
CScADS, July 2007 1

Mary Hall

July 10, 2007

Compiler-Assisted Performance
Tuning

* This work has been sponsored by the NSF NGS and CSR programs, Intel
Corporation, and the DOE SciDAC as part of the Performance Engineering
Research Institute (PERI).

CScADS, July 2007 2

Collaborators

• Compiler group:
– Jacqueline Chame (research scientist)
– Chun Chen (postdoctoral researcher)
– Spundun Bhatt (programmer)
– Yoonju Lee Nelson, Muhammad Murtaza, Melina

Demertzi (Phd students)
• ISI collaborators:

– Ewa Deelman, Yolanda Gil, Kristina Lerman, Robert Lucas
• Alumnus collaborator:

– Jaewook Shin (Argonne)
• Other USC collaborators:

– Rajiv Kalia, Aiichiro Nakano, Priya Vashishta

CScADS, July 2007 3

Goal for this Workshop

• Discuss role of compiler technology in
various tuning efforts
– Application programmer assistant
– Library developer assistant (e.g., intelligent

code generation and search)
– Fully automatic tuning (next talk)

• Our interests
– New applications
– New architectures
– Other collaborations

CScADS, July 2007 4

Key Research Themes

• Compiler-based performance tuning tools
– Use vast resources of petascale systems
– Enumerate options, generate code, try,

measure, record (conceptually)
• Optimizing compilers built from modular,

understandable chunks
– Easier to bring up on new platforms
– Facilitates collaboration, moving the

community forward

A Systematic, Principled Approach!

CScADS, July 2007 5

Outline

1. Motivation
2. Approach & potential of compiler-

assisted tuning
New flexible and systematic compiler
technology
Scenarios from application tuning
Automatic performance tuning

3. Overview of results (more in next talk)

CScADS, July 2007 6

Performance Engineering
Research Institute (SciDAC-2)

• Long-term goal is to
automate the process of
tuning software to
maximize its performance

• Reduces performance
portability challenge for
computational scientists.

• Addresses the problem
that performance experts
are in short supply

• Builds on forty years of
human experience and
recent success with linear
algebra libraries

PERI automatic tuning frameworkSlide source: Bob Lucas and David Bailey

This
talk

CScADS, July 2007 7

A New Kind of “Compiler”

Traditional view:

Batch
Compiler

code

input data

CScADS, July 2007 8

Performance Tuning “Compiler”

Code
Translation

code

input data
(characteristics)

Experiments Engine

transformation
script(s)

search script(s)

CScADS, July 2007 9

Performance Tuning “Compiler”

Code
Translation

code

input data
(characteristics)

Experiments Engine

transformation
script(s)

search script(s)

1. Programmer expresses application-level parameters and input data
set properties. (ref. Active Harmony and Rose compiler)

CScADS, July 2007 10

Scenario 1: Application-Level
Parameters

• Programmer
expresses
parameters to
be searched,
input data set
(e.g.,
Visualization of
MD Simulation)

• Tools
automatically
generate code
and evaluate
tradeoff space
of application-
level
parameters

Parameter cellSize, range = 48:144, step 16

ncell = boxLength/cellSize

for i = 1, ncell
/* perform computation */

Const cellSize = 48

ncell = boxLength/48

for i = 1, 48
/* perform computation */

CScADS, July 2007 11

Performance Tuning “Compiler”

Code
Translation

code

input data
(characteristics)

Experiments Engine

transformation
script(s)

search script(s)

2. Application programmer interacts with compiler to
guide optimization.

CScADS, July 2007 12

Scenario 2: Programmer-guided
Transformations

• Application
programmer
has written code
variants for every
possible unroll
factor of two
innermost loops

• Straightforward
for compiler to
generate this
code and test for
best version
Empirical Optimization for a Sparse Linear Solver: A Case Study, Y. Lee, P. Diniz, M. Hall and R.
Lucas. International Journal of Parallel Programming, vol. 33, 2005.`

LS-DYNA Solver Performance Results

CScADS, July 2007 13

Performance Tuning “Compiler”

Code
Translation

code

input data
(characteristics)

Experiments Engine
transformation
script(s)

search script(s)

3. Compiler performs automatic performance tuning.

CScADS, July 2007 14

High-Level Concept:
Exploit what compilers do well

• Complex translation and transformation
(rewriting rules)

• Domain knowledge of optimizations and
optimization impact

• Analyze code to derive “features”
• Source-to-source

– Rely on investment in backend native
compilers to achieve ILP

CScADS, July 2007 15

Model-guided empirical
optimization (our autotuning)

• Model-guided optimization
– Static models of architecture, profitability

• Empirical optimization
– Empirical data guide optimization decisions
– ATLAS, PhiPAC, FFTW, SPIRAL etc.

