

Performance Analysis and SW optimization for HPC on Intel® Core™ i7, Xeon™ 5500 and 5600 family Processors*

Presenter: David Levinthal Principal Engineer

Business Group, Division: DPD, SSG

Version 1.1.2 July 28, 2010

* Intel, the Intel logo, Intel Core and Xeon are trademarks of Intel Corporation in the U.S. and other countries.

Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

- All products, computer systems, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice.
- Customers, licensees, and other third parties are not authorized by Intel to use Intel code names in advertising, promotion or marketing of any product or service.
- Performance tests and ratings are measured using specific computer systems and/or components and reflect the approximate
 performance of Intel products as measured by those tests. Any difference in system hardware or software design or
 configuration may affect actual performance. Buyers should consult other sources of information to evaluate the performance of
 systems or components they are considering purchasing. For more information on performance tests and on the performance
 of Intel products, visit Intel Performance Benchmark Limitations
- Copyright © 2010, Intel Corporation. All rights reserved.

Risk Factors

The above statements and any others in this document that refer to plans and expectations for the first quarter, the year and the future are forward-looking statements that involve a number of risks and uncertainties. Many factors could affect Intel's actual results, and variances from Intel's current expectations regarding such factors could cause actual results to differ materially from those expressed in these forward-looking statements. Intel presently considers the following to be the important factors that could cause actual results to differ materially from the corporation's expectations. Current uncertainty in global economic conditions pose a risk to the overall economy as consumers and businesses may defer purchases in response to tighter credit and negative financial news, which could negatively affect product demand and other related matters. Consequently, demand could be different from Intel's expectations due to factors including changes in business and economic conditions, including conditions in the credit market that could affect consumer confidence; customer acceptance of Intel's and competitors' products; changes in customer order patterns including order cancellations; and changes in the level of inventory at customers. Intel operates in intensely competitive industries that are characterized by a high percentage of costs that are fixed or difficult to reduce in the short term and product demand that is highly variable and difficult to forecast. Revenue and the gross margin percentage are affected by the timing of new Intel product introductions and the demand for and market acceptance of Intel's products; actions taken by Intel's competitors, including product offerings and introductions, marketing programs and pricing pressures and Intel's response to such actions; Intel's ability to respond quickly to technological developments and to incorporate new features into its products; and the availability of sufficient supply of components from suppliers to meet demand. The gross margin percentage could vary significantly from expectations based on changes in revenue levels; capacity utilization; excess or obsolete inventory; product mix and pricing; variations in inventory valuation, including variations related to the timing of qualifying products for sale; manufacturing yields; changes in unit costs; impairments of long-lived assets, including manufacturing, assembly/test and intangible assets; and the timing and execution of the manufacturing ramp and associated costs, including start-up costs. Expenses, particularly certain marketing and compensation expenses, as well as restructuring and asset impairment charges, vary depending on the level of demand for Intel's products and the level of revenue and profits. The recent financial crisis affecting the banking system and financial markets and the going concern threats to investment banks and other financial institutions have resulted in a tightening in the credit markets, a reduced level of liquidity in many financial markets, and extreme volatility in fixed income, credit and equity markets. There could be a number of followon effects from the credit crisis on Intel's business, including insolvency of key suppliers resulting in product delays; inability of customers to obtain credit to finance purchases of our products and/or customer insolvencies; counterparty failures negatively impacting our treasury operations; increased expense or inability to obtain short-term financing of Intel's operations from the issuance of commercial paper; and increased impairments from the inability of investee companies to obtain financing. Intel's results could be impacted by adverse economic, social, political and physical/infrastructure conditions in the countries in which Intel, its customers or its suppliers operate, including military conflict and other security risks, natural disasters, infrastructure disruptions, health concerns and fluctuations in currency exchange rates. Intel's results could be affected by adverse effects associated with product defects and errata (deviations from published specifications), and by litigation or regulatory matters involving intellectual property, stockholder, consumer, antitrust and other issues, such as the litigation and regulatory matters described in Intel's SEC reports.

Performance Analysis Methodology for HPC

- Measure application performance
 - -Time or rate of work
 - Compare to other platforms
- Analyze the contributions to performance bottlenecks methodically
 - -Top Down

Performance Analysis Methodology for HPC

- Two possible objectives
 - Influence future silicon design
 - Intel personnel do lots of this

-Modify build and/or source to improve performance

-The sole focus of this presentation

 The central objective is to identify performance bottlenecks and <u>estimate</u> the potential gain for fixing them

-Without an accurate estimate of the gain a great deal of effort can be wasted

Structure of this presentation

- What would the author do with:
 - A brand new machine
 - -A tar ball of 100 million source lines
 - -Documented, working build procedure
 - -Data set and instructions to run the app
 - -And one commandment:

Make Go Fast

but get the same answer

Presentation Agenda

- Optimization workflow overview
- Event based sampling
 - -Why so complicated
 - -How the nuts and bolts work
- HPC/Scientific computing overview
- Compiler problems/tuning compiler usage
- Identifying and removing stalls
- Identifying and removing resource saturation
- Identifying and removing non scaling
- PTU features and data interpretation
- Glossary in backup

Performance Analysis Methodology

- The steps
 - 1. make sure the platform is correct
 - It should be some thought went into the specifications
 - But don't take this for granted
 - 2. Use the correct compiler (Intel® Compiler)
 - And invoke it correctly
 - This should also have already been done...but..
 - 3. Analyze interaction of SW and micro architecture and tune code/compiler usage
 - Intel® VTune[™] Analyzer* or better, Intel® Performance Tuning Utility (PTU)
 - Iterative process
 - 4. Parallelize the execution as appropriate
 - Batch queue / Intel® MPI Library
 - OpenMP** product, Intel® Threading Building Blocks (Intel® TBB), Intel® CILK™ Plus, explicit threading

Iterate on 3 and 4

*Vtune and CILK are trademarks of Intel Corporation in the U.S. and other countries. **Other names and brands may be claimed as the property of others.

Platform Optimization: Step 1

- 1. Make sure the platform is correct
 - Enough memory
 - Page faults (Perfmon*, vmstat*)
 - rates of >100 /sec is cause for investigation
 - Make sure DIMMs are in identical sets of 6 for DP machines
 - 3 channel memory controller
 - Best performance with completely uniform dimms
 - Make sure SATA Bios setting is AHCI, not IDE setting
 - Use RAID or SSD if disk speed is critical
 - Prefetcher BIOS Settings correct for the app: <u>ON</u>
 - Intel® 11.0 compiler can generate SW prefetch
 - NUMA BIOS setting correct: <u>ON</u>
 - Intel® Hyper-Threading Technology BIOS option set correctly for the application
 - HT does not always help HPC
 - Probably makes little difference

Disable C states to ensure machine stability when using event based sampling on Corei7/Xeon 5500

* Other names and brands may be claimed as the property of others.

Compiler Usage Optimization: Step 2

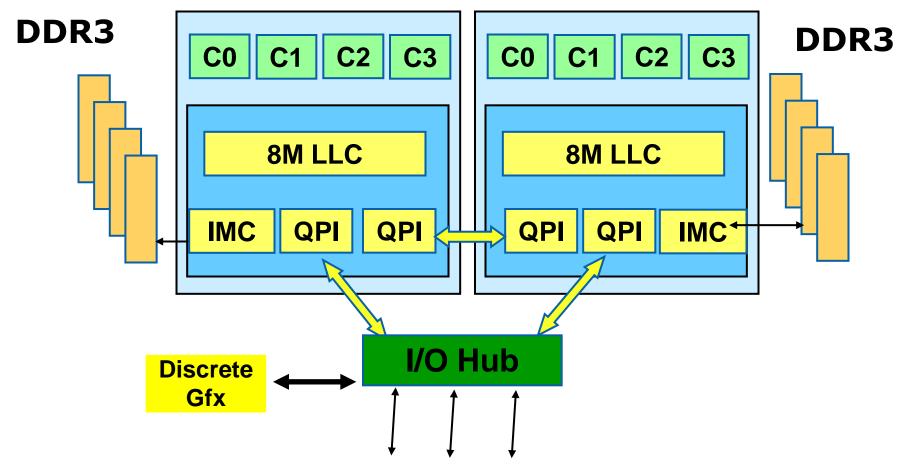
- Optimize the time consuming functions
 - -Profile functions, and check compiler options
 - Intel® VTune[™] Analyzer and Intel® PTU have source file granularities
 - Data grouped per source file to identify hot files
 - Do not assume this has been done
 - Build environments are complex

Micro architectural Optimization: Step 3

- 3. Identify & Optimize the time-consuming functions
- Use performance events methodically to identify performance limitations
 - Intel® PTU, Intel® VTune[™] Analyzer, etc.
- Confirm that compiler really did produce good code (visual inspection of ASM)
 - For the components of the code using the cycles
- Go after largest, easy things first
 - Accurate estimate of potential gain is critical!
- Documentation for Intel® Core[™] i7 processor **Performance Monitoring Unit (PMU)** is available

Parallelization for HPC : Step 4

- 4. Use as many cores and machines as possible
 - -Parallel processing by batch queue is OK
 - Trivial parallelism
 - Hard to beat the throughput


Parallelization for HPC : Step 4

- 4. Use as many cores and machines as possible
 - -Figure out clean data decomposition
 - -Intel® MPI Library for process parallel execution
 - Minimal shared elements
 - Maximal address separation
 - OpenMP*, Intel® TBB, CILK, explicit threading for shared memory
 - Can reduce all to all MPI API costs

* Other names and brands may be claimed as the property of others.

DP Platform

Event Based Sampling Analysis

- Code profiling with performance events can identify where the interaction of the code and data with the microarchitecture is sub optimal
 - -Ex: What code execution results in load driven cache misses?
 - -Event_count*Penalty ~ potential gain
 - A well defined penalty is essential
- Such profiling also provides an execution weighted display of the generated instructions
 - -Vectorized code was generated but is it being executed?

But There are THOUSANDS of Events, Which Ones Matter?

