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With many apologies to Edgar Allan Poe…

But theBut the  RoadrunnerRoadrunner still beguiling still beguiling  my sadmy sad  fancy into smiling,fancy into smiling,
Straight I wheeled a cushioned seat in front of bird and bust and door;Straight I wheeled a cushioned seat in front of bird and bust and door;
Then, upon the velvet sinking, I betook myself to linkingThen, upon the velvet sinking, I betook myself to linking
Fancy unto fancy, thinking what this ominous bird of yore -Fancy unto fancy, thinking what this ominous bird of yore -
What this grim, ungainly, ghastly, gaunt, and ominous bird of yoreWhat this grim, ungainly, ghastly, gaunt, and ominous bird of yore
Meant in croaking Meant in croaking ‘‘Nevermore.Nevermore.’’
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Is applications programming as we know it
‘Nevermore?’

 A brief survey of contemporary architectures
• Roadrunner overview
• New systems

 Some programming considerations for Roadrunner and beyond

 A possible (although steep, rocky, and treacherous) path forward
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A brief look at Roadrunner

http://www.lanl.gov/roadrunner
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A Roadrunner “Triblade” node integrates Cell and
Opteron blades
 LS21 is an IBM dual-socket Opteron blade
 QS22 is an IBM Cell blade containing two

PowerXCell 8i™ enhanced double
precision CBEs

 Expansion blade connects two QS22 to
LS21 via four PCI-E x8 links and provides
the node’s single Infiniband 4X DDR
cluster attachment

 Roadrunner Triblades are completely
diskless

 Roadrunner is a cluster-of-cluster of
Triblades: 180 nodes x 17 CUs
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Roadrunner embodies most probable features of near-
term systems

 Cluster computing (MPI)

 Multicore SMP processors (Opterons, Cells)

 44 threads per node (4 Opteron, 8 PPE, 32 SPE), ~135K total

 3 distinct address spaces per node (one per blade)

 Heterogeneous instruction sets (x86, PowerPC, SPU)

 SIMD floating point (SSE, AltiVec, SPU)

 Local stores instead of caches (SPU)

 On-chip CPU/memory networks (Cell EIB)

 “Remote” accelerators (Cell blades on PCI-E)

 586 Mflops/Watt
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New processors will make their way into next-
generation supercomputers

AMD “Fusion”
Intel “Larrabee”

Taken from publicly available information

Sun “Rock”
16-64 threads

NVIDIA “GTX 280”
240 SPs
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… but those products already “exist.”  What’s next?

 As much as I can say is:
• Core counts are increasing quickly
• More specialized heterogeneous cores are appearing on chip
• More “interesting” cache/memory/local store layouts
• Some chips are specialized for HPC
• SIMD lengths are growing

 Double-precision teraflop (-ish) chips will be here soon
• Petaflop is obtainable in a medium-sized cluster!
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Applications programming
considerations
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The simplest Roadrunner programming model is one
Cell chip per Opteron core
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A variety of application models have been used

 Cell-centric
• Application primarily on the Cell processors
• Opterons used for communication, I/O and collective operations
• Issues: lack of PPE speed and size of SPE local store
• Good for new compact codes

 Opteron-centric
• Application primarily on the Opteron processors
• Cells used to accelerate numerically-intensive regions
• Issues: data transfer times from Opteron to Cell, not wasting the Opteron cycles
• Good for accelerating existing codes

 Decomposed
• Functionally-decompose application across all units
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A Cell-only tuning example can be found in SPE DMAs

 The Cell SPE processors need to transfer data from Cell main memory
(4 GiB) to SPE local store (256 KiB)

 SPE has a dedicated DMA processor (the “MFC”) for true
asynchronous transfers: 16 in-flight per SPE,  ≤16 KiB per transfer

 All processors (8 SPEs, PPE L2 cache misses) access RAM across the
25.6 GiB/s Element Interface Bus (4 unidirectional rings)

 Performance questions:
• How many buffers should an SPE have (e.g. inbound, compute, outbound) to

cover communication with compute?
• How big should any one transfer be?
• How many SPEs should be working?
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SPE DMA performance tuning

Buffers

SPEs

Time required to complete a
large DAXPY varying the
number of SPEs (1-6,8) and
the number of communication
buffers (1-6).



Slide 14

Operated by Los Alamos National Security, LLC for NNSA

U N C L A S S I F I E D

Roadrunner makes this a little more difficult

 Another level of memory transfer:
Opteron to Cell

 Where does SPE data partitioning
occur?

 Where does byte-swapping occur?

 How do you overlap communication
and computation between all three
levels of processor?

 Do you optimize data structures for
Opteron or for Cell?

