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NIMROD
C.R. Sovinec, JCP, 195, 2004

parallel, 3-D, initial value extended MHD code

2D high order finite elements + Fourier in symmetric direction

linear and nonlinear simulations

semi-implicit and implicit time advance operators

simulation parameters approaching fusion relevant conditions

sparse, ill conditioned matrices

large and growing V&V

active developer and user base with continually expanding
capabilities

U. Wisc, U. Wash, Utah S., Tech-X, GA, CU-Boulder

model fusion relevant experiments - DOE/OFES

Charlson C. Kim, PSI-Center Hybrid Kinetic-MHD
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NIMROD’s Extended MHD Equations

∂B

∂t
= −∇× E+ κdivb∇ (∇ · B)

J =
1

µ0

∇× B

E = −V × B+ ηJ

+
me

nee2

[

e

me

(J× B−∇pe)

+
∂J

∂t
+∇ · (JV + VJ)

]

∂nα

∂t
+∇ · (nV)α = ∇ · D∇nα

ρ

(

∂V

∂t
+ V · ∇V

)

= J× B−∇p

+∇ · ρν∇V−∇ · Π−∇ · ph

nα

Γ− 1

(

∂Tα

∂t
+ Vα · ∇Tα

)

= −pα∇ · Vα

−∇ · qα+Qα − Πα : ∇Vα

resistive MHD

Hall and 2-fluid

Braginski and beyond closures

energetic particles

Charlson C. Kim, PSI-Center Hybrid Kinetic-MHD



university-logo

intro to NIMROD
hybrid kinetic-MHD

Computational Methods and Performance
goals

Hybrid Kinetic-MHD Equations
C.Z.Cheng, JGR, 1991

nh ≪ n0, βh ∼ β0, quasi-neutrality ⇒ ne = ni+nh

momentum equation modified by hot particle pressure tensor:

ρ

(

∂U

∂t
+U · ∇U

)

= J× B−∇pb −∇ · p
h

b, h denote bulk plasma and hot particles
ρ,U for entire plasma, both bulk and hot particle

steady state equation J0 × B0 = ∇p0 = ∇pb0+∇ph0
pb0 is scaled to accomodate hot particles
assumes equilibrium hot particle pressure is isotropic

alternative Jh current coupling possible

Charlson C. Kim, PSI-Center Hybrid Kinetic-MHD
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PIC in FEM - Nontrivial

particles pushed in real space (R,Z ) but field quantities
evaluated in logical space (η, ξ)

requires particle coordinate (Ri ,Zi) to be inverted to logical
coordinates (ηi , ξi )

R =
∑

j

RjNj(η, ξ), Z =
∑

j

ZjNj(η, ξ)

(Ri ,Zi )
−1⇒ (ηi , ξi ) performed with sorting/parallel

communications

algorithmic bottleneck

Charlson C. Kim, PSI-Center Hybrid Kinetic-MHD
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Schematic of Hybrid δf PIC-MHD model

advance particles and δf 1

zn+1
i = zni + ż(zi )∆t

δf n+1
i = δf ni + δ̇f (zi )∆t

deposit δp(η) =
N
∑

i=1

δfim(vi − Vh)
2S(η − ηi ) on FE logical

space

advance NIMROD hybrid kinetic-MHD with modified
momentum equation

ρs
∂δU

∂t
= Js × δB+ δJ× Bs −∇δpb −∇ · δp

h

1S. E. Parker and W. W. Lee, ‘A fully nonlinear characteristic method for
gyro-kinetic simulation’, Physics of Fluids B, 5, 1993

Charlson C. Kim, PSI-Center Hybrid Kinetic-MHD
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Computational Methods

F90/MPI based code

2D FE plane spatial domain decomposed

axisymmetric direction spectral decomposition2

particles share domain decomposition (my expertise)

full spectrum of computers

laptops to DOE computing centers

SLU for linear systems and preconditioning

GMRES for 3D nonlinear solves(outside my expertise)

better scalable solvers actively researched

fluid - reasonable weak scaling to 10K procs

PIC - reasonable scaling to ∼ 1K procs

typically 100′s used
23D operations performed in real space, auxiliary load balancing performed