Which Events you need depends on what problem you wish to study and what you want to accomplish Example: Last Level Cache Misses

- What you mean by an LLC miss depends on the exact nature of the question you are asking
- Are you asking about Bandwidth consumption?
 - Due to reads?, RFOs?, HW Prefetch, NT stores? Total?, Code?, SW prefetch?, Cacheable Writebacks?
 - Location of the bandwidth consumption?
 - Source of the data provided?
- Or about Latency/Pipeline stalls
 - Different architectures stall on different things
 - Intel® IA-32/Intel64 Processors' memory access stalls are mostly due to loads

Events needed to measure bandwidth and memory stalls are COMPLETELY different

Intel® Xeon™ 5500 load Penalties

	L1D_HIT	Secondary Miss	L2 Hit	LLC Hit No Snoop	LLC Hit Clean Snoop	LLC Hit Snoop =HITM	Local Dram	Remote Dram	Remote Cache Iocal home Fwd	Remote Cache Remote Home FWD	Remote Cache Local Home HITM	Remote Cache Remote home HITM
Mem_load_retired .L1d_hit	0 (By Def)											
Mem_load_retired .Hit_LFB		0->Max Val			Der	bend c	n freq	uency	dimm	s, bios	s. etc	
Mem_load_retired .L2_hit			6		- 1				-	-,	,	
Mem_load_retired .LLC_Unshared_hit				~35								
Mem_load_retired .other_core_l2 _hit_hitm					~60	~75						
Mem_load_retired .LLC_Miss							~200	~350	~180	~180	~225 -250	~370
Mem_uncore_retired .Other_core_l2_hitm						~75						
Mem_uncore_retired .Local_Dram							~200				~225 -250	
Mem_uncore_retired .Remote_dram								~350				~370
Mem_uncore_retired. Remote_cache_ local_home_hit									~180			

Note: All latencies and memory access penalties shown are nerely illustrative. Actual latencies will depend on (among other things) processor model, core and uncore frequencies, type, number and positioning of DIMMS, gatform model, bios version and settings. Consult the platform manufacturer for optimal setting for any individual system. Then measure the actual properties of that system by running well established benchmarks. (intel)

The Important Penalties Vary by a Factor of TEN

Intel® PTU uses profiles to manage complexity

Intel(R) Performance Tuning Utility - Eclipse	Platform	
File Edit Navigate Project Run Windo		
		😭 💽 Intel(R) Perfo)
🗹 Tuning Navigator 🛛 📃 🗖		
Tuning Navigator X Tuning Navigator X Profile as Profile as Pr	 Core(TM) i7 processor family - Branch Analysis Core(TM) i7 processor family - Client Analysis Core(TM) i7 processor family - Client Analysis with Call Sites Core(TM) i7 processor family - Cycles and Uops Core(TM) i7 processor family - False-True Sharing Core(TM) i7 processor family - Front End Investigation Core(TM) i7 processor family - General Exploration Core(TM) i7 processor family - Loop Analysis Core(TM) i7 processor family - Loop Analysis Core(TM) i7 processor family - Loop Analysis Core(TM) i7 processor family - Memory Access Core(TM) i7 processor family - Memory Access Core(TM) i7 processor family - Memory Access 	
🔤 🔶 1 items selected		

Intel® PTU predefined collections

- Cycles and Uops
 - Cycle usage and uop flow through the pipeline
- Branch Analysis
 - Branch execution analysis for loop tripcounts and call counts
- General Exploration
 - Cycles, instructions, stalls, branches, basic memory access
- Memory Access
 - Detailed breakdown of off-core memory access (w/wo address profiling)
- Working Set
 - Precise loads and stores enabling address space analysis
- FrontEnd (FE) Investigation
 - Detailed instruction starvation analysis
- Contested lines
 - Precise HITM and Store events
- Loop Analysis
 - 32 events for HPC type codes, w/wo call sites , i.e. including LBR capture
- Client Analysis
 - 54 events for client type codes, w/wo call sites , i.e. including LBR capture

Many Possible Issues -> Many Different Events

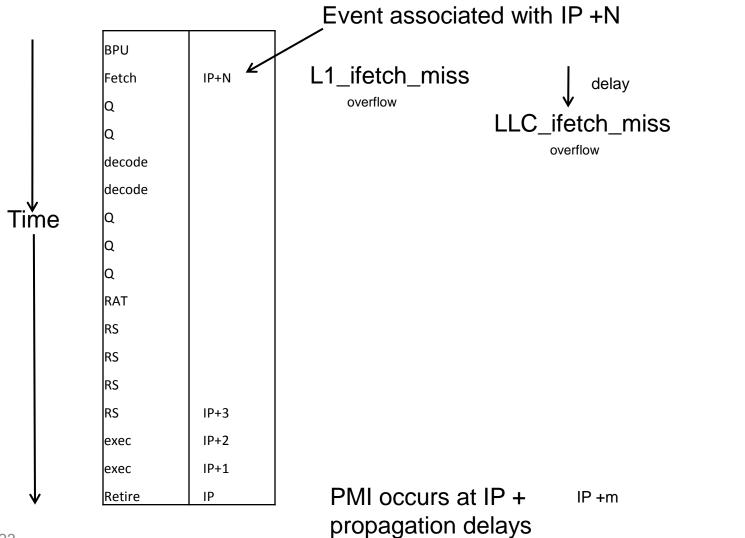
Controlling collection

Preferences									
Intel(R) PTU Project	Intel(R) PTU Project								
	Target This computer Remote computer Check Connection								
	Performance workload								
	Workload duration, sec 20	~							
	O Launch this application at start of profile								
	Application:	Browse							
	Application parameters:	Browse							
	Working directory:	Browse							
	 Profile without launching an application 								
	Advanced properties								
	Time-based-sampling interval multiplier: 1.0	~							
	Event-based sampling 'Sample After' multiplier: 1.0								
(Use event multiplexing 0.1								
	10.0 100.0								
?	ОК	Cancel							

Performance Monitoring Unit

- The Performance Monitoring Unit (PMU) consists of a set of counters that can be programmed to count user-selected signals of microprocessor activity
 - Cpu_clk_unhalted, inst_retired, LLC_miss, etc..
- Counting the number of events that occur in a fixed time period allows workload characterization
 - Using a spectrum of events allows a decomposition of the applications activity with respect to the microarchitecture components
 - Particularly useful for studying the architecture's strengths and weaknesses running an application

Performance Monitoring Unit


- The PMU can be programmed to generate interrupts on counter overflow
 - Allows periodic sampling of program counter for any user-chosen event
 - Initialize count to (overflow periodic rate)
 - Interrupt Vector Table is programmed with the address of the interrupt handler
 - Intel® VTune[™] Analyzer driver is invoked by HW on counter overflows and given a program counter where the interrupt (i.e. counter overflow) happened

Identify statistically where events occur in the program

- Application profiling by event

SKID: IP of causal instruction vs IP of PMI

Analyzing HPC Applications

Overview

Loop analysis

- -Tripcounts
- -Vectorization

Memory access dominated

- -Latency dominated
- Bandwidth dominated
- Execution dominated

Overview

 Performance Breakdown/cycle accounting can be applied to any scale of a program

-Multiple interacting applications-> single apps-> single modules-> source files/functions-> basic blocks

- Methodology does not change
 - But can inherit conclusions from higher levels based on importance/cycle cost
- At all stages in the process look for poorly written, actively executing code that can be improved

HPC Applications

- Dominated by loops
- Rarely have pipeline front end problems
 - Except for very large binaries (ifetch latency)
- Large data sets
 - Not cache resident
 - Ex: Weather simulation, Oil Reservoir
 - Frequently DRAM bandwidth limited
 - Or DRAM Latency limited
- Occasionally HPC apps are uop flow limited
 - Data blocked
 - Ex: oil exploration, FFTs

What matters when optimizing a loop?

- **1.** The Trip Count
- 2. The Trip Count

3.The TRIP COUNT!

- **4.** Variations in the tripcount
- **5.** And some other things

BUT..what you do about them depends on THE TRIP COUNT

And of course there are virtually no tools to assist you in determining this..other than printf

(you can use PIN..)

This Will be Discussed Later

HPC Loops and Memory Access

- Calculations require data as input and the most severe limitations in a computer are on data access
 - -CPU speed and efficiency have increased much faster than memory speeds and bandwidth.
- Load operations are almost always scheduled almost immediately before consumption (adds, multiplies etc)
- Lack of availability will quickly lead to execution stalls
 - -OOO execution can buy only a few cycles.

Event Classes: High Level View

- 1. Execution flow events
 - Cycles, Branches, stalls, uops/inst_retired
 - Guide compiler usage
- 2. Penalty events
 - Ex: load requiring access to dram
 - Modify code/build to reduce penalties
- 3. Resource saturation events
 - Bandwidth, load/store buffers, dispatch ports
 - No well defined cost
 - Change data layout/access patterns
- 4. Architectural characterization
 - Cache accesses, MESI states, snoops
 - Used to improve silicon design, not application performance
- 5. Instruction mix
 - Do not measure what you think, extremely difficult to validate

Event Classes

1. Execution flow events: Guide Compiler Usage

- Cycles, Branches, stalls, uops/inst_retired
- 2. Penalty events
 - Ex: load requiring access to dram
- 3. Resource saturation events
 - Bandwidth, load/store buffers, dispatch ports
 - No well defined cost
- 4. Architectural characterization
 - Cache accesses, MESI states, snoops
- 5. Instruction mix

Cycles: Multiple time domains

There are actually 4 cycle events on a modern microprocessor

- Core unhalted cycles
- Reference frequency unhalted cycles
- Core halted cycles
- Reference Frequency halted cycles

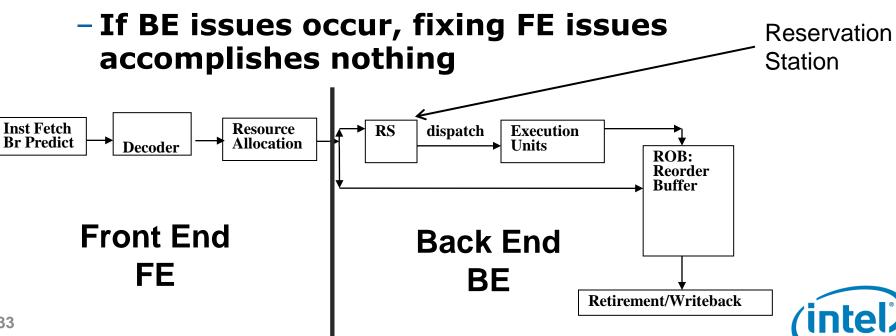
Core frequency needed for perf issues entirely in the core

- Penalties (ie pipeline stalls) in core cycles
- Reference frequency needed for:
 - Evaluation of variable frequency effects (Turbo/Power Management)
 - Wall clock time utilization
 - Ex: Network server applications
 - Bandwidth/memory latency
- Unhalted events are required for counting modes to work at all
- Halted.ref = TSC change cpu_clk_unhalted.ref

Cycle Accounting and Uop Flow

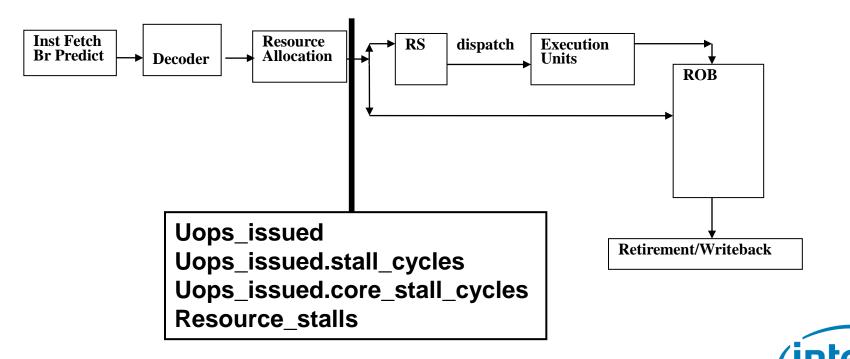
• Cycles =

Cycles dispatching to execution units + Cycles not dispatching (stalls)

