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Compiler-Assisted Performance 
Tuning 

* This work has been sponsored by the NSF NGS and CSR programs, Intel 
Corporation, and the DOE SciDAC as part of the Performance Engineering 
Research Institute (PERI).
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Goal for this Workshop

• Discuss role of compiler technology in 
various tuning efforts
– Application programmer assistant
– Library developer assistant (e.g., intelligent 

code generation and search)
– Fully automatic tuning (next talk)

• Our interests
– New applications
– New architectures
– Other collaborations
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Key Research Themes

• Compiler-based performance tuning tools
– Use vast resources of petascale systems 
– Enumerate options, generate code, try, 

measure, record (conceptually)
• Optimizing compilers built from modular, 

understandable chunks
– Easier to bring up on new platforms
– Facilitates collaboration, moving the 

community forward

A Systematic, Principled Approach!
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Outline

1. Motivation
2. Approach & potential of compiler-

assisted tuning
New flexible and systematic compiler 
technology
Scenarios from application tuning
Automatic performance tuning

3. Overview of results (more in next talk)
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Performance Engineering 
Research Institute (SciDAC-2)

• Long-term goal is to 
automate the process of 
tuning software to 
maximize its performance

• Reduces performance 
portability challenge for 
computational scientists.

• Addresses the problem 
that performance experts 
are in short supply

• Builds on forty years of 
human experience and 
recent success with linear 
algebra libraries

PERI automatic tuning frameworkSlide source: Bob Lucas and David Bailey

This
talk



CScADS, July 2007 7

A New Kind of “Compiler”

Traditional view:

Batch
Compiler

code

input data
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Performance Tuning “Compiler”

Code 
Translation

code

input data
(characteristics)

Experiments Engine

transformation
script(s)

search script(s)
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Performance Tuning “Compiler”

Code 
Translation

code

input data
(characteristics)

Experiments Engine

transformation
script(s)

search script(s)

1. Programmer expresses application-level parameters and input data 
set properties. (ref. Active Harmony and Rose compiler)
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Scenario 1: Application-Level 
Parameters

• Programmer 
expresses 
parameters to 
be searched, 
input data set 
(e.g.,
Visualization of 
MD Simulation)

• Tools 
automatically 
generate code 
and evaluate 
tradeoff space 
of application-
level 
parameters 

Parameter cellSize, range = 48:144, step 16

ncell = boxLength/cellSize

for i = 1, ncell
/* perform computation */

Const cellSize = 48

ncell = boxLength/48

for i = 1, 48
/* perform computation */
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Performance Tuning “Compiler”

Code 
Translation

code

input data
(characteristics)

Experiments Engine

transformation
script(s)

search script(s)

2. Application programmer interacts with compiler to 
guide optimization.
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Scenario 2: Programmer-guided 
Transformations

• Application         
programmer
has written code 
variants for every 
possible unroll 
factor of two 
innermost loops 

• Straightforward 
for compiler to  
generate this 
code and test for 
best version
Empirical Optimization for a Sparse Linear Solver: A Case Study, Y. Lee, P. Diniz, M. Hall and R. 
Lucas. International Journal of Parallel Programming, vol. 33, 2005.`

LS-DYNA Solver Performance Results
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Performance Tuning “Compiler”

Code 
Translation

code

input data
(characteristics)

Experiments Engine
transformation
script(s)

search script(s)

3. Compiler performs automatic performance tuning.
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High-Level Concept:
Exploit what compilers do well

• Complex translation and transformation 
(rewriting rules)

• Domain knowledge of optimizations and 
optimization impact

• Analyze code to derive “features”
• Source-to-source

– Rely on investment in backend native 
compilers to achieve ILP
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Model-guided empirical       
optimization (our autotuning)

• Model-guided optimization
– Static models of architecture, profitability

• Empirical optimization
– Empirical data guide optimization decisions
– ATLAS, PhiPAC, FFTW, SPIRAL etc.

