
Performance Diagnosis for Hybrid CPU/GPU 
Environments 

Michael M. Smith and Karen L. Karavanic 
Computer Science Department 

Portland State University 



Performance Diagnosis for Hybrid CPU/GPU 
Environments 

Michael M. Smith and Karen L. Karavanic 
Computer Science Department 

Portland State University 

Work in Progress 



Karen L. Karavanic CScADS 8/2/11  

Introduction 

Shift to GPUs: 
•  Single core processors have hit performance wall due 

to heat dissipation and power requirements 
•  => multicore, manycore 
•  Top500 (June 2011):   

–  17/500 are GPU-accelerated 
–  Includes #2 (Tianhe-1a), #4 (Nebulae) and #5 (Tsubame 

2.0) 

•  Hybrid GPU programming model different, and 
programmers need tools to provide unified view of 
application’s performance 



Karen L. Karavanic CScADS 8/2/11  

Performance Diagnosis of Hybrid Applications: 
Project Overview 

•  A benchmark suite for evaluating performance tools 
under development 

•  High level diagnostic metrics to convey most 
important performance trends (note: want them to 
work for CUDA and OpenCL) 

•  Visualizations to convey most important performance 
trends 

•  Funding for Curriculum Innovation in Multicore 
Computing  New PSU Course: General Purpose 
GPU Computing 



Karen L. Karavanic CScADS 8/2/11  

Graphic Processor Unit (GPU) 

Nvidia Cuda Programming Guide, http://developer.download.nvidia.com/ 
compute/cuda/2_0/docs/NVIDIA_CUDA_Programming_Guide_2.0.pdf 

Scheduling unit:  warp = 32 
threads 
Max per MP: 8 blocks, 32 
warps  



Karen L. Karavanic CScADS 8/2/11  

GPU Programming 

http://www.geek.com/wp-content/uploads/ 
2009/03/xeon-processor.jpg 

http://cc.doc.ic.ac.uk/projects/prj_axel/ 
images/Tesla_c1060.png 

Compute Cap.>= 
2.0:  multiple 
kernels 

Compute Cap.>= 
2.0: streams 



Karen L. Karavanic CScADS 8/2/11  

GPU Programming With CUDA 

  1 __global__ void add(int *a, int *b, int *answer_dev) { 
  2     *answer_dev = *a + *b; 
  3 } 
  4  
  5 int main(int argc, char** argv) { 
  6     int a_host; 
  7     int *a_dev; 
  8     int b_host; 
  9     int *b_dev; 
 10     int answer; 
 11     int *answer_dev; 
 12  
 13     a_host = thread_id; 
 14     b_host = 3; 
 15  
 16     cudaMalloc((void **) &answer_dev, sizeof(int)); 
 17     cudaMalloc((void **) &a_dev, sizeof(int)); 
 18     cudaMalloc((void **) &b_dev, sizeof(int)); 
 19  
 20     cudaMemcpy(a_dev, &a_host, sizeof(int), cudaMemcpyHostToDevice); 
 21     cudaMemcpy(b_dev, &b_host, sizeof(int), cudaMemcpyHostToDevice); 
 22  
 23     dim3 dimGrid(1); 
 24     dim3 dimBlock(1,32); 
 25     add<<<dimGrid, dimBlock, 0>>>(a_dev, b_dev, answer_dev); 
 26  
 27     cudaThreadSynchronize(); 
 28  
 29     cudaMemcpy(&answer, answer_dev, sizeof(int), cudaMemcpyDeviceToHost); 
 30  
 31     return 0; 
 32 } 

define kernel 

serial code 

allocate memory 

launch kernel 

  1 int main(int argc, char** argv) { 
  2     int a_host; 
  3     int b_host; 
  4     int answer; 
  5 
  6     a_host = thread_id; 
  7     b_host = 3; 
  8 
  9     answer = a_host + b_host; 
 10 
 11    return 0; 
 12  } 

move data 

move data 

serial code 



Karen L. Karavanic CScADS 8/2/11  

A Simple Performance Tool Benchmark Suite 

Inspired by APART Test Suite 
Goals: 

–  Easily understandable behavior 
–  Used to check correctness of diagnosis 

•  Started with an existing single device implementation 
of matrix multiplication and extended it to support: 
–  Multiple GPU devices 
–  Overlap CPU and GPU computation 
–  Use pinned memory 
–  Use asynchronous memory transfers 

•  Based on Programming Massively Parallel 
Processors:  A Hands-on Approach by Kirk and Hwu 



