
The Galois Project

Milind Kulkarni
University of Texas, Austin

Joint work with Keshav Pingali, Martin Burtscher, Patrick Carribault,
Donald Nguyen, Dimitrios Prountzos, Zifei Zhong

Proposition

• Autotuning research should broaden its
scope
– Look at irregular, pointer-based applications

• Current focus: linear algebra, FFT, etc.
– Look at more tuning parameters

• Parameters related to parallel execution
– Perform online tuning

• Not enough information at compile-time
• Tuning parameters can change during execution

0 10 20 30 40 50 60 70

Computation Step

0

20

40

60

A
v
a
ila

b
le

 P
a
ra

lle
l
It
e
ra

ti
o
n
s

2000 points
Average Parallelism: 28.2
Computation Steps: 71

Example: Parallelizing Delaunay
Triangulation

Overview of Galois project
• Focus of Galois project:

– parallel execution of irregular programs
• pointer-based data structures like graphs and trees

– raise abstraction level for “Joe programmers”
• explicit parallelism is too difficult for most programmers
• performance penalty for abstraction should be small

• Research approach:
a) study algorithms to find common patterns of parallelism and locality
b) design abstractions for expressing these patterns
c) implement these abstractions efficiently

• For more information
– papers in PLDI 2007, ASPLOS 2008, SPAA 2008
– website: http://iss.ices.utexas.edu

• Iterative refinement to remove badly
shaped triangles:

 while there are bad triangles do {
Pick a bad triangle;
Find its cavity;
Retriangulate cavity;
 // may create new bad

triangles
}

• Order in which bad triangles should
be refined:
– final mesh depends on order in which

bad triangles are processed
– but all bad triangles will be eliminated

ultimately regardless of order

Delaunay Mesh Refinement

Mesh m = /* read in mesh */
WorkList wl;
wl.add(mesh.badTriangles());
while (true) {
 if (wl.empty()) break;
	 Element e = wl.get();
	 if (e no longer in mesh) continue;
	 Cavity c = new Cavity(e);//determine
new cavity
	 c.expand();
	 c.retriangulate();//re-triangulate
region
	 m.update(c);//update mesh
	 wl.add(c.badTriangles());
}

Delaunay Mesh Refinement

Delaunay Mesh Refinement
• Parallelism:

– triangles with non-overlapping
cavities can be processed in
parallel

– if cavities of two triangles overlap,
they must be done serially

– in practice, lots of parallelism
• Exploiting this parallelism

– compile-time parallelization
techniques like points-to and
shape analysis cannot expose this
parallelism (property of algorithm,
not program)

– runtime dependence checking is
needed

• Galois approach: optimistic
parallelization

Take-away lessons

• Amorphous data-parallelism
– iterative algorithm over ordered or unordered work-list
– elements can be added to work-list during computation
– complex patterns of dependences between computations on different

work-list elements
– but many of these computations can be done in parallel

• Amorphous data-parallelism is ubiquitous
– Delaunay mesh generation: points to be inserted into mesh
– Delaunay mesh refinement: list of bad triangles
– Reduction-based interpreters for λ-calculus
– Agglomerative clustering: priority queue of pairs of points
– Boykov-Kolmogorov algorithm for image segmentation
– Iterative dataflow analysis algorithms in compilers
– Approximate SAT solvers: survey propagation, WalkSAT
– ……

Take-away lessons (contd.)

• Amorphous data-parallelism is obscured within while
loops, exit conditions, etc. in conventional languages
– Need transparent syntax similar to FOR loops for regular data-

parallelism

• Optimistic parallelization is necessary in general
- Compile-time approaches using points-to analysis or shape

analysis may be adequate for some cases
- In general, runtime dependence checking is needed
- Property of algorithms, not programs

Galois system
• Application program

– Has well-defined sequential semantics
• current implementation: sequential Java

– Uses optimistic iterators to highlight for the
runtime system opportunities for exploiting
parallelism

• Class libraries
– Like Java collections library but with additional

information for concurrency control

• Runtime system
– Managing optimistic parallelism

Optimistic set iterators

• for each e in Set S do B(e)
– evaluate block B(e) for each element in set S
– sequential semantics

• set elements are unordered, so no a priori order on iterations
• there may be dependences between iterations

– set S may get new elements during execution
• for each e in OrderedSet S do B(e)

– evaluate block B(e) for each element in set S
– sequential semantics

• perform iterations in order specified by OrderedSet
• there may be dependences between iterations