• Exploit complementary strengths of both 
approaches
– Compiler models prune unprofitable solutions
– Empirical data provide accurate measure of optimization 

impact

Goal: Hand-tuned levels of performance from 
compiler-generated code for loop-based computation 
that is portable to new architectures.
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Automatic Performance Tuning
(Model-Guided Empirical Optimization)

analysis/models

transformation 
modules

application code
architecture
specification

code variant 
generation p

h
a
se

 1

set of parameterized code variants + 
constraints on unbound parameters

optimized code +
representative input data set

search engine
performance

monitoring support

execution
environmentp

h
a
se

 2

optimized
code 
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Transformation Framework

• Uniform representation of 
transformations

• Direct mapping from transformation 
representation to generated code

• Mostly independent of compiler 
infrastructure
Straightforward to name alternative 
code variants and generate code, useful 
for search
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application

code variant 
generation

engine

foreach memory hierarchy level M
select unmarked data structure D and loop L

s.t. D has maximum reuse, carried by L
if (level == register)

make L innermost and unroll L
else { 

permute & tile L according to reuse dimension 
generate copy variant if profitable

}
determine constraints based on D and M

(register/cache/TLB footprint analysis) 
mark D

code variants

transformations

search engine

analysis and models

permute([0,1,2])
tile(1,5,64,1)
split(1,3,[d3<=d1-2])
permute(2,[1,3,7,5])
permute(1,[1,5,7,3])
split(1,3,[d3>=d1-1])
tile(3,3,32,3)
split(3,5,[d9<=d3-1])
tile(3,9,32,5)
datacopy(3,7,2,1)
datacopy(3,7,3)
unroll(3,9,4)
tile(1,7,32,3)
tile(1,5,32,5)
datacopy(1,7,2,1)
datacopy(1,7,3,1)
unroll(1,9,4)

do k=1,n-1
do i=k+1,n

a(i,k) = a(i,k)/a(k,k)
do i=k+1,n

do j=k+1,n
a(i,j)=a(i,j)-a(i,k)*a(k,i)

permute loops k and j
t1 := { [k,i,j] -> [ 0, j, 0, i, 0, k, 0] } 
t2 := { [k,i,j] -> [ 0, j, 0, i, 1, k, 0] } 

original iteration space
s1 = {[k,i,j]: 1<=k<=n-1 ^ k+1<=i<=n ^ j=k+1} 
s2 = {[k,i,j]: 1<=k<=n-1 ^ k+1<=i<=n ^ k+1<=j<=n} 

tile loops
t1 := { [k,i,j] -> [ 0, jj, 0, kk, 0, j, 0, i, 0, k, 0] : 
jj=2+16β && kk = 1+128α && i-15, 2 <= ii <=i 
&& kk-127, 1 <= kk <= k} 
t2 := { [k,i,j] -> [ 0, jj, 0, kk, 0, j, 0, i, 1, k, 0] : 

jj=2+16β && kk = 1+128α && i-15, 2 <= ii <=i 
&& kk-127, 1 <= kk <= k} 

S2

S1 flow(0,0,+)
flow(0,0,0)

flow(+,0,0)
flow(+,0,+)
flow(+,+,0)
anti(+,0,0)

output(+,0,0)

flow(+,0,1)
flow(+,+,1)
anti(+,0,1)
output(+,0,1)

dependence analysis
reuse analysis

register model

cache model

...



Transformed Code for LU
(Automatically Generated)

REAL*8 P1(32,32),P2(32,64),P3(32,32),P4(32,64)  
OVER1=0
OVER2=0
DO T2=2,N,64

IF (66<=T2)
DO T4=2,T2-32,32
DO T6=1,T4-1,32
DO T8=T6,MIN(T4-1,T6+31)
DO T10=T4,MIN(T2-2,T4+31)

P1(T8-T6+1,T10-T4+1)=A(T10,T8)
DO T8=T2,MIN(T2+63,N)
DO T10=T6,MIN(T6+31,T4-1)

P2(T10-T6+1,T8-T2+1)=A(T10,T8)
DO T8=T4,MIN(T2-2,T4+31)

OVER1=MOD(-1+N,4)
DO T10=T2,MIN(N-OVER1,T2+60),4
DO T12=T6,MIN(T6+31,T4-1)

A(T8,T10)=A(T8,T10)-P1(T12-T6+1,T8-T4+1)*P2(T12-T6+1,T10-T2+1)
A(T8,T10+1)=A(T8,T10+1)-P1(T12-T6+1,T8-T4+1)*P2(T12-T6+1,T10+1-T2+1)
A(T8,T10+2)=A(T8,T10+2)-P1(T12-T6+1,T8-T4+1)*P2(T12-T6+1,T10+2-T2+1)
A(T8,T10+3)=A(T8,T10+3)-P1(T12-T6+1,T8-T4+1)*P2(T12-T6+1,T10+3-T2+1)