• Exploit complementary strengths of both
approaches
– Compiler models prune unprofitable solutions
– Empirical data provide accurate measure of optimization

impact

Goal: Hand-tuned levels of performance from
compiler-generated code for loop-based computation
that is portable to new architectures.

CScADS, July 2007 16

Automatic Performance Tuning
(Model-Guided Empirical Optimization)

analysis/models

transformation
modules

application code
architecture
specification

code variant
generation p

h
a
se

 1

set of parameterized code variants +
constraints on unbound parameters

optimized code +
representative input data set

search engine
performance

monitoring support

execution
environmentp

h
a
se

 2

optimized
code

CScADS, July 2007 17

Transformation Framework

• Uniform representation of
transformations

• Direct mapping from transformation
representation to generated code

• Mostly independent of compiler
infrastructure
Straightforward to name alternative
code variants and generate code, useful
for search

CScADS, July 2007 18

application

code variant
generation

engine

foreach memory hierarchy level M
select unmarked data structure D and loop L

s.t. D has maximum reuse, carried by L
if (level == register)

make L innermost and unroll L
else {

permute & tile L according to reuse dimension
generate copy variant if profitable

}
determine constraints based on D and M

(register/cache/TLB footprint analysis)
mark D

code variants

transformations

search engine

analysis and models

permute([0,1,2])
tile(1,5,64,1)
split(1,3,[d3<=d1-2])
permute(2,[1,3,7,5])
permute(1,[1,5,7,3])
split(1,3,[d3>=d1-1])
tile(3,3,32,3)
split(3,5,[d9<=d3-1])
tile(3,9,32,5)
datacopy(3,7,2,1)
datacopy(3,7,3)
unroll(3,9,4)
tile(1,7,32,3)
tile(1,5,32,5)
datacopy(1,7,2,1)
datacopy(1,7,3,1)
unroll(1,9,4)

do k=1,n-1
do i=k+1,n

a(i,k) = a(i,k)/a(k,k)
do i=k+1,n

do j=k+1,n
a(i,j)=a(i,j)-a(i,k)*a(k,i)

permute loops k and j
t1 := { [k,i,j] -> [0, j, 0, i, 0, k, 0] }
t2 := { [k,i,j] -> [0, j, 0, i, 1, k, 0] }

original iteration space
s1 = {[k,i,j]: 1<=k<=n-1 ^ k+1<=i<=n ^ j=k+1}
s2 = {[k,i,j]: 1<=k<=n-1 ^ k+1<=i<=n ^ k+1<=j<=n}

tile loops
t1 := { [k,i,j] -> [0, jj, 0, kk, 0, j, 0, i, 0, k, 0] :
jj=2+16β && kk = 1+128α && i-15, 2 <= ii <=i
&& kk-127, 1 <= kk <= k}
t2 := { [k,i,j] -> [0, jj, 0, kk, 0, j, 0, i, 1, k, 0] :

jj=2+16β && kk = 1+128α && i-15, 2 <= ii <=i
&& kk-127, 1 <= kk <= k}

S2

S1 flow(0,0,+)
flow(0,0,0)

flow(+,0,0)
flow(+,0,+)
flow(+,+,0)
anti(+,0,0)

output(+,0,0)

flow(+,0,1)
flow(+,+,1)
anti(+,0,1)
output(+,0,1)

dependence analysis
reuse analysis

register model

cache model

...

Transformed Code for LU
(Automatically Generated)

REAL*8 P1(32,32),P2(32,64),P3(32,32),P4(32,64)
OVER1=0
OVER2=0
DO T2=2,N,64

IF (66<=T2)
DO T4=2,T2-32,32
DO T6=1,T4-1,32
DO T8=T6,MIN(T4-1,T6+31)
DO T10=T4,MIN(T2-2,T4+31)

P1(T8-T6+1,T10-T4+1)=A(T10,T8)
DO T8=T2,MIN(T2+63,N)
DO T10=T6,MIN(T6+31,T4-1)

P2(T10-T6+1,T8-T2+1)=A(T10,T8)
DO T8=T4,MIN(T2-2,T4+31)

OVER1=MOD(-1+N,4)
DO T10=T2,MIN(N-OVER1,T2+60),4
DO T12=T6,MIN(T6+31,T4-1)