Karen L. Karavanic CScADS 8/2/11  

Naive Kernel 

•  Matrix multiplication performed by calculating dot 
product of rows in M and columns in N 

•  Kernel configured to use one block of threads, so 
size of matrices limited by the maximum number of 
threads in a block 

•  In our case this was 16x16 
–  Maximum number of threads in a block is 512 
–  16x16 is largest size that is a power of two 

P = M x N [4x4] 
d: data in global memory 
ds: data in shared memory 



Karen L. Karavanic CScADS 8/2/11  

Tiled Kernel 

•  Breaks the Pd matrix up into tiles 
•  Tiles the same size as a block  

P = M x N [4x4] 
d: data in global memory 
ds: data in shared memory 



Karen L. Karavanic CScADS 8/2/11  

Tiled Kernel 

P = M x N [4x4] 
d: data in global memory 
ds: data in shared memory 



Karen L. Karavanic CScADS 8/2/11  

Tiled Plus Shared Memory Kernel 

•  Tiled kernel accesses 
data in global memory 
multiple times 

•  Tiled plus shared 
memory kernel uses 
shared memory to 
reduce global memory 
traffic 

•  Breaks computation up 
into phases 

•  Threads cooperatively 
load elements into 
shared memory 

P = M x N [4x4] 
d: data in global memory 
ds: data in shared memory 



Karen L. Karavanic CScADS 8/2/11  

Phase One 

Global Memory: 4GB 
Shared Memory per Block: 16KB 

P = M x N [4x4] 
d: data in global memory 
ds: data in shared memory 



Karen L. Karavanic CScADS 8/2/11  

Phase Two 

Global Memory: 4GB 
Shared Memory per Block: 16KB 

P = M x N [4x4] 
d: data in global memory 
ds: data in shared memory 



Karen L. Karavanic CScADS 8/2/11  

Multiple Device Support 

•  CUDA programming 
model requires at least 
one host thread per 
device 

•  We divide the work 
among multiple host 
threads. 

P = M x N [4x4] 
d: data in global memory 
ds: data in shared memory 



Karen L. Karavanic CScADS 8/2/11  

Multiple Device Support 
P = M x N [4x4] 
d: data in global memory 
ds: data in shared memory 



Karen L. Karavanic CScADS 8/2/11  

Pinned Memory Optimizations 

•  Asynchronous memory transfers 
–  Requires pinned memory 
–  Non-blocking memory transfers for host 



Karen L. Karavanic CScADS 8/2/11  

Hybrid Matrix Multiplication 

•  Overlaps CPU and GPU computation 
•  Divides work same as multiple device version 

–  One thread performs computation on device 
–  Other thread performs computation on host 



Karen L. Karavanic CScADS 8/2/11  

Device Efficiency Metric 

•  Goal - indicate if the overhead of moving data to the 
device was justified 

•  Theoretical definition:  kernel compute time / kernel 
wall clock 

•  Kernel device time: amount of time kernel executes 
on device 

•  Device time: amount of time kernel and data 
movement functions execute on the device 

•  Minimum value: 0 
•  Maximum value: 1 

DE =  kernel device time 
device time 



Karen L. Karavanic CScADS 8/2/11  

Device Utilization 

•  Goal - show how much of device’s available 
computation is used 

•  Device time: amount of time kernel and data 
movement functions execute on the device 

•  Wall clock time: amount of time the application ran 
•  Minimum value: 0 
•  Maximum value: 1 

DU =  device time 
wall clock time 



Karen L. Karavanic CScADS 8/2/11  

Experiments 

Goals: 
•  Use matrix multiplication benchmark suite to study 

the behavior of the derived metrics 
•  What do the derived metrics tell us about a real 

scientific application ? 



Karen L. Karavanic CScADS 8/2/11  

Experimental Design - Instrumentation 

CudaProf configured to gather: 
–  kernel device time: gputime for kernel functions 
–  device time: gputime for kernel and data movement 

functions 

•  wall clock time: external time utility 
•  Tesla C1060 (1 GPU), S1070 (4 GPUs): compute 

capability 1.3 

DE =  kernel device time 
device time DU =  device time 

wall clock time 



Karen L. Karavanic CScADS 8/2/11  

Experimental Design - Matrix Multiplication 

•  Kernels: 
–  Naive 
–  Tiled 
–  Tiled plus shared memory 

•  Memory optimizations: 
–  Paged memory 
–  Pinned memory 
–  Pinned memory with asynchronous memory transfers 

•  Multiple devices 
•  Overlapped CPU and GPU computation 
•  Matrix sizes: 

