbacks for fork/exec/exit
= Inferior (application processor) operations:
* Malloc/free

- Allocate heap space in application process

- Inferior RPC

- Asynchronously execute a function in the application.

* Load module
- Cause a hew .so/.dll o be loaded into the application.

© 2007 Barton P. Miller Binary Code Analysis and Editing

Basic DynInst Operations

= Building AST code sequences:
* Control structures: if and goto
* Arithmetic and Boolean expressions
» Get effective address
* Generate instruction with calculated address.

* Get PID/TID operations

* Read/write registers and global variables
* Read/write parameters and return value
* Function call

© 2007 Barton P. Miller Binary Code Analysis and Editing

Machine Independent Code

SPARC Code Power Code

sethi %hi (ctr)
1d [. . .],%01

add %o0l,%01,1
st %ol,[. . .] IA32 Code

© 2007 Barton P. Miller Binary Code Analysis and Editing

Code Queries AST

Symbol Table and

*x Parser¥ Instrumentation
Requests

PE Symbol Table Dump

ELF

Call
COFF Code Graph
Binary Parser Intra

Instruction
COde X Decoder *x Proc » | Control

ldiom CFG
ldiom . Control

AMD64 Signatures

» sotacks

Power Disassembly Walker

© 2007 Barton P. Miller - 14 - Binary Code Analysis and Editing

SymtabAPT

= Version 1.0 available as of June 5, 2007.

- Supports ELF, XCoff, PE (Linux, Solaris, ALX,
Windows).

= Debug information available in next release:
line numbers, local variables, types.

= Unstrip - SymtabAPI demo tool that
regenerates a stripped binary's symbol table

* Uses code parser to find function entry points

* Uses SymtabAPT to write new symbol table into
binary.

© 2007 Barton P. Miller Binary Code Analysis and Editing

DynStackwalker

= Available soon on all Dyninst platforms.

= Cross-platform API for collecting first and
third party stackwalks.

= Callback interface allows users to plug in their
own stack walking mechanisms, e.g:

» Walking through non-standard stack frames
created by optimized functions.

» Use stackwalking debug information provided by
another library

© 2007 Barton P. Miller Binary Code Analysis and Editing

InstructionAPI

= Decodes machine code into abstract
instruction representation

= Interface allows straightforward data flow
and control flow analysis

* Query interface is designed for analysis, e.g.:
- Control flow targets

- Registers read/written
- Memory addresses accessed

* Instructions can be annotated with analysis
results

= Provides disassembly interface
* Pluggable formatters

© 2007 Barton P. Miller - 17 - Binary Code Analysis and Editing

BinInst Design Goals

= Tool-kit component architecture for binary
analysis and editing

= Open source
= Open data structure definitions
= Machine-independent abstract interfaces

= Batch-enabled analyses
= Static and dynamic code patching
= All major analysis products are exportable

= Enhanced testability and accompanying test
suites

© 2007 Barton P. Miller Binary Code Analysis and Editing

Code Queries AST

and
Symbol Table Dump /| Instrumentation Géjb
Requests

Call y
: Graph \ .
Binary .

Intra-Proc Instr Code
Decode CEG » Control Gen

and
Parsing Idiom
Signatures

Disassembly

© 2007 Barton P. Miller Binary Code Analysis and Editing

Symbol Table Dump

Call ~ (
: Graph
Bmary | = g Instr Code
ntra-Proc
Decode CEG » Control Gen

and
Parsing Idiom v

Signatures|

Disassembly

© 2007 Barton P. Miller Binary Code Analysis and Editing

Code Queries AST

and
Symbol Table Dump /| Instrumentation Géjb
Requests

Call
: Graph \ v
Binary .

Intra-Proc Instr Code
Decode CEG » Control Gen

4

and

Parsing e " Process Stack

Control Walker

Signatures|

Disassembly ‘l/
User
Process

© 2007 Barton P. Miller Binary Code Analysis and Editing

Analysis Scenario

Symbol Table Dump Buffer
Overrun

© 2007 Barton P. Miller Binary Code Analysis and Editing