A(T8,T10)=A(T8,T10)-P1(T12-T6+1,T8-T4+1)*P2(T12-T6+1,T10-T2+1)
A(T8,T10+1)=A(T8,T10+1)-P1(T12-T6+1,T8-T4+1)*P2(T12-T6+1,T10+1-T2+1)
A(T8,T10+2)=A(T8,T10+2)-P1(T12-T6+1,T8-T4+1)*P2(T12-T6+1,T10+2-T2+1)
A(T8,T10+3)=A(T8,T10+3)-P1(T12-T6+1,T8-T4+1)*P2(T12-T6+1,T10+3-T2+1)

DO T10=MAX(N-OVER1+1,T2),MIN(T2+63,N)
DO T12=T6,MIN(T4-1,T6+31)

A(T8,T10)=A(T8,T10)-P1(T12-T6+1,T8-T4+1)*P2(T12-T6+1,T10-T2+1)
DO T6=T4+1,MIN(T4+31,T2-2)
DO T8=T2,MIN(N,T2+63)
DO T10=T4,T6-1

A(T6,T8)=A(T6,T8)-A(T6,T10)*A(T10,T8)

TRSM

unroll cleanup

data copy

unroll by 4

Transformed Code for LU
(Cont.)

IF (66<=T2)
DO T4=1,T2-33,32
DO T6=T2-1,N,32
DO T8=T4,T4+31
DO T10=T6,MIN(N,T6+31)

P3(T8-T4+1,T10-T6+1)=A(T10,T8)
DO T8=T2,MIN(T2+63,N)
DO T10=T4,T4+31

P4(T10-T4+1,T8-T2+1)=A(T10,T8)
DO T8=T6,MIN(T6+31,N)

OVER2=MOD(-1+N,4)
DO T10=T2,MIN(N-OVER2,T2+60),4
DO T12=T4,T4+31

A(T8,T10)=A(T8,T10)-P3(T12-T4+1,T8-T6+1)*P4(T12-T4+1,T10-T2+1)
A(T8,T10+1)=A(T8,T10+1)-P3(T12-T4+1,T8-T6+1)*P4(T12-T4+1,T10+1-T2+1)
A(T8,T10+2)=A(T8,T10+2)-P3(T12-T4+1,T8-T6+1)*P4(T12-T4+1,T10+2-T2+1)
A(T8,T10+3)=A(T8,T10+3)-P3(T12-T4+1,T8-T6+1)*P4(T12-T4+1,T10+3-T2+1)

DO T10=MAX(T2,N-OVER2+1),MIN(T2+63,N)
DO T12=T4,T4+31

A(T8,T10)=A(T8,T10)-P3(T12-T4+1,T8-T6+1)*P4(T12-T4+1,T10-T2+1)
DO T4=T2-1,MIN(N-1,T2+62)
DO T8=T4+1,N

A(T8,T4)=A(T8,T4)/A(T4,T4)
DO T6=T4+1,MIN(T2+63,N)
DO T8=T4+1,N

A(T8,T6)=A(T8,T6)-A(T8,T4)*A(T4,T6)

Mini-LU

GEMM

unroll cleanup

data copy

unroll by 4

CScADS, July 2007 21

Search Space

• Set of variants
– Different loop orders, copy yes or no, different loop

splitting strategies, different prefetch strategies
– Select variant with the best performance

• Integer parameter values
– Unroll factors, tile sizes, prefetch distances
– Each parameter has unique search properties

• Constraints
– Limit unrolling amount by register capacity
– Limit tiling parameters by cache/TLB capacity and set

associativity

CScADS, July 2007 22

Comparison of Search Cost

14 min35 minMM (ATLAS)
6 min (44 pts)8 min (60 pts)MM (ECO)

Sun
Ultrasparc
IIe

SGI R10KCode

CScADS, July 2007 23

Matrix Multiply: Comparison with ATLAS,
vendor BLAS and native compiler

Combining Models and Guided Empirical Search to Optimize for Multiple Levels of the Memory
Hierarchy, C. Chen, J. Chame and M. Hall. Code Generation and Optimization, March, 2005.

matrix multiply on SGI R10K

Vendor BLAS (SCSL 1.4.12)
ATLAS BLAS 3.7.8

Native
ECO

CScADS, July 2007 24

Combining with SIMD Optimizations

• Motivation
– Multimedia extension architectures (SSE3, AltiVec, ...)
– Node processors in high-end systems (e.g., Intel and Opteron

clusters)
• Developed SLP compiler

– Initial approach by Larsen and Amarasinghe (PLDI ‘00)
– Locality optimizations for superword registers, control flow

support and other extensions, Shin, Chame and Hall, PACT ’02,
MSP ’02, JILP ’03, MSP ’04, CGO ’05