–  from 16x16 to 16,384x16,384 



Karen L. Karavanic CScADS 8/2/11  

Matrix Multiplication Case Study 

Matrix multiplication configured with: tiled+shared memory kernel, 
pinned memory, asynchronous memory transfers, single device 

Device Efficiency

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

16x16 512x512 1024x1024 2048x2048 4096x4096 8192x8192 16384x16384

DE =  kernel device time 
device time 



Karen L. Karavanic CScADS 8/2/11  

Matrix Multiplication Case Study 

Matrix multiplication configured with: tiled+shared memory kernel, 
pinned memory, asynchronous memory transfers, two devices 

Device Efficiency

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

dev0 dev1 dev0 dev1 dev0 dev1 dev0 dev1 dev0 dev1 dev0 dev1 dev0 dev1

32x32 512x512 1024x1024 2048x2048 4096x4096 8192x8192 16384x16384

DE =  kernel device time 
device time 



Karen L. Karavanic CScADS 8/2/11  

Matrix Multiplication Case Study 

Matrix multiplication configured with: tiled+shared memory kernel, 
pinned memory, asynchronous memory transfers, overlapping CPU 
and GPU computation 

Device Efficiency

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

32x32 512x512 1024x1024 2048x2048 4096x4096

DE =  kernel device time 
device time 



Karen L. Karavanic CScADS 8/2/11  

Matrix Multiplication Case Study 

Matrix multiplication using 
tiled kernel, paged memory, 

single device. 

Matrix multiplication using 
tiled plus shared memory kernel, 

paged memory, single device. 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
5
1
2
x
5
1
2

1
0
2
4
x
1
0
2
4

2
0
4
8
x
2
0
4
8

4
0
9
6
x
4
0
9
6

8
1
9
2
x
8
1
9
2

1
6
3
8
4
x
1
6
3
8
4

DE

DU

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

5
1
2
x
5
1
2

1
0
2
4
x
1
0
2
4

2
0
4
8
x
2
0
4
8

4
0
9
6
x
4
0
9
6

8
1
9
2
x
8
1
9
2

1
6
3
8
4
x
1
6
3
8
4

DE

DU



Karen L. Karavanic CScADS 8/2/11  

Matrix Multiplication Case Study 

Matrix Size Device Utilization 

1 device 2 devices 
dev0 dev0 dev1 

16x16 0.00 0.00 0.00 

512x512 0.00 0.00 0.00 

1024x1024 0.01 0.01 0.01 

2048x2048 0.09 0.04 0.04 

4096x4096 0.37 0.23 0.23 

8192x8192 0.78 0.61 0.61 

16384x16384 0.93 0.85 0.85 

Matrix multiplication configured with: tiled+shared memory kernel, 
pinned memory, asynchronous memory transfers 

DU =  
device time 

wall clock time 



Karen L. Karavanic CScADS 8/2/11  

Experimental Design - NAMD 

•  Are these metrics useful for full-scale application?  
Molecular dynamics simulator 

•  Extended by Phillips et al. to support GPUs 
•  Configured to simulate the Satellite Tobacco Mosaic 

Virus (STMV) 
•  Modified an existing simulation configuration 



Karen L. Karavanic CScADS 8/2/11  

NAMD Case Study 

Device Efficiency

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

dev0 dev1

single device

two devices

DE =  kernel device time 
device time 



Karen L. Karavanic CScADS 8/2/11  

NAMD Case Study 

Device Utilization

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

dev0 dev1

single device

two devices

DU =  
device time 

wall clock time 



Karen L. Karavanic CScADS 8/2/11  

Observations & Questions 

•  Device efficiency can be used to indicate 
performance in a hybrid environment, but doesn’t 
reflect optimizations between kernels 

•  Device utilization can be used to indicate 
performance in a hybrid environment, but doesn’t 
show how much an application can be accelerated 

•  Does device utilization matter? 
•  What about CPU utilization?  Is CPU wait time 

“free”?  FLOPs/watt? 
•  How can we visualize the asynchronous transfers 

and streams? 
•  Most common student questions: 

–  How can I tell what the GPU is doing??  (perf.,scheduling) 
–  How should I break down the problem? (blocks, streams) 



Acknowledgments and contact info 

•  This work funded in part by National Science 
Foundation Award #1044973. 

•  Thanks to all students in “Performance Analysis of 
Heterogeneous Multicore Systems.” 

•  Benchmark suite completed for CUDA and OpenCL. 

•  karavan@cs.pdx.edu  
•  www.cs.pdx.edu/~karavan 

Karen L. Karavanic CScADS 8/2/11  