– set S may get new elements during execution

Galois version of mesh refinement

Mesh m = /* read in mesh */
Set wl;
wl.add(mesh.badTriangles()); // initialize the Set wl

for each e in Set wl do { 		 //unordered Set iterator
	 if (e no longer in mesh) continue;
	 Cavity c = new Cavity(e);	
	 c.expand();	 	 	
	 c.retriangulate();	 	
	 m.update(c);	 	 	
	 wl.add(c.badTriangles()); 	 //add new bad
triangles to Set
}

- Scheduling policy for iterator:
• controlled by implementation of Set class
• good choice for temporal locality: stack

Shared
Memory

Objects

main()
….
for each …..{
…….
…….
}
.....
.....
for each ….{
….....
……..
}
……

Master

Program
Threads

• Object-based shared-memory
model

• Master thread and some
number of worker threads
– master thread begins

execution of program and
executes code between
iterators

– when it encounters iterator,
worker threads help by
executing iterations
concurrently with master

– threads synchronize by
barrier synchronization at
end of iterator

• Threads invoke methods to
access internal state of objects

– how do we ensure sequential
semantics of program are
respected?

Parallel execution model

Baseline solution: PLDI 2007

• Iteration must lock object to invoke
method

• Two types of objects:
– catch and keep policy

• lock is held even after method invocation
completes

• locks released at end of iteration
• this is often inefficient!

– catch and release policy
• like Java locking policy
• permits method invocations from different

concurrent iterations to be interleaved,
provided it is safe

• safety: requires commutativity information
from class implementer

• crucial for collections and accumulators

Objects

time
1

2

3 i j

Scheduling iterators (SPAA 2008)

• Control scheduling by changing implementation of work-
set class
– stack/queue/etc.

• Can have a profound effect on abort rates and locality
• Example: Delaunay mesh refinement

– input mesh from Shewchuck’s Triangle
– 10,156 triangles of which 4,837 were bad
– sequential code, work-set is stack:

• 21,918 completed iterations+0 aborted
– 4-processor, with different work-set implementations:

• stack: 21,736 iterations completed+28,290 aborted
• array+random choice: 21,908 iterations completed+49 aborted

• Developed framework that generalizes Open-MP style
schedules

Data Partitioning (ASPLOS 2008)

• Partition the graph between cores
• Data-centric assignment of work:

– core gets bad triangles from its own partitions
– improves locality
– can dramatically reduce conflicts

• Lock coarsening:
– associate locks with partitions, lock partitions to enforce correctness

• Over-decomposition
– improves core utilization

Cores

Small-scale multiprocessor results
• 2x2 Xeon @ 3GHz
• Versions:

– GAL: using stack as worklist
– PAR: partitioned mesh + data-centric work assignment
– LCO: locks on partitions
– OVD: over-decomposed version (factor of 4)

Large-scale multiprocessor results

• Maverick@TACC
– 128-core Sun Fire E25K 1 GHz
– 64 dual-core processors
– Sun Solaris

• First “out-of-the-box” results
• Speed-up of 20 on 32 cores for

refinement
– New results in LCPC’08

• Mesh partitioning is still
sequential
– time for mesh partitioning starts

to dominate after 8 processors
(32 partitions)

• Need parallel mesh partitioning

Related work
• Transactions

– programming model is explicitly parallel
– assumes someone else is responsible for parallelism, locality, load-

balancing, and scheduling, and focuses only on synchronization
– Galois: main concerns are parallelism, locality, load-balancing, and

scheduling

• Thread level speculation
– not clear where to speculate in C programs

• wastes power in useless speculation
– many schemes require extensive hardware support
– unable to exploit commutativity at abstract data type level
– no analogs of data partitioning or scheduling
– overall results are disappointing

Opportunities for Auto-tuning

• On-line feedback from run-time system
– Dynamically change amount of parallelism

• Perhaps based on mis-speculation statistics
– Dynamically change overdecomposition level

• Use finer-grained partitions if mis-speculation too
high

• Schedule tuning
– Choosing which schedule to run

• Based on properties of input data
– Tuning particular schedule

• Which cores should do which work

• Irregular applications have amorphous data-parallelism
– Work-list based iterative algorithms over unordered and ordered sets

• Amorphous data-parallelism may be inherently data-dependent
– Pointer/shape analysis cannot work for these apps

• Optimistic parallelization is essential for such apps
– Analysis might be useful to optimize parallel program execution

• Exploiting abstractions and high-level semantics is critical
– Galois knows about sets, ordered sets, accumulators…

• Galois approach provides unified view of data-parallelism in regular
and irregular programs
– Baseline is optimistic parallelism
– Use compiler analysis to make decisions at compile-time whenever

possible
– Autotuning can “fill in the gaps”

Summary