Charlson C. Kim, PSI-Center Hybrid Kinetic-MHD



university-logo

intro to NIMROD
hybrid kinetic-MHD

Computational Methods and Performance
goals

I/O and Visualization

Fortran binary checkpoint file, written by root

particles write seperate checkpoint file (each proc)

extensive use of VisIt

auxiliary VTK, silo, HDF5, H5part files

python, matlab, tecplot, xdraw

Charlson C. Kim, PSI-Center Hybrid Kinetic-MHD
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Goals

room for improvement in particle parallelization

utilize sorted list
switch from array of types to types of arrays
implement domain decomposition in 3rd dimension

better checkpointing for particles (H5Part?)

scale particles to 10K+

minimal use of profile/performance analysis tools

totalview is a pain to use

Charlson C. Kim, PSI-Center Hybrid Kinetic-MHD
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Summary of PIC Capabilities

tracers, linear, (nonlinear)

two equations of motion

drift kinetic (v‖, µ), Lorentz force (~v)

multiple spatial profiles - loading in x

proportional to MHD profile, uniform, peaked gaussian

multiple distribution functions - loading in v

slowing down distribution, Maxwellian, monoenergetic

room for growth

developing multispecies option, e.g. drift+Lorentz
full f (z) PIC
numeric representation of feq(~x,~v)

e.g. load experimental phase space profiles
for evolution of δf

kinetic closure

Charlson C. Kim, PSI-Center Hybrid Kinetic-MHD
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Overview of PIC method

PIC is a Lagrangian simulation of phase space f (x, v, t)

PIC is a discrete sampling of f

f (x, v, t) ≃
N
∑

i=1

gi (t)S(x− xi (t))δ(v − vi (t))

N is number of particles, i denotes particle index, gi is phase
space volume, S is shape function

all dynamics are in particle motion

PIC algorithm
advance [xi (t), vi (t)] along equations of motion
deposit moment of gi on grid using S(x− xi )
solve for fields from deposition

PIC is noisy, limited by 1/
√
N

Charlson C. Kim, PSI-Center Hybrid Kinetic-MHD
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The δf PIC method reduces noise
S. E. Parker, PFB, 1993, A. Y. Aydemir, PoP, 1994

∂f (z, t)

∂t
+ ż · ∂f (z, t)

∂z
= 0, z = (x, v)

split phase space distribution into steady state and evolving
perturbation f = feq(z) + δf (z, t) - control variates

substitute f in Vlasov Equation to get δf evolution equation
along characteristics ż

δ̇f = −δż · ∂feq
∂z

using ż = żeq + δż and żeq · ∂feq
∂z = 0

apply PIC to δf (z, t)⇒δfi (t), sample feq - importance sampling

Charlson C. Kim, PSI-Center Hybrid Kinetic-MHD
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Drift Kinetic Equation of Motion

follows gyrocenter in limit of zero Larmour radius

reduces 6D to 4D + 1

[

x(t), v‖(t), µ =
1
2
mv2⊥
‖B‖

]

drift kinetic equations of motion

ẋ = v‖b̂+ vD + vE×B

vD =
m

eB4

(

v2‖ +
v2⊥
2

)(

B×∇B2

2

)

+
µ0mv2‖

eB2
J⊥

vE×B =
E× B

B2

mv̇‖ = −b̂ · (µ∇B − eE)

Charlson C. Kim, PSI-Center Hybrid Kinetic-MHD
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δf and the Lorentz Equations

Lorentz equations of motion

ẋ = v

v̇ =
q

m
(E+ v × B)

for Lorentz equations use3

feq = f0(x, v
2) +

1

ωc

(v · b×∇f0)

weight equation is

δ̇f = −δE+ v × δB

B
· b×∇f0 −

2q

m
δE · v ∂f0

∂v2

3M. N. Rosenbluth and N. Rostoker“Theoretical Structure of Plasma
Equations”, Physics of Fluids 2 23 (1959)

Charlson C. Kim, PSI-Center Hybrid Kinetic-MHD
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