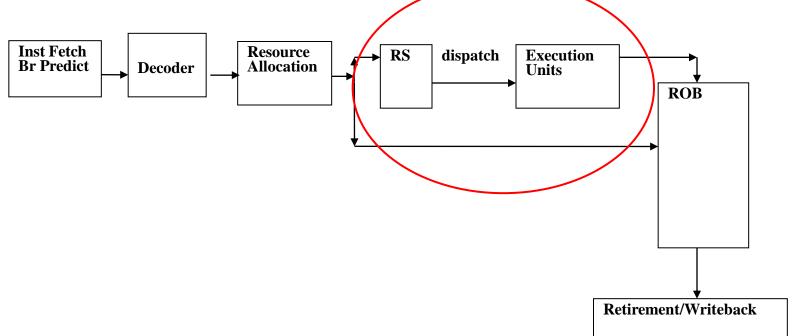

- A trivial truism
- Uops dispatched = uops retired + speculative uops that are not retired
 - Non-retired uops due to mispredicted branches
 - Uops_issued.any uops_retired.slots
- Optimization Reduces Total Cycles by
 - Reducing stalls
 - Reducing retired uops (better code generation)
 - Reducing non retired uops (reducing mispredictions)

(Simplified) Execution in an OOO Engine

- Two asynchronous components connected by buffering
 - -Front End provides instructions
 - Back End gets data and executes instructions
 - Back End trumps Front End


33

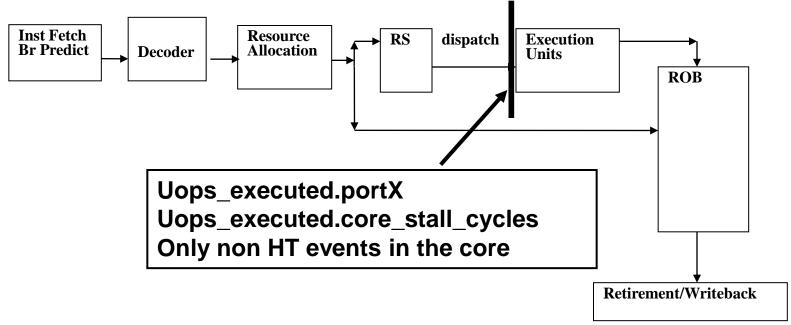
Identifying Front End Stalls


Uop issue

- -Uops have been allocated resources
- -No downstream blockage (resource_stalls)
- -FE Stalls = an instruction delivery problem
 - = Uops_issued.stall_cycles Resource_stalls

(Simplified) Execution in an OOO Engine

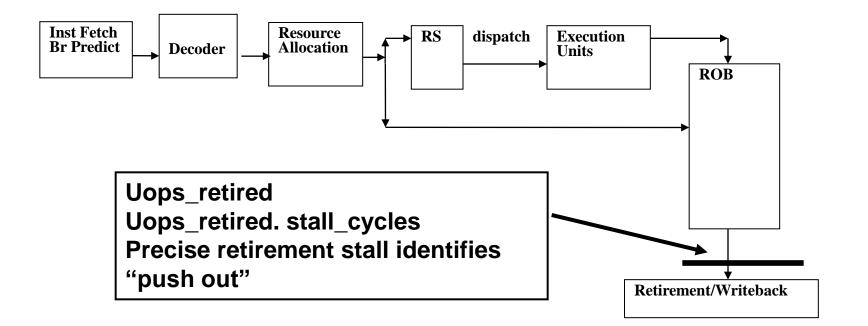
- Design optimizes Dispatch to Execution
 - -Uops wait in RS until inputs are available
 - -Keeping the Execution Units occupied matters



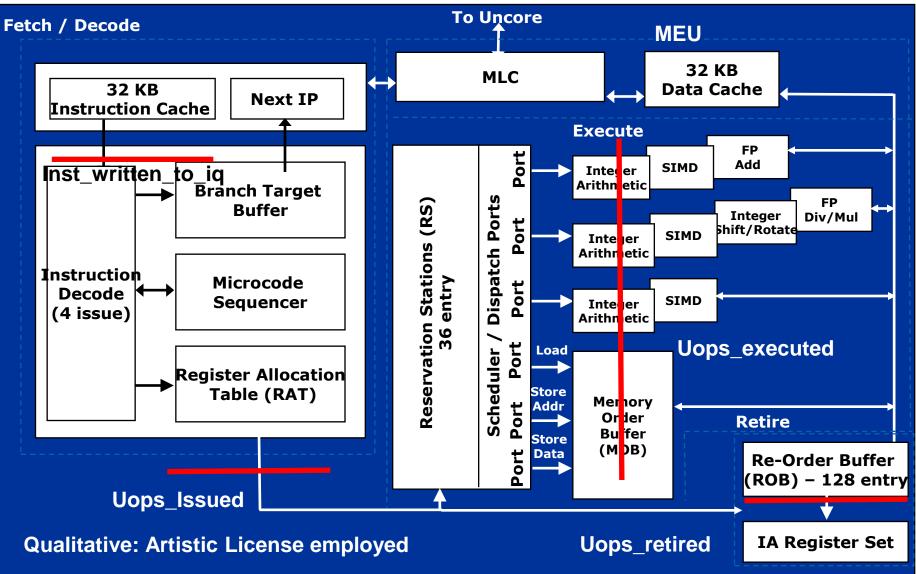
Uop Flow Monitors Execution

• Uop Execute

- -Uops have inputs ?
- -No downstream blockage (DIV/SQRT)
- -No execution = no progress



Uop Flow Monitors Execution • Uop Retire


-All older instructions retired ?

-No retirement = ? (out of order execution?)

Uop Flow

PEBS Basic Events

Mechanism:

- counter overflow arms PEBS
- Next event gets captured and raises PMI
- PEBS mechanism captures architectural state information at completion of critical instruction

iiisti_i	etired	
itlb_m	iss_retired	
uops_i	retired	
br_ins	tr_retired	
mem_i	instr_retired.loads	
mom	instr_retired.stores	

• Including EIP (+1), even when OS defers PMI

For memory events, EIP (+1) is always next instruction

Branch Events

- Measure Control flow through the program
- Can be used for
 - loop trip counts
 - Reconstructing (multi function) execution paths
 - Driving inlining, IPO, PGO compilations
- Used in conjunction with Last Branch Record (LBR) even more can be done
 - Basic block execution counts
 - Instruction mix
 - Call counts per source
 - etc

Basic Branch Analysis

Vastly improved precise branch monitoring capabilities

- Branches retired
- 16 deep LBR
 - LBR can be filtered by branch type and privilege level
- One per SMT
 - Not merged when SMT disabled
- Only taken branches are captured
- Precise BR retired by branch type
 - Calls, conditional and all branches
 - Coupled with LBR capture yields
 - Call counts
 - "HW call graph"
 - Basic block execution counts

Branch Analysis

Precise branch events on NHM enable

- Function call counts
- Function arguments (em64T only)
- Taken fraction/branch
- Mispredicted Branches must be counted with Non-PEBS events BR_MISP_EXEC.* and BR_INST_EXEC.* on Corei7/Xeon 5500
- Br_misp_retired.* on Xeon 5600 (PEBS)

Branch Analysis: Call Counts

- Call counts require sampling on calls
 - Sampling on anything else introduces a "trigger bias" that cannot be corrected for
- Requires PEBS buffer to identify which branch caused the event
 - EIP+1 results in capturing call target
- Requires LBR to identify source and target

- Matching PEBS EIP with LBR target

Precise Conditional Branch Retired

- Counted loops that actually use the induction variable will frequently keep the tripcount in a register for the termination test
 - E.g. heavily optimized triad with the Intel compiler has
 Addq \$0x8, %rcx
 Cmpq %rax, %rcx
 Jnge triad+0x27

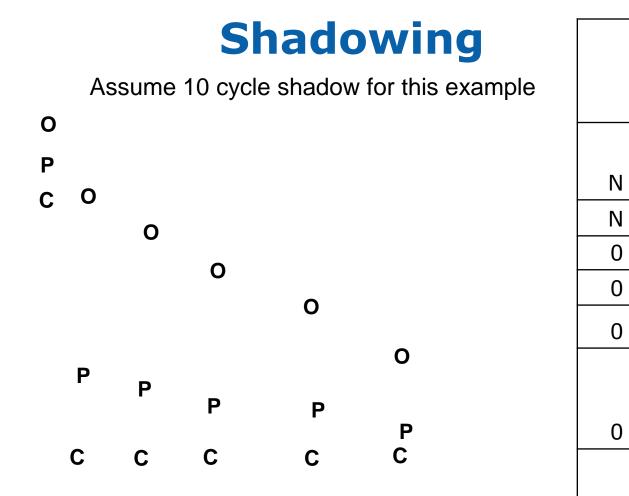
Average value of RAX is the tripcount

Branch Analysis: Function Arguments (Intel64 only)

- Functions with "few" (<6?) arguments use registers for argument values
- Capturing full PEBS buffer + LBR on calls_retired event allows measurement of distribution of argument values per calling site
 - -E.g. length of memcpy, memset

Processing LBRs

- •All instructions between Target_0 and Branch_1 are retired 1 time
- •All Basic Blocks between Target_0 and Branch_1 are executed 1 time
- •All Branch Instructions between Target_0 and Branch_1 are not taken

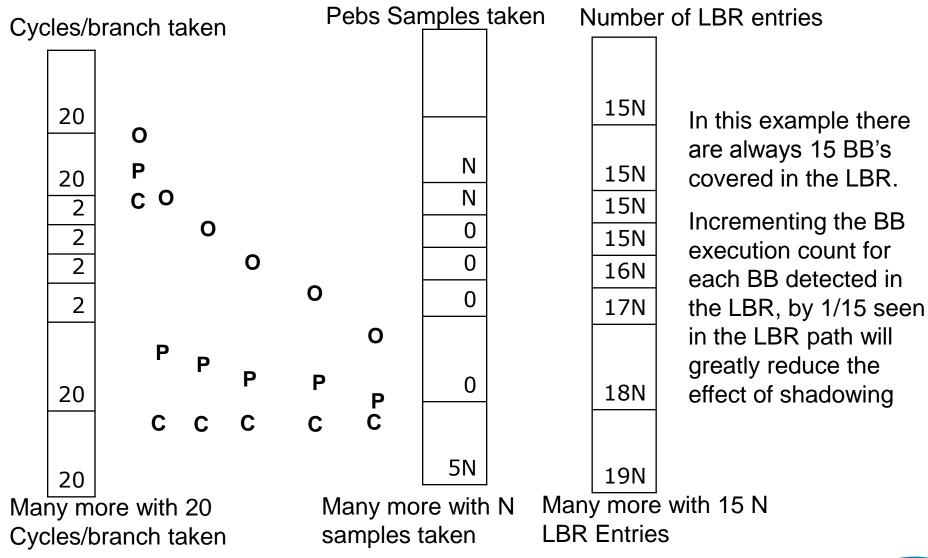

So it would all Seem Very Straight Forward

Shadowing and Precise Data Collection

- The time between the counter overflow and the PEBS arming creates a "shadow", during which events cannot be collected ~8 cycles?
- Ex: conditional branches retired
 - Sequence of short BBs (< 3 cycles in duration)</p>
 - If branch into first overflows counter, Pebs event cannot occur until branch at end of 4th BB
 - Intervening branches will never be sampled