• Impact
– Code variants generated anticipating SLP optimizations
– Requires close integration with backend (in our case) or more

search

CScADS, July 2007 25

empirical search engine

analysis/models

application code

• select loop order
• cache and TLB optimizations
• unroll loop nests for SLP compilerph

as
e

1

parameterized code variants + constraints on unbound parameters

code variants optimized for caches/TLB + unrolled to expose SLP

transformation modules

ph
as

e
2

code variant generation

• on unrolled code:
• pack isomorphic operations
• align operands
• register optimizations: superword replacement, register packing
• low-level optimizations

performance monitoring

execution environment
optimized code + representative input data

architecture specification

C code with SSE-3 “assembly”

CScADS, July 2007 26

Pentium M:
Combined Locality + SIMD Compiler

0.692 Gflops3.076 Gflops2.895 Gflops2.957 GflopsPerformance
(Single
precision)

Intel ifort
compiler
v9.1

ATLAS
3.7.14

Intel MKL
8.0.2

Automatically-
Generated

MM Version
(3200x3200)

do i
do j

do k
c(i,j) = c(i,j) + a(i,k)*b(k,j)

Model-Guided Empirical Optimization for Multimedia Extension Architectures: A Case Study, C.
Chen, J. Shin, S. Kintali, J. Chame and M. Hall., Performance Optimization of High-Level Languages,
March, 2007.

CScADS, July 2007 27

Matrix-Vector
(Transpose)

Pentium
D

MADNESS

Jacobi

LU
Factorization

Triangular
Solve

Matrix-Vector

Matrix-Matrix

PowerPC
AltiVec

UltraSparc
IIe

Pentium
M

SGI
R10000

Full Set of Experiments to Date

Performance Summary

Architecture kernel opt ATLAS vendor

Pentium M

mv 1.47x 1.33x 1.00x
mvT 1.47x 1.34x 0.99x
mm 3.35x 3.39x 3.04x
lu 11.44x - 12.88x

SGI R10000

mv 1.22x 1.02x 1.20x
mvT 1.03x 0.87x 0.99x
mm 1.72x 1.58x 1.73x
lu 2.75x - 3.53x

Baseline performance: best native compiler optimizations

Subset of results

Model-Guided Empirical Optimization for Memory Hierarchy, C. Chen, PhD Dissertation,
University of Southern California, Dept. of Computer Science, May, 2007.

CScADS, July 2007 29

What next?

• Where compilers can beat libraries
– PERI: Auto-tuning of application code
– Libraries used in unusual ways (e.g., MM on long,

skinny matrices)
– Composing library calls

• Other ways compilers can make programmers
more productive in tuning their code
– Search for best values of application-level

parameters
– Apply user-directed code transformations
– Tune for particular problem sizes

CScADS, July 2007 30

Concluding Remarks

• Three core technical ideas
– Compiler technology: Modular compilers,

systematic approach to optimization, empirical
search, hand-tuned performance

– User Tools: Access to transformation system,
express parameters for automatic search, express
expected problem size

– Systematic: Express/derive parameters for
search

• Lessons for other SciDAC projects
– PERI Outreach: Working with applications informs

tool development

Version TI TJ TK Pref? Loads L1 misses L2 misses TLB misses Cycles
mm1 32 64 N 4.20B 142M 21.6M 231K 10.2B
mm2 16 128 N 4.10B 210M 35.3M 105M 12.5B
mm3 8 256 256 N 4.08B 319M 7.19M 4.42M 9.70B
mm4 16 512 128 N 4.11B 182M 8.01M 2.78M 9.47B
mm5 16 512 128 Y 5.12B 188M 8.04M 2.78M 9.18B

j1 N 25.5M 8.78M 1.65M 7.52K 181M
j2 Y 34.0M 8.82M 1.64M 7.49K 137M
j3 16 8 N 28.0M 6.10M 1.32M 18.3K 155M
j4 16 8 Y 40.8M 7.62M 1.32M 18.6K 125M
j5 300 16 N 25.5M 8.79M 1.18M 9.99K 159M
j6 300 16 Y 34.0M 8.84M 1.19M 9.87K 122M

Non-trivial Performance Tradeoffs

Observation: The best performance comes from balancing all
optimization goals.

