The Galois Project

Milind Kulkarni
University of Texas, Austin

Joint work with Keshav Pingali, Martin Burtscher, Patrick Carribault,
Donald Nguyen, Dimitrios Prountzos, Zifei Zhong

Proposition

* Autotuning research should broaden its
scope
— Look at irregular, pointer-based applications
« Current focus: linear algebra, FFT, etc.

— Look at more tuning parameters
« Parameters related to parallel execution
— Perform online tuning
* Not enough information at compile-time
* Tuning parameters can change during execution

Example: Parallelizing Delaunay
Triangulation

2000 points
Average Parallelism: 28.2
Computation Steps: 71

»n 60 -

C

Q

)

©

e

()

=

@

T 40

p -

(O]

o

Q

O

«

'© -

T 20

<

0 I_ I | | | | I | | | | I | | | | I | | | | I | | | | I | | | | I | | | | I |

0 10 20 30 40 50 60 70
Computation Step

Overview of Galois project

Focus of Galois project:

— parallel execution of irregular programs
* pointer-based data structures like graphs and trees

— raise abstraction level for “Joe programmers”
« explicit parallelism is too difficult for most programmers
« performance penalty for abstraction should be small

Research approach:

a) study algorithms to find common patterns of parallelism and locality
b) design abstractions for expressing these patterns

c) implement these abstractions efficiently

For more information
— papers in PLDI 2007, ASPLOS 2008, SPAA 2008

— website: http://iss.ices.utexas.edu

Delaunay Mesh Refinement

Before

After

lterative refinement to remove badly
shaped triangles:

while there are bad triangles do {
Pick a bad triangle;
Find its cavity;
Retriangulate cavity;

// may create new bad
triangles

}

Order in which bad triangles should
be refined:

— final mesh depends on order in which
bad triangles are processed

— but all bad triangles will be eliminated
ultimately regardless of order

Delaunay Mesh Refinement

Before

After

Mesh m = /* read in mesh */
WorkList wl;
wl.add(mesh.badTriangles());
while (true) {
1f C wl.empty()) break;
Element e = wl.get();
1f (e no longer in mesh) continue;
Cavity c = new Cavity(e);//determine
new cavity
c.expand();
c.retriangulate();//re-triangulate
region
m.update(c);//update mesh
wl.add(c.badTriangles());

Delaunay Mesh Refinement

 Parallelism:

— triangles with non-overlapping
cavities can be processed in
parallel

— if cavities of two triangles overlap,
they must be done serially

— in practice, lots of parallelism

Before « Exploiting this parallelism

— compile-time parallelization
techniques like points-to and
shape analysis cannot expose this
parallelism (property of algorithm,
not program)

— runtime dependence checking is
needed

+ Galois approach: optimistic
parallelization

After

Take-away lessons

 Amorphous data-parallelism
iterative algorithm over ordered or unordered work-list
elements can be added to work-list during computation

complex patterns of dependences between computations on different
work-list elements

but many of these computations can be done in parallel
 Amorphous data-parallelism is ubiquitous

Delaunay mesh generation: points to be inserted into mesh

Delaunay mesh refinement: list of bad triangles

Reduction-based interpreters for A-calculus

Agglomerative clustering: priority queue of pairs of points

Boykov-Kolmogorov algorithm for image segmentation

lterative dataflow analysis algorithms in compilers

Approximate SAT solvers: survey propagation, WalkSAT

Take-away lessons (contd.)

 Amorphous data-parallelism is obscured within while
loops, exit conditions, etc. in conventional languages

- Need transparent syntax similar to FOR loops for regular data-
parallelism

« Optimistic parallelization is necessary in general

- Compile-time approaches using points-to analysis or shape
analysis may be adequate for some cases

- In general, runtime dependence checking is needed
- Property of algorithms, not programs

[,

Galois system

* Application program
— Has well-defined sequential semantics
 current implementation: sequential Java

— Uses optimistic iterators to highlight for the
runtime system opportunities for exploiting
parallelism

 Class libraries

— Like Java collections library but with additional
information for concurrency control

* Runtime system
— Managing optimistic parallelism

Optimistic set iterators

« for each e in Set S do B(e)

— evaluate block B(e) for each element in set S

— sequential semantics
» set elements are unordered, so no a priori order on iterations
« there may be dependences between iterations

— set S may get new elements during execution

» for each e in OrderedSet S do B(e)

— evaluate block B(e) for each element in set S

— sequential semantics
» perform iterations in order specified by OrderedSet
» there may be dependences between iterations

— set S may get new elements during execution

Galois version of mesh refinement

Mesh m = /* read in mesh */
Set wl;

wl.add(mesh.badTriangles()); // initialize the Set wl

for each e in Set wl do { //unordered Set iterator
1f (e no longer in mesh) continue;