O means counter overflow P means PEBS enabled C means interupt occurs

5N


Reducing Shadowing Impact

- Some "events" will never occur!
 - -Falling into shadowed window
- Use LBR to extend range of the single sample
- Count the number of objects in LBR and increment count for all of them by 1/15

-Since you have only one sample

Minimizing Shadowing Impact on BB Execution Count

Branch Filtering

LBR Filter Bit Name	Bit Description	bit
CPL_EQ_0	Exclude ring 0	0
CPL_NEQ_0	Exclude ring3	1
JCC	Exclude taken conditional branches	2
NEAR_REL_CALL	Exclude near relative calls	3
NEAR_INDIRECT_CALL	Exclude near indirect calls	4
NEAR_RET	Exclude near returns	5
NEAR_INDIRECT_JMP	Exclude near unconditional near branches	6
NEAR_REL_JMP	Exclude near unconditional relative branches	7
FAR_BRANCH	Exclude far branches	8

Branch Filtering

- User near calls only
 - Tracking back from OS critical sections to user function that caused the problem
 - Lack of returns may be an issue in some cases
 - But not for HPC 🙂
 - Use static call analysis to clean up chains
- User and OS near calls only
 - Profiling OS call stacks
 - Eliminating leaf functions may be complicated by lack of returns
 - Don't remove returns if this is a problem
 - Use BTS to capture deeper stack
 - Issue: cannot exclude unconditional jumps without excluding calls

Precise cycles can be constructed from any PEBS event

Allow profiling code sections screened with STI/CLI semantics

- Ring 0 OS critical sections

- PEBS sampling mechanism may loose interrupts during halted state
 - Instruction retirement required to generate performance monitoring interrupts (PMI)

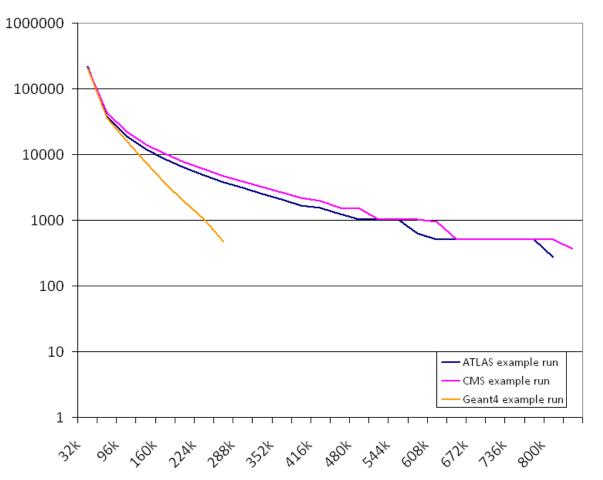
Counts will not occur without PEBS being invoked

- Profile the application for cycle usage and uop flow.
 - Identify hot functions
 - Check asm of FP intensive code for correct instruction mix
 - X87 is slower than SSE
 - Intel® Compiler has FP-model flags and many pragmas
- Vectorize long tripcount loops
 - -SSE4.2 uses unaligned loads more aggressively
 - Align data whenever possible
 - Check loop tripcounts with br events and register values (described later)
 - Interchange loop orders to get long loops as inner loop
 - Change multi dimensional array layout as needed
 - Completely unroll short tripcount (<~7) inner loops
 - Split/merge loops depending on code size
 - Predicate hoist constant condition if's out of loops
 - Etc, etc , etc...I could write a book

- C++ and large binaries: Only optimize what uses cycles
 - Use call counts to drive compiler inlining
 - Compiler needs to evaluate a large enough scope to do its best work
 - Particularly functions/methods invoked inside loops
 - Size vs Speed
 - Extremely large binaries need to minimize size
 - -Os (linux) –O1 (windows)
 - Conditional Branch Mispredictions
 - HW prediction is shockingly good
 - Cost is unretired uop flow (uops_issued.any uops_retired.slots)
 - Optimize case statement order, lowers uops_retired

Use Intel Compiler LIBM, MKL, tbbmalloc, tbbmalloc_proxy

- Intel linker with LD_PRELOAD env variable
- -L/path/to/intel/libs –limf etc
- http://software.intel.com/en-us/articles/optimizing-withoutbreaking-a-sweat/


 Classic OOP will result in code bases of small functions integrated together to invoke the algorithm

Signatures

- -Low instruction_retired/call_retired
- -High call_retired/branch_retired
- -High indirect_call/call_retired
- High uops_issued.core_stall_cycles resource_stalls.any
- -High **Σ**latency(source)*ifetch_miss(source)

How big are the CERN programs

Cacheline access frequency evaluated by sorting cachelines by their accesses Thus a binary working set size measurement

Optimizing large Object Oriented Code

- Inlining is the advice of choice but things are more complicated.
- Inlining increases binary size and can make ifetch misses more costly and code slows down
 - Even if fewer in overall number
- Ifetch miss events have among the largest IP skids of all events
 - They can show up in the wrong function
- Large codes built of many small methods can result in flat cycle profiles
 - It can take thousands of functions to account for 80% of the clock cycle samples
 - Thus thousands of functions must be optimized to achieve a significant performance improvement

Optimizing large Object Oriented Code

- The author knows of no proven methodology to correct the cost of excessive taken branches and the resulting flat cycle profile.
 - Need fewer calls,
 - instructions required for calling conventions
 - Larger functions to allow the compiler to see the whole calculation and do a better job
 - Larger shared objects to allow greater effect from IPO
 - Create shared objects using just the hot methods to avoid excessive inlining
- This has to be applied to enough methods to account for 80->95% of the cycles

Mostly this is about reducing the total instruction count

- Function calls result in added instructions
 - Call and return
 - Trampolines required for position independent code/ shared object cross invocations
 - Indirect branches can be more costly
 - Freeing & restoring registers for local use
 - Mostly an ia32 issue
 - Setting and reading function arguments
 - Larger on ia32 due to required use of stack
- Virtual function calls (function pointers) increase indirect call instructions and associated pointer loads

- Does a call graph help?
 - -Unlikely
 - Provides the direct path back to main
 - Usually sampled on time
 - Does not provide call counts in most cases
 - Does not identify clusters of active (excessive) call activity

- A modest proposal:
- Use LBRs and static analysis to evaluate frequency and cost of function calls
 - -the call count
 - -count taken branches between call and arrival in function
 - -Get count of indirect branches invoked
 - -Add cost for function arguments
 - -Add a cost for push/pop of registers

- A modest proposal:
- Use social network analysis/network theory to identify clusters of active, costly function call activity
 - Web search on Social networking/social networking analysis
- Order clusters by total time and/or total "cost"
 - Split time of functions shared between clusters by call counts
 - Calls have a direction
 - Utility functions must not be viewed as bridges

- A modest proposal:
- Manually reduce function count in hot clusters by explicit code inlining
 - Prioritize work by call overhead cost to be gained
 - Duplicate code as needed
 - Reduce cross shared object call counts

• PEBS near call event + LBRs to get call counts/source

- Selecting source files to compile with enhanced inlining
 - IPO can be enahnced when used with PGO
- PEBS near call event + registers (em64T) to get function arguments
 - Fix memset/memcpy calls with short lengths
 - Excessive calls to malloc/free due to constructor/destructor?
 - Identify small malloc's/free's
 - Let the compiler allocate small structures statically rather than malloc and free them excessively

Optimize only functions that use significant cycles

- -Reduces build time
- -Minimize fighting the compiler
 - Changing optimizations or compilers in large builds can be problematic

Move gcc/icc and create script called gcc/icc

#!/bin/sh

```
if echo $@ | grep -f /tmp/sourcefilelist.txt > /dev/null ;
```

```
then /opt/intel/Compiler/11.0/083/bin/intel64/icc.ori -g -fast $@;
else gcc.ori -g -O2 $@;
```

fi

- PTU sometimes shows *.h files as source
- Generate a list of c/cpp files as follows:
 - Export list of functions from Intel® PTU
 - Create script grepf.sh to grep for defined symbols: #!/bin/sh
 if nm --defined-only --demangle \$1 | grep -f \$2 > /dev/null ; then echo `basename \$1 .o`.cpp; fi
 - Find hot object files and remember cpp files: find -name "*.o" -exec grepf.sh '{}' /tmp/functionlist.txt \; > /tmp/sourcefilelist.txt
- This will produce sourcefilelist that only includes targets of compiler

Event Classes

- 1. Execution flow events
 - Cycles, Branches, stalls, uops/inst_retired
- 2. Penalty events Change code to remove the penalty
 - Ex: load requiring access to dram
- 3. Resource saturation events
 - Bandwidth, load/store buffers, dispatch ports
 - No well defined cost
- 4. Architectural characterization
 - Cache accesses, MESI states, snoops
- 5. Instruction mix

Memory Access

- Load instruction uses virtual address to access memory space
- HW translates that to physical address to access caches
 - DTLB does this
- Access is hierarchical
 - Check L1D first
 - If (miss) check if Line Fill Buffer (LFB) allocated
 - If(LFB miss) allocate LFB, escalate miss to L2
 - If(miss L2) get Super Queue (SQ) slot, escalate to uncore

Memory Access Penalties

- Load misses cause execution stalls
 - -In most cases store misses will not stall execution
 - Data to be stored is held in store buffer until desired line is in L1d, thus execution continues
- Loads that hit LFBs overlap in time with original line request
 - If the original request was a load, the original miss accounts for the entire penalty
 - If there are multiple load request to the LFB the least costly would be the penalty
 - -Not all load misses are equally costly

Stall Decomposition on Intel® Core™ i7 Processors

- Same basic methodology as on Intel® Core[™]2 processors*
- Basic strategy is to identify the largest penalty event contributions first
 - Work your way down to smaller contributors
- FE starvation can now be measured
 - And no branch misprediction flush penalty
- Only both_threads_stalled can be measured at execution
 - SMT will make **\Sigma** events_i*penalties_i > both_thread_stalled
 - ALU_only stalls can be measured per thread
 Ports 0,1 and 5

* Intel, the Intel logo, Intel Core and Core Inside are trademarks of Intel Corporation in the U.S. and other countries.