Particle Transport
Application Timings
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That was enough easy stuff!
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Major application development issues are looming

 Explosion in platform-specific techniques, directives, tools & protocols

 Changes in SIMD length can have significant data structure implications

 MPMD, even for homogeneous systems, means code base growth

 Debugging (and profiling) becomes more and more difficult
• No common clock (or even clock frequency), even on-node
• Multiple instruction sets - what does “step” mean?
• Massive thread/process counts
• Non-standard interconnects in accelerator-based systems - data acquisition

 Heterogeneous instruction sets amplify all of the above

 Applications need to be aware of power management, reliability, I/O imbalance,
etc.
• Google: failure-tolerant applications on failure-prone hardware

 More important to optimize data motion than instruction counts!
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Existing production software tools are part of the
solution…

 “Production” implies Fortran/C/C++ plus MPI and/or pthreads

 Compilers are reasonable at transforming imperative programs to
assembly code, for a particular ISA

 Libraries (+autotuning) provide cross-platform functionality and spread
the knowledge of experts over a large user base

 A lot of work has gone into other parts of the toolchain
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… as are “new” developments…

 Applying autotuning to applications

 PGAS

 Domain calculus

 Higher-level modeling of concurrency

 Modern HPC languages

 Multicore libraries (IBM ALF, Intel Ct, Microsoft TPL, etc.)

 Accelerator languages (CUDA, Stream SDK, OpenCL, etc.)

 But…
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… but there are still a lot of problems.

 Libraries have limited applicability and impose data motion/translation
issues

 Can PGAS handle deep, disjoint memory hierarchies?
 Most new languages push hard parallelism issues to developer
 SPMD is certainly dead at the ISA level, probably at the source level
 Compute-intensive regions often require large data tables
 The new languages are still imperative (although less deterministic)

• Makes high-level analysis difficult
• Obfuscates the intent of the code
• Makes the developers select data structures, one of the hardest things for

compilers to change

 Multiple communication protocols may be needed
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Obvious observations should guide our work

 Scientific computing is more about results than applications

 Physics and methods people are easier to fund than CS people on
“science” projects

 HPC applications are requiring ever more machine-specific design
considerations (compare “high-performance” vs. “large scale”)

 Many computational patterns are re-used in scientific computing
(refinement of the {7,13}-dwarfs):
• Sweeps over mesh features
• Treating a field variable as linear systems or FFTs
• Tracking particles
• Data table lookups
• n-Body calculations
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Scientific code generators may provide a path forward

 Provide a high-level language for describing calculations (e.g. coupled
multiphysics simulations on meshes)

 Provide interfaces for packaging solvers and data

 Autonomous or guided selection of patterns for {calculations} x
{machine features}

 Generate source code targeted for a machine, or even a particular set
of inputs

 Leverage existing tool sets
• Compilers
• Communications
• Build tools
• Run scripts
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The benefits of decoupling the “what” from the “how”
are numerous

 Separates domains of expertise

 Preserves institutional knowledge

 Enables rapid experimentation with methods

 Provides opportunity for machine-selected data structures

 Allows performance gains through problem-specific specialization

 Simplifies V&V and cross-platform comparison

 Accelerates application deployment on new architectures

 Allows domain-specific error-checking (e.g. unit analysis)
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We will need to use every tool at our disposal

Mesh DSL &
Verification

Methods &
Data

System
Description

DSL
Optimizer

Application
Generator

Autotuning

Configure &
Build Tools

Imperative
Source Code Run Scripts
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“Nevermore?”  I hope so, but it won’t be easy

 Roadrunner provides a balance of new technologies from which to
explore the future (and it is fun!)

 It is difficult to use all the features of all of the new systems if you have
describe how to do your work on each of them.

 SPMD imperative programming gets the job done.  Let’s not forget that.

 SPMD imperative programming is error-prone, poorly-coupled, system-
at-a-time high-level assembly.  Let’s move on.

 By limiting the domain of applicability and raising the level of
abstraction, we can get computers to do more of tedious bookkeeping
work required for generating imperative programs.

 This audience has the expertise required to get the job!
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Gedankenexperiment:  port a particle code

1. You need to represent a time-varying number of particles, each with
position, direction, etc. moving through (and interacting with) physics
quantities stored in a background mesh

2. Pick a data layout, assuming a 128-bit SIMD general purpose processor
 Did you get your intra- and inter-structure data alignment correct?

3. Communicate your data (particle & mesh) to another address space
 Of course, you didn’t waste cycles copying/serializing your data or dereferencing

pointers

4. Partition your work among N>>16 specialized processors, -Oinfinity
 Is your data structure optimal for these processors?

5. Now make this code efficient on a 1024b SIMD processor from another
vendor in another interconnect topology