DO T10=MAX(N-OVER1+1,T2),MIN(T2+63,N)
DO T12=T6,MIN(T4-1,T6+31)

A(T8,T10)=A(T8,T10)-P1(T12-T6+1,T8-T4+1)*P2(T12-T6+1,T10-T2+1)
DO T6=T4+1,MIN(T4+31,T2-2)
DO T8=T2,MIN(N,T2+63)
DO T10=T4,T6-1

A(T6,T8)=A(T6,T8)-A(T6,T10)*A(T10,T8)

TRSM

unroll cleanup

data copy

unroll by 4



Transformed Code for LU
(Cont.)

IF (66<=T2)
DO T4=1,T2-33,32
DO T6=T2-1,N,32
DO T8=T4,T4+31
DO T10=T6,MIN(N,T6+31)

P3(T8-T4+1,T10-T6+1)=A(T10,T8)
DO T8=T2,MIN(T2+63,N)
DO T10=T4,T4+31

P4(T10-T4+1,T8-T2+1)=A(T10,T8)
DO T8=T6,MIN(T6+31,N)

OVER2=MOD(-1+N,4)
DO T10=T2,MIN(N-OVER2,T2+60),4
DO T12=T4,T4+31

A(T8,T10)=A(T8,T10)-P3(T12-T4+1,T8-T6+1)*P4(T12-T4+1,T10-T2+1)
A(T8,T10+1)=A(T8,T10+1)-P3(T12-T4+1,T8-T6+1)*P4(T12-T4+1,T10+1-T2+1)
A(T8,T10+2)=A(T8,T10+2)-P3(T12-T4+1,T8-T6+1)*P4(T12-T4+1,T10+2-T2+1)
A(T8,T10+3)=A(T8,T10+3)-P3(T12-T4+1,T8-T6+1)*P4(T12-T4+1,T10+3-T2+1)

DO T10=MAX(T2,N-OVER2+1),MIN(T2+63,N)
DO T12=T4,T4+31

A(T8,T10)=A(T8,T10)-P3(T12-T4+1,T8-T6+1)*P4(T12-T4+1,T10-T2+1)
DO T4=T2-1,MIN(N-1,T2+62)
DO T8=T4+1,N

A(T8,T4)=A(T8,T4)/A(T4,T4)
DO T6=T4+1,MIN(T2+63,N)
DO T8=T4+1,N

A(T8,T6)=A(T8,T6)-A(T8,T4)*A(T4,T6)

Mini-LU

GEMM

unroll cleanup

data copy

unroll by 4
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Search Space 

• Set of variants
– Different loop orders, copy yes or no, different loop 

splitting strategies, different prefetch strategies
– Select variant with the best performance

• Integer parameter values
– Unroll factors, tile sizes, prefetch distances
– Each parameter has unique search properties

• Constraints
– Limit unrolling amount by register capacity
– Limit tiling parameters by cache/TLB capacity and set 

associativity
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Comparison of Search Cost

14 min35 minMM (ATLAS)
6 min (44 pts)8 min (60 pts)MM (ECO)

Sun 
Ultrasparc
IIe

SGI R10KCode
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Matrix Multiply: Comparison with ATLAS, 
vendor BLAS and native compiler

Combining Models and Guided Empirical Search to Optimize for Multiple Levels of the Memory 
Hierarchy, C. Chen, J. Chame and M. Hall. Code Generation and Optimization, March, 2005.

matrix multiply on SGI R10K

Vendor BLAS (SCSL 1.4.12)
ATLAS BLAS 3.7.8

Native
ECO
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Combining with SIMD Optimizations

• Motivation
– Multimedia extension architectures (SSE3, AltiVec, ...)
– Node processors in high-end systems (e.g., Intel and Opteron

clusters)
• Developed SLP compiler

– Initial approach by Larsen and Amarasinghe (PLDI ‘00)
– Locality optimizations for superword registers, control flow 

support and other extensions, Shin, Chame and Hall, PACT ’02, 
MSP ’02, JILP ’03, MSP ’04, CGO ’05