Stall Decomposition: Σevents_i*penalties_i The Elephants

- LLC, L2, and DTLB misses are the large penalty, common events
- LLC activity must be measured at L2 for it to have core, PID, TID context
 - Uncore has no ability to track core, PID or ThreadID
 - Uncore event collection not yet supported
- Figure of merit: Events*Penalty/cycles

 - If SAV(ev) = SAV(cyc)/Penalty(ev)
 - FOM = Samples_ev/Samples_cyc
 - This is ~ how the default SAVs are set
 - Minimizes required screen area in the data display

Stall Decomposition: Σevents_i*penalties_i The Elephants

- Figure of merit: Events*Penalty/cycles
 - Overcounts when there are temporally overlapping penalties
 - Compilers can hoist loads. So make sure there are stalls as well
 - PEBS event uops_retired.stall_cycles should pile up very close to instructions suffering large penalties
 - The combination provides the answer to the critical question:
 - Is the fix worth the effort?

Penalty Events: Memory Access

- Intel® Core[™] i7 processor memory access events are "per source"
 - How many times cacheline came from "here"
- Unique sources have unique Penalties
 - DP system has ~10 sources outside a core
 - Large number of performance events
- Memory access events are precise
 - HW captures IP and register values

74

- Sample + Disassembly => Reconstruct Address
- Latency Event captures IP, load latency, data source and address
 - Similar to Itanium® Processor Family* Data Ear

Offcore Response Latencies

- LLC Hit that does not need snooping
 - LLC latency ~ 35-40 cycles
- LLC Hit requiring snoop, clean response ~65
- LLC Hit requiring snoop, dirty response ~75
- LLC Miss from remote LLC ~ 200 cycles
- LLC Miss from local Dram ~60 ns
- LLC Miss from remote Dram ~100 ns

Memory Access PEBS Events

Identify LLC and DTLB load miss

- Precise load events do not include DCU prefetch/ L2 prefetch

Name	Penalty	Umask	Umask_name
mem_load_retired	0	0x1	L1D_HIT
	6	0x2	L2_HIT
	~35	0x4	LLC_HIT_UNSHARED*
	~75	0x8	OTHER_CORE_L2_HIT_HITM*
	depends	0x10	LLC_MISS
	depends	0x40	HIT_LFB
		0x80	DTLB_MISS*

LLC_HIT_UNSHARED should be LLC_HIT_NO_SNOOP OTHER_CORE_L2_HIT_HITM should be LLC_HIT_SNOOP DTLB_MISS counts primary and secondary DTLB misses on Corel7 Only counts primary on Xeon™ 5600 Family Processors Penalty for DTLB miss is not a constant Also use Dtlb load misses.walk cycles on Xeon™ 5600 Family Processors

Precise Uncore Response Xeon™ 5500 Family Processors • Load response from LLC, another core, local DRAM, remote socket, remote DRAM and IO

Name	Penalty	Umask	Umask_name
mem_uncore_retired	~85	0x2	OTHER_CORE_L2_HITM
	~185	0x8	REMOTE_CACHE_ LOCAL_HOME_HIT
	~200	0x20	LOCAL_DRAM
	~350	0x40	REMOTE_DRAM
		0x80	ΙΟ

OTHER_CORE_L2_HITM should be LOCAL_HITM

Precise Uncore Response Xeon™ 5600 Family Processors • Load response from LLC, another core, local DRAM, remote socket, remote DRAM and IO

Name	Penalty	Umask	Umask_name
mem_uncore_retired	~85	0x2	LOCAL_HITM
	~375	0x4	REMOTE_HITM
	~220	0x8	LOCAL_DRAM_AND_ REMOTE_CACHE_HIT
	~375	0x10	REMOTE_DRAM
		0x80	UNCACHEABLE

Precise Store DTLB miss

Name	Event	Umask	Umask_name
mem_store_retired	0x0c	0x1	DTLB_MISS*
		0x2	dropped events

DTLB_MISS counts primary and secondary DTLB misses on Corel7 Only counts primary on Xeon™ 5600 Family Processors

Overlapping Memory access penalties Xeon 5600 family: Offcore_request_outstanding

Event Name	umask	cmask, inv
OFFCORE_REQUESTS_OUTSTANDING.ANY.READ	0x8	
OFFCORE_REQUESTS_OUTSTANDING.ANY.READ_NOT_EMPTY	0x8	1,0
OFFCORE_REQUESTS_OUTSTANDING.DEMAND.READ_CODE	0x2	
OFFCORE_REQUESTS_OUTSTANDING.DEMAND.READ_CODE_NOT_EMPTY	0x2	1,0
OFFCORE_REQUESTS_OUTSTANDING.DEMAND.READ_DATA	0x1	
OFFCORE_REQUESTS_OUTSTANDING.DEMAND.READ_DATA_NOT_EMPTY	0x1	1,0
OFFCORE_REQUESTS_OUTSTANDING.DEMAND.RFO	0x4	
OFFCORE_REQUESTS_OUTSTANDING.DEMAND.RFO_NOT_EMPTY	0x4	1,0

Offcore_requests_outstanding.demand.read_data_not_empty = cycles there is at least one request from L1d that had to be satisfied by escalation to uncore Includes L1d HW prefetch, loads and SW_prefetch

Defines upper limit of memory access penalties due to L2 miss

So what do you do?

- Load driven misses resulting in pipeline stalls can be fixed by
 - Use longest tripcount loop to drive strategy
 - Change loop order/data layout to give HW prefetcher a chance
 - Divide large structures by usage (See MILC)
 - Structures of arrays rather than arrays of structures
 - Make sure buffer initialization is consistent with usage
 - Make remote_dram misses local dram misses & cut latency in half
- DTLB misses: use large pages

So what do you do?

- Load driven misses resulting in pipeline stalls can be fixed by
- SW prefetch _mm_prefetch(addr, hint) <ia32intrin.h>
 - Use LOAD_HIT_PRE to identify when prefetch distance is too small
 - Min prefetch dist (iter) ~ 200/(uops_per_iteration/3)
 - For local dram
 - Will change as latency changes
 - long inner loop-> prefetch ahead in inner loop
 - Short inner loop-> prefetch 1,2 iterations ahead on outer
 - Reused linked list -> create indirect address array
 - #pragma openmp for (guided) will cause havoc
 - Volume 2 of that book
 - SW prefetches will not help a BW limited application

Other Penalties

- Divides and SQRT (Arith.Cycles_div_active)
 - Vectorize
 - Save reciprocals that are reused
 - Merge with bandwidth limited loops
- Store Forwarding (Load_Block.overlap_store)
 - Event only on Xeon™ 5600
 - Use Intel Compiler
 - Be careful with data type sizes (keep consistent)
- FP exceptions (uops_decoded.ms)
 - Use Intel compiler (no x87, FTZ)
 - Uninitialized values in simd registers
- No ability to measure stalls associated with chained long latency instructions
 - Sum = a+b+c+d+e...evaluated left to right

Instruction Starvation

 Lots of calls to small functions can lead to starving the pipeline of instructions

-Only L2 prefetchers prefetch instructions

 Uops_issued.core_stall_cycles – resource_stalls.any = cycles BE wants instructions, but does not get them

-This is more accurate with HT off

 Can be cross checked on Xeon[™] 5600 processor with offcore_requests_outstanding.demand.read _code_not_empty (for L2 miss)

Decomposing instruction starvation

Event	Penalty
l2_rqsts.ifetch_hit	~6
offcore_response_0.demand_ifetch.local_cache	~35
offcore_response_0.demand_ifetch.local_dram	~200
offcore_response_0.demand_ifetch.remote_dram	~350

Ifetch miss events have among the largest IP skids of all performance events. The IP can easily have been on in a previously executing function at the time the ifetch miss occurred. See slide 23 Uncertainties are also larger, due to the many buffers in the pipeline Instruction starvation does not occur unless the buffers drain

Instruction Access Penalties

- Demand Ifetch: offcore_response.demand_ifetch.*
 - Usually associated with function calls followed by taken branches in LARGE binaries
 - IPO, force inlining
 - PGO to reduce taken branches
 - shrink sizes of other functions
 - Change order of link command
 - Offcore_response.demand_ifetch.local_dram
 - Sw_prefetch(&foo(),1); ?????
 - Offcore_response.demand_ifetch.remote_dram
 - Run 1 copy of binary per socket
 - Must have two complete copies on the disk
 - Offcore_response.demand_ifetch.llc_hit_no_other_core
 - Sw prefetch?, PGO, IPO
- ITLB misses: use large Itlb pages

Reducing calls and *.so

- Use linker and a control list to identify internal and external functions in *.so to reduce the use of trampolines
 - -icpc -WI,-z,defs -L/External -L/Linker -WI,version-script,export.tmp

\$ cat export.tmp

{

global:

_Foo1;

_Foo2;

local:

_Bar1; _Bar2;

};

Reducing calls and *.so

- Identifying the internal functions is not simple
- Use LBRs, and sfdump5 (see backup) to identify call chains between *.so
- Merge source files into fewer *.so
 This will improve effectiveness of PGO/IPO
- Use global/local file of previous slide to reduce trampolines
- NOTE: Author has never personally done this, so he does not know if it really works, or if the syntax is really correct.

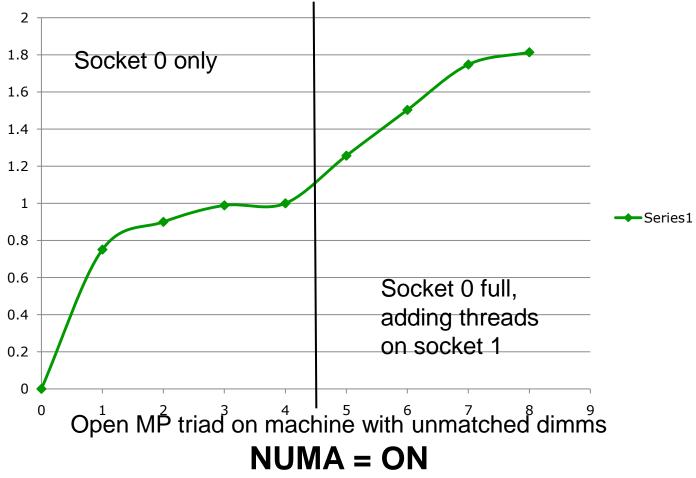
Event Classes

- 1. Execution flow events
 - Cycles, Branches, stalls, uops/inst_retired
- 2. Penalty events
 - Ex: load requiring access to dram
- **3.** Resource saturation events
 - Bandwidth, Id/st buffers, dispatch ports
 - No well defined cost
- 4. Architectural characterization
 - Cache accesses, MESI states, snoops
- 5. Instruction mix

Resource Limitation Events

- Resource limitation is usually only a problem when the resource is saturated
 - There is ~no cost* for bandwidth until the bandwidth is close to saturated
 - *Latency depends weakly on BW on Corei7
- Lost cycles due to resource saturation can be hard to measure
- Only way to determine bandwidth limit is to measure it
 - Count cachelines transferred/cycle for triad
 - (w/wo SSE NT stores)
 - Depends on the number of triad threads
- Resource saturation results in no gain from HT

Resource Limitation: Memory Bandwidth


- Usually needs HW (or SW) prefetch
 - Load latencies will restrict execution otherwise
 - Exception: for(i=0;i<len;i++)a[i] = b[addr[i]];</pre>

Limit depends on

- number and location of concurrent threads consuming large numbers of lines
 - For asynchronous execution this becomes ~impossible to know
- core and uncore frequencies
- type, number, size, location of dimms
- bios version and settings
- Motherboard
- Measured in cycles/cacheline transferred
 - Triad with/wo RFO result in ~ same limit!
 - All "BW" events discussed here count cachelines transferred

Triad bandwidth vs thread count

Latency stalls vs Bandwith saturation

 A latency stalled program has a small number of outstanding data cachelines in flight simultaneously

```
i = 0;
While(mystruc->next !=0){
   mystruc=mystruc->next;
   a[i] = mystruc->b val;
   i++;
}
```

Only one (possibly 2) loads in flight at a time

 Clearly a triad with prefetchers enabled in **BW** limited

Gather, OOO execution and Bandwidth saturation

Consider:

For(i=0;i<len;i++)A[i] = B[ADDR[i]];</pre>

A data collection might show something like 1000 cycle samples, 200 instruction retired samples and 5000 mem_uncore_retired.local_dram samples

The mem_uncore SAV is 10K, the cycle SAV is 2 million This absorbs the 200 cycle penalty..so the ratio of the samples is the ratio of the cycles...