Cavity ¢ = new Cavity(e);

c.expand(Q);

c.retriangulate();

m.update(c);

wl.add(c.badTriangles()); //add new bad
triangles to Set

}

- Scheduling policy for iterator:
« controlled by implementation of Set class
» good choice for temporal locality: stack

% Parallel execution model

=

« Object-based shared-memory Master
model main()

 Master thread and some
number of worker thregds for each ...
— master thread begins
execution of programand | "t

executes code between | .-.....
iterators }

— when it encounters iterator,
worker threads help by
executing iterations | -
concurrently with master foreach ...{ |

— threads synchronize by
barrier synchronization at
end of iterator

« Threads invoke methods to }
access internal state of objects |

— how do we ensure sequential

semantics of program are
respected? Threads Shared

Program Memory

¥ Baseline solution: PLDI 2007

« lteration must lock object to invoke
method

« Two types of objects:

— catch and keep policy

* |ock is held even after method invocation
completes

* |locks released at end of iteration
* this is often inefficient!

— catch and release policy
 like Java locking policy

» permits method invocations from different
concurrent iterations to be interleaved,
provided it is safe

» safety: requires commutativity information
from class implementer

» crucial for collections and accumulators

Objects

Scheduling iterators (SPAA 2008)

« Control scheduling by changing implementation of work-
set class
— stack/queue/etc.

« Can have a profound effect on abort rates and locality

« Example: Delaunay mesh refinement
— input mesh from Shewchuck’s Triangle
— 10,156 triangles of which 4,837 were bad
— sequential code, work-set is stack:
» 21,918 completed iterations+0 aborted

— 4-processor, with different work-set implementations:
» stack: 21,736 iterations completed+28,290 aborted
« array+random choice: 21,908 iterations completed+49 aborted

* Developed framework that generalizes Open-MP style
schedules

Data Partitioning (ASPLOS 2008)

Cores

« Partition the graph between cores
« Data-centric assignment of work:

— core gets bad triangles from its own partitions
— improves locality
— can dramatically reduce conflicts

* Lock coarsening:

— associate locks with partitions, lock partitions to enforce correctness

« Over-decomposition

— improves core utilization

Small-scale multiprocessor results

¢ 2x2 Xeon @ 3GHz

« \ersions:
— GAL: using stack as worklist
— PAR: partitioned mesh + data-centric work assignment
— LCO: locks on partitions
— OVD: over-decomposed version (factor of 4)

OovD

of Cores

Large-scale multiprocessor results

Maverick @ TACC
— 128-core Sun Fire E25K 1 GHz
— 64 dual-core processors
— Sun Solaris

First “out-of-the-box” results

Speed-up of 20 on 32 cores for
refinement

— New results in LCPC’08

Mesh partitioning is still
sequential

— time for mesh partitioning starts
to dominate after 8 processors
(32 partitions)

Need parallel mesh partitioning

ime (s)

—F—— Speedup
———(O——Abort Ratio

100

=190
=1 80

()

24 8 16

32
of Processors

el Oy 1 4

70
60
50
40
30
20
10

== Partitioning Time
=———{—Refinement Time

of Processors

ohey Hoqy

Related work

Transactions
— programming model is explicitly parallel

— assumes someone else is responsible for parallelism, locality, load-
balancing, and scheduling, and focuses only on synchronization

— Galois: main concerns are parallelism, locality, load-balancing, and
scheduling

Thread level speculation

— not clear where to speculate in C programs
« wastes power in useless speculation

many schemes require extensive hardware support
unable to exploit commutativity at abstract data type level
no analogs of data partitioning or scheduling

overall results are disappointing

Opportunities for Auto-tuning

* On-line feedback from run-time system
— Dynamically change amount of parallelism
» Perhaps based on mis-speculation statistics

— Dynamically change overdecomposition level

« Use finer-grained partitions if mis-speculation too
high

* Schedule tuning

— Choosing which schedule to run
« Based on properties of input data

— Tuning particular schedule
* Which cores should do which work

sSummary

Irregular applications have amorphous data-parallelism

— Work-list based iterative algorithms over unordered and ordered sets
Amorphous data-parallelism may be inherently data-dependent

— Pointer/shape analysis cannot work for these apps
Optimistic parallelization is essential for such apps

— Analysis might be useful to optimize parallel program execution

Exploiting abstractions and high-level semantics is critical
— Galois knows about sets, ordered sets, accumulators...

Galois approach provides unified view of data-parallelism in regular
and irregular programs
— Baseline is optimistic parallelism

— Use compiler analysis to make decisions at compile-time whenever
possible

— Autotuning can “ill in the gaps”