• Impact
– Code variants generated anticipating SLP optimizations 
– Requires close integration with backend (in our case) or more 

search
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empirical search engine

analysis/models

application code

• select loop order
• cache and TLB optimizations
• unroll loop nests for SLP compilerph

as
e 

1

parameterized code variants + constraints on unbound parameters

code variants optimized for caches/TLB + unrolled to expose SLP

transformation modules

ph
as

e 
2

code variant generation

• on unrolled code:
• pack isomorphic operations
• align operands
• register optimizations: superword replacement, register packing
• low-level optimizations 

performance monitoring

execution environment
optimized code + representative input data 

architecture specification

C code with SSE-3 “assembly”
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Pentium M:
Combined Locality + SIMD Compiler

0.692 Gflops3.076 Gflops2.895 Gflops2.957 GflopsPerformance
(Single
precision) 

Intel ifort
compiler
v9.1

ATLAS
3.7.14

Intel MKL
8.0.2

Automatically-
Generated

MM Version
(3200x3200)

do i
do j

do k
c(i,j) = c(i,j) + a(i,k)*b(k,j)

Model-Guided Empirical Optimization for Multimedia Extension Architectures: A Case Study, C. 
Chen, J. Shin, S. Kintali, J. Chame and M. Hall., Performance Optimization of High-Level Languages, 
March, 2007.
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Matrix-Vector 
(Transpose)

Pentium 
D

MADNESS

Jacobi

LU 
Factorization

Triangular 
Solve

Matrix-Vector

Matrix-Matrix

PowerPC 
AltiVec

UltraSparc
IIe

Pentium 
M

SGI 
R10000

Full Set of Experiments to Date



Performance Summary

Architecture kernel opt ATLAS vendor

Pentium M

mv 1.47x 1.33x 1.00x
mvT 1.47x 1.34x 0.99x
mm 3.35x 3.39x 3.04x
lu 11.44x - 12.88x

SGI R10000

mv 1.22x 1.02x 1.20x
mvT 1.03x 0.87x 0.99x
mm 1.72x 1.58x 1.73x
lu 2.75x - 3.53x

Baseline performance: best native compiler optimizations

Subset of results 

Model-Guided Empirical Optimization for Memory Hierarchy, C. Chen, PhD Dissertation, 
University of Southern California, Dept. of Computer Science, May, 2007.
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What next?

• Where compilers can beat libraries
– PERI: Auto-tuning of application code
– Libraries used in unusual ways (e.g., MM on long, 

skinny matrices)
– Composing library calls

• Other ways compilers can make programmers 
more productive in tuning their code
– Search for best values of application-level 

parameters 
– Apply user-directed code transformations
– Tune for particular problem sizes
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Concluding Remarks

• Three core technical ideas
– Compiler technology: Modular compilers, 

systematic approach to optimization, empirical 
search, hand-tuned performance

– User Tools: Access to transformation system, 
express parameters for automatic search, express 
expected problem size 

– Systematic: Express/derive parameters for 
search

• Lessons for other SciDAC projects
– PERI Outreach: Working with applications informs 

tool development 



Version TI TJ TK Pref? Loads L1 misses L2 misses TLB misses Cycles
mm1 32 64 N 4.20B 142M 21.6M 231K 10.2B
mm2 16 128 N 4.10B 210M 35.3M 105M 12.5B
mm3 8 256 256 N 4.08B 319M 7.19M 4.42M 9.70B
mm4 16 512 128 N 4.11B 182M 8.01M 2.78M 9.47B
mm5 16 512 128 Y 5.12B 188M 8.04M 2.78M 9.18B

j1 N 25.5M 8.78M 1.65M 7.52K 181M
j2 Y 34.0M 8.82M 1.64M 7.49K 137M
j3 16 8 N 28.0M 6.10M 1.32M 18.3K 155M
j4 16 8 Y 40.8M 7.62M 1.32M 18.6K 125M
j5 300 16 N 25.5M 8.79M 1.18M 9.99K 159M
j6 300 16 Y 34.0M 8.84M 1.19M 9.87K 122M

Non-trivial Performance Tradeoffs

Observation: The best performance comes from balancing all
optimization goals.