Clearly, there are more cycles in dram access than cycles executed.

Gather, OOO execution and Bandwidth saturation

In a gather loop the RS acts as a prefetcher. There are 6 uops/iteration -> ~5 iterations in the RS? except the loads go out immediately.. there is no dependency so the 2 loads can be executed, the incr, cmp and branch can execute, again as there are no dependencies so only the stores pile up This would suggest ~30 iterations in flight at a time

the number of load buffers might be what blocks FE uop issue there are 48 and 2/iteration are needed

The loads of ADDR[i] are sequential and thus HW prefetched. All the stalls are on the load of B[ADDR[I]] Thus the events fall on the next instruction.

The mem_uncore_retired.local_dram events are all overlapped.. Thus events*penalties overcounts by a huge factor

Bandwidth per core

- Much more complicated than on Intel® Core[™]2 processors
 - Bandwidth limit depends on number of threads using maximum BW and core position of those threads
 - CAN ONLY BE MEASURED
 - No single event counts total cachelines in+out to memory /core
 - Cacheable writebacks are written to LLC and written to memory at a later time
 - Offcore_response.data_ifetch.all_dram
 - However, WB ->dram makes no sense
 - Local vs remote memory
 - NT SSE Stored cachelines are problematic

Offcore_Response: Breaking Down Off-core Memory Access

- Matrix type event
 - Request type X Response type
 - 65025 possible real combinations (65535 2 X 255)
 - Request and Response programmed in MSRs
 - OR(Request bits true) .AND. OR(Response bits true)
 - Ex: all LLC misses = set bits 0,1,2,3,4,5,6,11,12,13,14 - 787F
- Solves problem of averaging over widely differing penalties
- Only one version of the event (b7/msr 1a6)
 offcore_response_0

Memory Access: Off-core Access

- Offcore_Response_0
 - "umasks" set with MSRs 1a6
 - Two versions on XEON 5600 processor family
 - Programming a little different

	Bit position	Description
Request	0	Demand Data Rd = DCU reads (includes partials, DCU Prefetch)
Туре	1	Demand RFO = DCU RFOs
	2	Demand Ifetch = IFU Fetches
	3	Writeback = MLC_EVICT/DCUWB
	4	PF Data Rd = MPL Reads
	5	PF RFO = MPL RFOs
	6	PF Ifetch = MPL Fetches
	7	OTHER
Response	8	LLC_HIT_UNCORE_HIT
Туре	9	LLC_HIT_OTHER_CORE_HIT_SNP
	10	LLC_HIT_OTHER_CORE_HITM
	11	LLC_MISS_REMOTE_HIT_SCRUB
	12	LLC_MISS_REMOTE_FWD
	13	LLC_MISS_REMOTE_DRAM
	14	LLC_MISS_LOCAL_DRAM
	15	IO_CSR_MMIO

Offcore_response Reasonable Combinations

Request Type	MSR Encoding
ANY_DATA	xx11
ANY_IFETCH	xx44
ANY_REQUEST	xxFF
ANY_RFO	xx22
COREWB	xx08
DATA_IFETCH	xx77
DATA_IN	xx33
DEMAND_DATA	xx03
DEMAND_DATA_RD	xx01
DEMAND_IFETCH	xx04
DEMAND_RFO	xx02
OTHER	xx80
PF_DATA	xx30
PF_DATA_RD	xx10
PF_IFETCH	xx40
PF_RFO	xx20
PREFETCH	xx70

Response Type	MSR Encoding
ANY_CACHE_DRAM	7Fxx
ANY_DRAM	60xx
ANY_LLC_MISS	F8xx
ANY_LOCATION	FFxx
IO_CSR_MMIO	80xx
LLC_HIT_NO_OTHER_CORE	01xx
LLC_OTHER_CORE_HIT	02xx
LLC_OTHER_CORE_HITM	04xx
LCOAL_CACHE	07xx
LOCAL_CACHE_DRAM	47xx
LOCAL_DRAM	40xx
REMOTE_CACHE	18xx
REMOTE_CACHE_DRAM	38xx
REMOTE_CACHE_HIT	10xx
REMOTE_CACHE_HITM	08xx
REMOTE_DRAM	20xx

NT local stores counted by 0200 not 4000

A bit different on Xeon 5600 Processor Family

Total Memory Bandwidth

Delivered + Speculative Traffic to local memory

- Reads and Writes Per Source

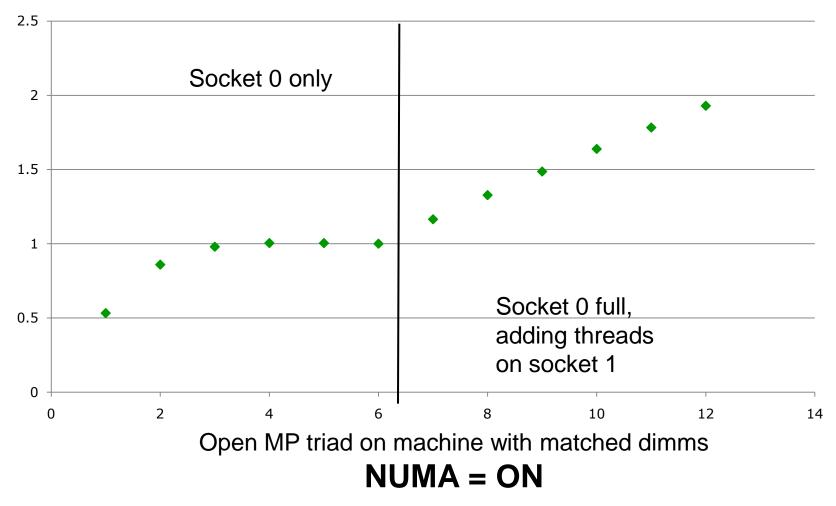
- UNC_QHL_REQUESTS.IOH_READS
- UNC_QHL_REQUESTS.IOH_WRITES
- UNC_QHL_REQUESTS.REMOTE_READS (includes RFO and NT store)
- UNC_QHL_REQUESTS.REMOTE_WRITES (includes NT Stores)
- UNC_QHL_REQUESTS.LOCAL_READS (includes RFO and NT Store)
- UNC_QHL_REQUESTS.LOCAL_WRITES (no NT stores)

Precise totals can be measured in IMC

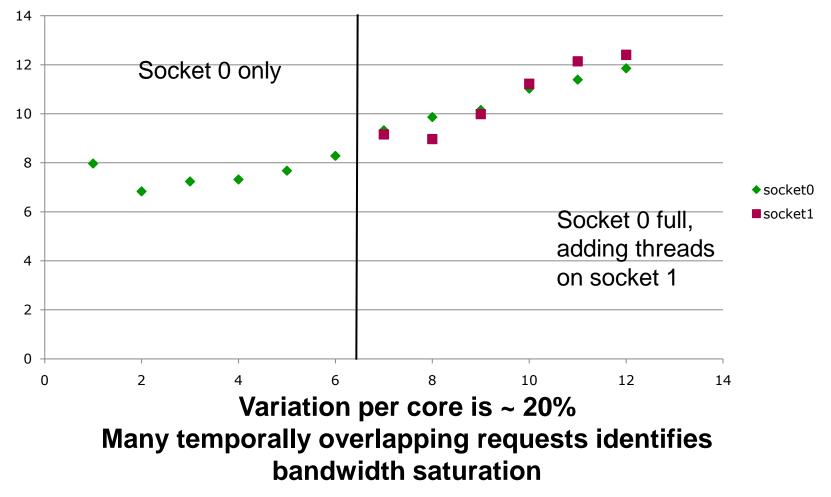
- But cannot be broken down per source
 - UNC_IMC_NORMAL_READS.ANY (or by channel, includes RFO)
 - UNC_IMC_WRITES.FULL.ANY (or by channel, includes NT stores)

A few particularly useful events for measuring BW

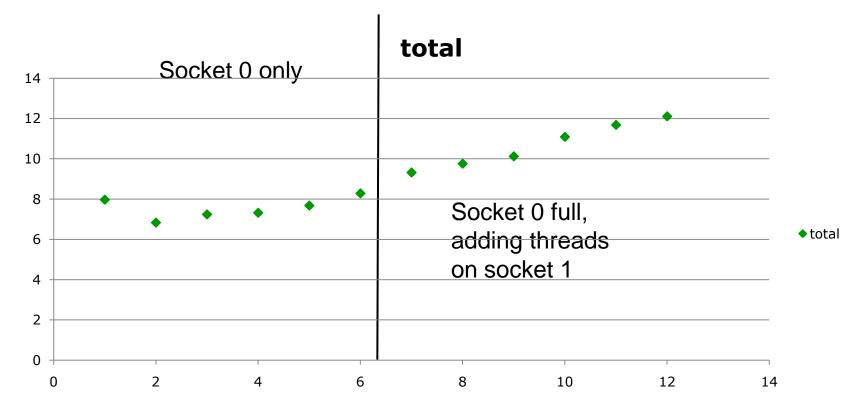
- Offcore_response.data_in.local_dram
 - Read BW (per core) from local dram
- Offcore_response.data_in.remote_dram
 - Read BW (per core) from remote dram
 - Indicates NUMA locality problem
- Uncore events get totals but only in counting mode with no data/core
 - Unc_imc_normal_reads.any
 - Total read cachelines from this mem controller
 - Unc_imc_writes.full.any
 - Total written cachelines to this mem controller



Latency vs Bandwidth


- On Xeon[™] 5600 processors the average occupancy of the super queue can be evaluated as offcore_requests_outstanding.any.reads/ cpu_clk_unhalted.thread
- If this is large then the loop is likely BW limited
- If it is small and the event counts indicate a memory access problem due to loads then it is likely to be a latency issue

Triad bandwidth vs thread count



Average super queue occupancy

Average super queue occupancy

Evaluated with no knowledge of thread count

Identifying bandwidth saturation

- Identifying BW saturation by measuring bytes/time is complicated by the BW limit changing with the number of threads consuming BW (slide 90)
- Non concurrent execution, with some threads consuming large BW, while others consume little, can make identifying saturation extremely difficult

Identifying bandwidth saturation

- Average SQ occupancy limit varies less with thread count/concurrency
- It does not distinguish between LLC hits and LLC misses
- Recipe:
 - –Identify problematic functions with <SQ occup>
 - -Use offcore_response events to determine the fraction associated with LLC hits vs misses

But what is the potential gain?

