

Instrumentation specification

Attendees:
Drew Bernat, Markus Geimer,

Kevin Huck, Bill Williams

Unifying source/binary instrumenter

● Consolidate keywords

– Add new keyword to get unique names

– Open question: How to reference them later on?
● Code specification in a unified language?

– E.g., based on DynC

– Requires translation into target language for
source-code instrumenter

● For efficiency, given code snippet could be “outlined”
to a function, parameterized by keywords used

Filtering

● Technical issue: Integrate some of the filtering stuff
into Dyninst?

– Filter interface: Provide a starting set of points and a
predicate, returns a set of points satisfying the predicate

– Transform interface: Provide set of points and a code
snippet

Miscellaneous

● Is it possible to better support Extrae?

– Needs map of function names to numbers

– Trivial for binary instrumenter

– Requires to preserve state between invocations for
source-code instrumenter

● Not impossible, but complicates parallel builds

	Slide 1
	Slide 2
	Slide 3
	Slide 4

