
University of Maryland

Runtime Instrumentation of
 VxWorks

Jeff Hollingsworth 
<hollings@cs.umd.edu>

Ray Chen rchen@cs.umd.edu



University of Maryland

VxWorks OS Overview

 General properties
– Designed for embedded systems
– Wide range of deployed environments

• Consumer hardware (Linksys routers)
• Scientific research equipment
• Telecommunications Systems

 Ported to many platforms
– 68K/CPU32, ARM, ColdFire, i960, MIPS, PowerPC, SH, 

SPARC, x86/Pentium/IA-32, XScale
– We target PowerPC for the port

 Highly configurable kernel
– Interactive shell
– File system



University of Maryland

VxWorks Development

 Separate development from runtime
– Cross compiler on “host” machine
– Upload binary and execute on “target” machine

 Debugging must involve both systems
– Functionality provided by Target Agent (target)
– Physical link managed by Target Server (host)

• Ethernet, serial, USB, etc.
• Modular to provide for future



University of Maryland

Target Agent

 Compile kernel with target agent
– Akin to compiling with debug information

 Basic debugging features
– Reading/writing task registers
– Reading/writing process memory
– Event callback system

• Task creation/deletion
• Breakpoints
• Watchpoints

– Cache flush/invalidate



University of Maryland

Target Agent

 Advanced features
– Loading/launching RTP/kernel tasks
– Memory disassembler
– Target function call
– Symbol query system

• Includes adding and removing symbols
• In core memory only

– Loading modules from host
• Kernel or real-time process



University of Maryland

WTX Protocol

 Protocol for debugging tools
– Used to send requests to Target Server

 User friendly libraries for 3rd party use
– C interface libraries provided
– Integrate easily with modular design of Dyninst

 Allows any Dyninst platform to be a host
– WTX libraries must exist on platform



University of Maryland

Issues Solved

 Understanding use of WTX Protocol
– WinRiver recently asked us questions about the 

API!

 Differing Endianness
– Internal to Dyninst

• Required some cleanup of internals
– Public Functions 

• API supported reading un-typed memory
• Added calls for readInt, writeInt etc.

– Permits automatic conversion of byte ordering



University of Maryland

Approach: Static Analysis

 Loadable Kernel Module Analysis
– Handles incomplete address information

• Similar to unlinked object file

 Enough for full SymtabAPI support
– Function and variable information parsed
– Execution environment unnecessary

• No need for target hardware or simulator
– Similar to opening shared library



University of Maryland

Approach: Dynamic Analysis

 Full address information 
– Includes relocation phase of text section

 Control Flow Graph
– Graph produced for each function found
– Provides basic block and instruction information

 Force-load additional kernel modules
 Dynamic Instrumentation

– From function entry/exit down to instruction-
level



University of Maryland

Dyner Command Line Tool

 Power of Dyninst without the C++ code
 Sample commands:

– wtxConnect – connect to VxWorks target server
– wtxPs – process list on VxWorks
– show modules
– show functions
– insert at main entry { printf(“Hello world!\n”); }
– count fooFunc – counts calls to a function
– run



University of Maryland

API for Snippet Compiler

 Goals
– Provide simple way to generate snippets
– Refactoring of dyner tool

 Add methods to BPatch_AddressSpace
– bool generateSnippet(const char *code, 

BPatch_snippet *&retval); 
• Snippet can be inserted at multiple points
• Can refer to global variables

– bool generateSnippet(const char *code, 
BPatch_point pt, BPatch_snippet *&retval);
• Can refer to local variables



University of Maryland

Current Status

 Dyninst port complete
– Can parse programs
– Analyse binaries
– Insert new code into running programs
– Attach to running process
– Analyze binaries from memory image only

 Tools
– Dyner command line tool running
– Able to measure program performance



University of Maryland

Feature Wish List

 Cross platform SymtabAPI support 
– in one library

 Enable x86 mutatee mode for simulation 
tests 

 Workbench (GUI) integration



University of Maryland

Future Work

 Kernel-level Analysis
– Aggressive branching behavior is non-ABI
– Affects the ability to manipulate libc functions

 Local variable information
 Extended cross-platform support

– Goal to have more flexible mutators

 Investigate latency of WTX
– Mutator effectively 2 indirections away

• Worse if using a serial line to target

 Experiments using Dyninst