- None of this measures what is needed!
 - It does not tell us if the fix is worth the effort!
- The fix is to reduce the number of lines transferred
 - Consume more data per line transferred
- Gain
 - BW_time = total_lines/BW_limit
 - Exec_time = time to execute instructions
 - Memory latency of ~0
 - Time = MAX(BW_time, Exec_time)
 - Completely BW limited ~ change_in_total_lines/BW_limit
 Problem: cannot measure exec time,
 BW limit is absurdly complex in general (must assume synchronous execution)

An example

```
Double *a, *b;
For(i=0; i<len; i+=8)a[i] = sqrt(b[i]);
```

We might be able to compress a and b to transfer fewer lines

```
Double *ap, *bp;
For(i=0; i<len/8; i++)ap[i] = sqrt(bp[i]);</pre>
```

But would it actually go any faster? No, The SQRT latency ~ matches the BW limit

Estimating the gain

- Exec time ~ uops_retired.slots/`3'+ arith.cycles_div_active
 - Undercounts cycles associated with chained long latency uops
- Optimized BW time = Adjusted_lines/Max_bw
- Gain ~ Cpu_clk_unhalted.thread MAX(Optimized BW time, Exec Time)
- Many Uncertainties, but better than nothing
 - Assumptions about concurrency of high BW usage
 - Assumptions about cycles associated with chained long latency uops
 - Is uops/3 realistic?

What do you do about Bandwidth?

- Data layout change is usually best
 - Fix buffer initialization to make remote_dram small
 - Fix order of structure elements (big to small)
 - Eliminate unused structure elements
 - Divide structures into parallel structures by use
 - Measure data consumed/cacheline in
 - Sum load/store in loops (ignore stack pointer, +=)
 - Multiply by total tripcount & divide by 64*offcore_response.data_in.local_dram
 - Fix nested loop order
- Measure data_in with prefetchers on & off
 - If difference is large
 - Change data layout to help HW prefetcher or
 - Consider sw prefetching everything and disabling HW prefetchers

OOO resource Saturation

- Load buffer saturation (resource_stalls.ld)
 - In HPC, frequently due to bandwidth saturation
- Store buffer saturation (resource_stalls.st)
 - This will cause stores to stop the pipeline
 - Usually associated with stores missing I1d/I2 etc
 - SW prefetch, change layout to help HW prefetch
- Port saturation (uops_executed.portX/cycles)
 - Most common for load port (2)
 - Avoid loop distribution (F90)
 - Merge loops to reuse data while available
 - Align data and vectorize

Less than ideal multi core scaling

- Perfect scaling results in the number of perf events (summed over cores) being constant
- Difference of event counts can identify locality using cycles and some reasons for non scaling behavior

-Cacheline access contention can cause non scaling

- Load-hitm and store address analysis identifies this

 Most non scaling due to resource saturation and evaluated as a ratio: events/wall_cycles

- Wall_cycles ~ cycles/active cores

or Cpu_clk_unhalted.thread max(ICPU)

-<u>Cannot be seen in difference display</u>

Sources/signatures of non scaling

Turbo

- -Having this on results in large drop from 1->2
- Smaller share of LLC
 - -Decrease in LLC hits, increase in LLC miss
- Increase in page faults
 - More threads require more memory
- Asymmetry associated with core 0

 OS induced imbalance
- Context switching
 - -OS's love to move things around, being the boss!
 - Don't know about logical cores & double up on one physical core, while other phys cores are idle

Sources/signatures of non scaling

- Saturating a resource
 - -Ex: Bandwidth
 - Code optimization increases resource saturation
- Shared memory application specific
 - -Serial execution
 - -Overly contested lock access
 - -False sharing (non overlapping access to a line)
- NUMA based non scaling

-Increase in *.remote_dram

HT can be viewed as a way to recover scaling

More sources of non scaling

- Load imbalance
 - -Increase in halted cycles
- MPI global operations
 - increase in time associates with MPI global APIs
 - Ex: allreduce
- Synchronous message passing
 - -"Intrinsically" non scaling

- Disable turbo while doing measurements
- Disable HT while doing measurements
- Pin all affinities
 - OS's love to move things
 - Old OS's will schedule 2 threads on a physical core while leaving other physical cores idle. This increases with thread count
- Make sure there is enough memory

- /proc/meminfo->Active (?)

- Do 1 thread baseline on a core other than 0
- Increased LLC miss
 - Usual approaches to fixing these, see previous

- Bandwidth issues
 - Check data decomposition for sepparation
 - -Improve data layout to reduce cacheline usage
 - -See previous section on BW issues
- Excessive lock contention
 - -Use finer grained locking
 - -Use faster locking APIs
 - -Make sure the global update is really needed
 - Can you continue working with local copy
- False sharing
 - -Put 64 bytes between data elements

- NUMA related non scaling
 - -Remote dram data access
 - Improve buffer initialization for local access
 - Make multiple copies for each socket
 - -Remote dram ifetch access
 - Make two binaries on the disk and affinity pin per socket
- MPI global operations
 - -Use openMP within a box to reduce MPI nodes
 - -Use good MPI library

- Load imbalance
 - -Seen as halted cycles
 - TSC difference for successive cpu_clk_unhalted.ref != SAV
 - Work queue approach dynamically restores balance
 - At a cost
 - NUMA locality can be lost
 - SW prefetching can become unpredictable within a thread
 - Estimate work during data decomposition to create balanced work rather than balanced iteration count
 - -Save some iterations for final work queue balancing

Graphical tool needed to organize data viewing

- Workflow of event based performance analysis is extremely complicated
 - Requires an enormous number of features/options to enable all possible tasks
 - Automation is very difficult

To do a lot of things requires a lot of options

- Many docking windows, menus, buttons
- Easier to make a tool for a knowledgable user

• The data collection is the easy part Interpreting the data and determining the correct action is the hard part

Tool Requirements

- Maximize data density
 - -Required quantity of data is enormous
- Integrated source/asm display
- Ability to restart sessions later
- Difference utility to monitor changes
- Minimize mouse clicks
- Predefined event lists
- Predefined penalty file
 - -Cycle accounting
 - -dynamic column layout

Primary display shows offending events and even call counts

	Project Run Window Help														
• 🛛 🕹 🛛 🗣 •													E		
Tuning 🛿 🗖 🗖	Loop-Analysis-with-Call-Site	s-2010-04-29	-16-14-42 🕅												-
⊟ 🔄 ▽	Function	RVA	Module	CPU	CPU	INST	UOPS	UOPS	UOPS	MEM	MEM	RES	BR_INST_RETIRED.NEAR_CALL	UOP	RE
atlas_1core_g	compute_gen_staple	0x376A	su3_rmd	33,410	33,410	35,287	12,179	20,637	19,907	22,025	22,091	18,632	0	38,163	3
atlas_4	▶ path_product	0x56BE	su3_rmd	27,360	27,360	30,277	10,763	16,813	17,079	22,579	22,604	14,609	1	31,494	۱ ,
	▼ u_shift_hw_fermion_pp	0x15150	su3_rmd	21,156	21,156	26,444	9,948	11,882	11,709	16,040	16,107	11,133	6	27,959	•
atlas_np_1	eo_fermion_force_3f	0x13972	su3_rmd	0	0	0	0	0	0	0	0	0	3	()
atlascore_g	eo_fermion_force_3f	0x138E7	su3_rmd	0	0	0	0	0	0	0	0	0	1	()
gcc_g_build	eo_fermion_force_3f	0x137F3	su3_rmd	0	0	0	0	0	0	0	0	0	2	C)
milc_orig	▶ dslash_fn_on_temp_s	0xC044	su3_rmd	8,870	8,870	20,017	733	2,167	2,217	592	583	1,873	1	22,164	L
🔡 Loop-Analysis	▶ add_3f_force_to_mo	0x14842	su3_rmd	16,839	16,839	28,255	3,984	6,240	5,866	4,806	4,775	1,837	6	36,652	2 3,
triad	▶ u_shift_hw_fermion_np	0x16A4E	su3_rmd	7,253	7,253	9,046	3,136	3,882	3,915	5,249	5,232	3,688	5	9,621	
triad_omp	imp_gauge_force	0x11AC8	su3_rmd	3,621	3,621	3,539	1,418	2,171	2,223	1,843	1,820	1,752	0	5,067	·
triad snb3	eo_fermion_force_3f	0x12768	su3_rmd	3,543	3,543	5,576	355	1,017	1,097	407	374	783	0	8,081	
-	<unknown(s)></unknown(s)>	0x0	vmlinux	4,613	2,268	2,136	599,612	458,805	731,810	1,102	713	416	85,098	4,003	3
triad2	▶ add_3f_force_to_mo	0x16144	su3_rmd	6,414	6,414	11,425	1,269	2,158	2,077	1,462	1,476	808	2	14,722	1,
	add_3f_force_to_mo	0x170EE	su3_rmd	4,441	4,441	8,076	822	1,403	1,337	951	932	450	0	10,444	L.
	declare_strided_gather	0x73F4	su3_rmd	783	783	1,815	198	167	125	30	32	115	48	1,791	
	load_longlinks	0x5150	su3_rmd	410	410	262	224	289	296	348	349	214	0	375	5
	add_3f_force_to_mo	0x157F2	su3_rmd	1,434	1,434	2,549	278	452	459	313	315	122	0	3,294	L I
	dslash_fn	0x8388	su3_rmd	470	470	576	158	266	268	185	186	237	0	629	•
	grsource_imp	0xED88	su3_rmd	260	260	123	134	219	208	251	249	181	0	152	2
	update	0xA40A	su3_rmd	156	156	97	85	119	109	134	134	99	0	144	L.
	Limit 95% Grant	ularity Functi	on 🖨 Pro	cess All	(; Thread	All	¢ Mo	dule All	+	Cpu 🖯	Total	•		
	🔄 Experiment Summary 📃 C	ionsole 🛿	🔀 Advanced	d Profile Info	D								🗙 💥 🕞 🚮 🖅 🛃	🗉 • 📑	• =
	<terminated> Intel(R) Core(TM</terminated>) i7 processor	family - Loop	o Analysis v	with Call S	Sites [Intel	(R) PTU] vts	sarun /milo	_orig/Loop	o-Analysis	-with-Cal	-Sites-20	10-04-29-16-14-42 -s -dl -ec ARITH	CYCLES	DIV
	workload stopped => 04	workload //29/2010 04													

Set the Granularity to LOOPS

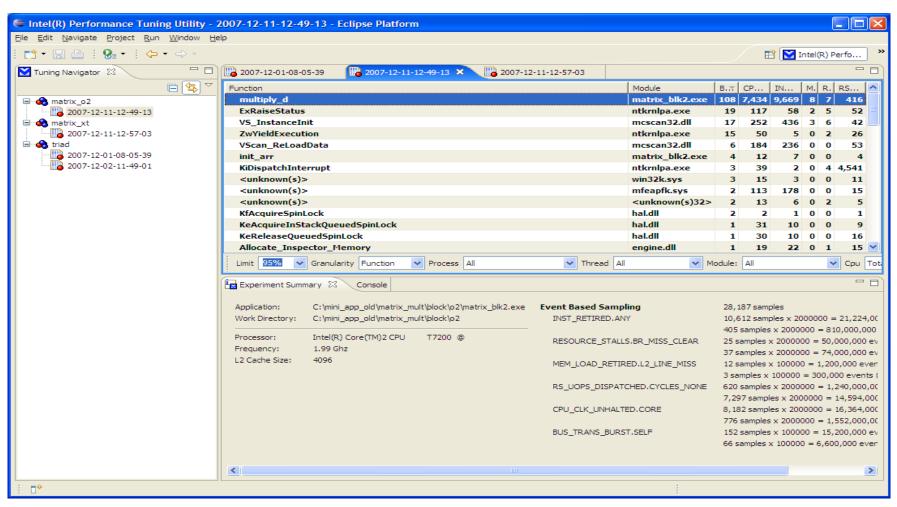
8 🕹 🖓	·																Ē		
ing 🛿 🗖 🗖	🛛 🔂 Loop-Anal	ysis-with-Call-Sites-2010-04-29	9-16-14-42 🕱																
□ 🔄 🔻	Address	Function	Module	CPU	CPU	INST	UO	UOP	UOP	MEM	RAT	MEM	RES	UOPS	RE	ME	R	ч	м в.
s_1core_g	0x58CB	▶ path_product	su3_rmd	24,831	24,831	28,709	9,642	14,925	15,259	19,207	12,587	19,177	13,840	29,465	988	1,829	391 3	300	1 47
_4	0x153F2	$rac{v}$ u_shift_hw_fermion_pp	su3_rmd	15,775	15,775	13,503	9,645	11,032	10,813	15,802	10,607	15,876	10,432	14,700	332	519	0	17	0 7
	0x15425	▼ u_shift_hw_fermion_pp	su3_rmd	12,943	12,943	5,720	9,473	10,673	10,328	15,644	10,064	15,707	10,042	6,413	297	493	0	3	0 5
_np_1	0x15425	u_shift_hw_fermion	. su3_rmd	12,943	12,943	5,720	9,473	10,673	10,328	15,644	10,064	15,707	10,042	6,413	297	493	0	3	0 5
ore_g	0x1551C	▶ u_shift_hw_fermion_pp	su3_rmd	2,341	2,341	6,823	46	196	294	0	384	0	248	7,182	30	0	0	0	0
uild	0x154FB	u_shift_hw_fermion_pp	su3_rmd	138	138	252	28	35	48	35	20	33	27	377	2	5	0	З	0
	0x153F2	u_shift_hw_fermion_pp	su3_rmd	293	293	504	98	127	143	123	125	136	115	546	3	21	0	11	0
nalys	0x155F3	u_shift_hw_fermion_pp	su3_rmd	60	60	204	0	1	0	0	14	0	0	182	0	0	0	0	0
	0x3F57	compute_gen_staple	su3_rmd	13,933	13,933	14,919	5,835	8,801	8,090	10,393	8,907	10,424	7,635	15,149	346	1,117	0	229	0 19
	0x148BA	▶ add_3f_force_to_mo	su3_rmd	16,838	16,838	28,255	3,983	6,239	5,865	4,806	4,876	4,775	1,837	36,651	3,942	399	0	60	0 3
	0x4BD8	compute_gen_staple	su3_rmd	8,039	8,039	8,961	2,702	4,882	4,795	5,384	4,370	5,417	4,542	9,775	148	580	0	17	0 10
	0x3985	compute_gen_staple	su3_rmd	6,954	6,954	7,885	2,133	4,206	4,225	4,601	3,454	4,558	3,993	8,043	160	549	0	24	0 13
	0x43CA	compute_gen_staple	su3_rmd	3,074	3,074	2,083	1,232	2,044	2,008	1,435	1,707	1,458	1,698	3,087	259	23	0	16	0 1
	0x16CE8	u_shift_hw_fermion_np	su3_rmd	5,273	5,273	4,576	3,023	3,565	3,585	5,194	3,469	5,181	3,398	5,021	142	133	0	1	0 3
	0x151A5	u_shift_hw_fermion_pp	su3_rmd	5,374	5,374	12,940	299	841	888	231	1,387	231	699	13,257	68	44	0	82	0 2
		dslash_fn_on_temp_s	su3_rmd	4,018	4,018	9,453	295	977	1,018	285	675	282	848	10,000	80	23	0	L62	0 1
	0x11B30	imp_gauge_force	su3_rmd	3,621	3,621	3,540	1,418	2,171	2,224	1,843	725	1,820	1,753	5,067	377	621	7	30	1 3
		<pre>> eo_fermion_force_3f</pre>	su3_rmd					956	1,039	345	289	316	769	8,025	2		160		
		dslash fn_on_temp_s	su2_rmd	3,753		9,441		633	755	139	462	144		10,198	64	36		10	
	0x57CD	▶ path_product	su3_rmd	1,189	1,189	513	762	980	918	1,994	838	2,024	607	702	331	146	1	0	0 2
	Limit 95%	6 🔽 Granularity Loop	¢ Proc	cess All	:	Threa	d All	\$	Module	All	¢ C	pu Tota	ı \$]					
	Experimer	nt Summary 📮 Console ස	Advanced	Profile Info)									× % [à 🚮	e (*	1	- -	∱ -
			r family - Luon	Analysis v	with Call 9	Sites (Inte	I(B) PTU	1 vtsarun	/milc_oric	1/Loon-An	alvsis-wit	n-Call-Sit				-	ARITH	CYCL	ES D
	Experimer	nt Summary 📮 Console 않 • Intel(R) Core(TM) i7 processo	Advanced	Profile Info	0					1/Loop-An				K % [-			

Get Tuning Advice for the Selected Event/Ratio: Highlighting the Event Row Enables Explanation

olications Places System 🗾 😪	🖻 💿 🔳 levir	nth@levinth-n	hmb:~					😂 Intel(P	() Performa	ance Tunii	ng Utility ·	- Loop An	alysis with	n Call Site	s (2
	Intel(R) Performance Tur	ning Utility -	- Loop Analysis v	vith Call S	Sites (20	09-01-0	5-12-51-5	57) - Eclij	pse Platfo	orm					
dit <u>N</u> avigate <u>P</u> roject <u>R</u> un <u>W</u> in	ndow <u>H</u> elp														
┇ ॾ॓ │ृ♀╴ ़													E		
ning Navigator 🕱 🛛 🗖	Basic Sampling (2009-01-05	5-12-08-21)	📑 Basic Samplir	ng (2009-0	1-01-11-4	19-19)	Loop A	analysis wi	th Call Site	s (2009-0	1-05-12-	51-57) 🛙			-
□ 🔄 マ	Function	RVA	Module	CP 🔻	CPU	INST	UOPS	UOPS	UOPS	MEM	RAT	RES	MEM	UOP	RE
	▶ compute_gen_staple	0x376A	su3_rmd	32,722	32,722	35,237	16,111	14,930	18,352	10,787	19,912	20,074	23,366	38,044	1,:
- Basic Sampling (2009-01-01-:	<unknown(s)></unknown(s)>	0x0	vmlinux-2.6.1	32,309	25,071	3,485	467,123	368,591	598,992	91,156	324	598	417	9,120	1
1 3 .	▶ path_product	0x56BE	su3_rmd	26,927	26,927	30,323	12,888	20,264	8,690	13,485	15,118	15,902	24,046	31,383	2,
	▶ u_shift_hw_fermion_pp	0x15150	su3_rmd	20,824	20,824	26,474	10,505	11,551	11,110	12,587	13,139	12,267	16,609	27,882	
Loop Analysis with Call Sites (▶ add_3f_force_to_mo	0x14842	su3_rmd	15,914	15,914	28,241	3,675	6,980	5,761	1,903	5,006	1,804	5,009	36,479	4,
	▷ dslash_fn_on_temp_s	0xC044	su3_rmd	8,415	8,415	20,048	793	2,547	2,136	509	1,838	1,983	721	22,081	
	▶ u_shift_hw_fermion_np	0x16A4E	su3_rmd	7,101	7,101	9,051	3,737	4,002	3,713	4,010	4,437	4,014	5,435	9,488	
	> add 3f force to mo	0x16144	su3 rmd	5 976	5 976	11 389	1 285	2 394	2 043	695	1 662	774	1 540	14 674	1
							<u> </u>								_
	Limit 95% 🔻 Granularit	ty Function	 Process All 	-	Thread 🛛	AII - 11	 Module 	All	🔻 Срь	J Total	-				
		- (•	Thread 4		 Module 	: All	🔻 Сри	J Total	•				_
E	Limit 95% 💌 Granularit	- (Thread 4		✓ Module	e: [All	▼ Cpu	J Total	•				_
E	Experiment Summary Console	e 🔀 Advance	ed Profile Info 🔀		Thread 4		✓ Module	e: All	🔻 Сри	J Total	•				
E		e 🔀 Advance	ed Profile Info 🔀		Thread 4		✓ Module	:: All	- Сри	니 (Total	•				
E	Experiment Summary Console	e 🔀 Advance	ed Profile Info 🔀			Issue	▼ Module	e: [All	▼ Cpu	J Total	-			Exp	
E	Experiment Summary Console	e 🖸 Advance	ed Profile Info X uff4.c Samp	iles	Events	Issue	✓ Module ction = 0.1 ^a	L	▼ Cpu	J Total			(Exp	
E	Experiment Summary Console	e 🖸 Advance	ed Profile Info & uff4.c Samp 32,	iles 722 65,444	Events 4,000,000	Issue Hot Fund		919					(Exp	
E	Experiment Summary Console Function : compute_gen_stag Event CPU_CLK_UNHALTED.THREAT INST_RETIRED.ANY	e <mark>∑</mark> Advance ple - quark_str	uff4.c Samp 32, 35,	iles 722 65,444 237 70,474	Events 4,000,000	lssue Hot Fund Clocks p	ction = 0.1	919 tions Retire	2d - CPI = 0				<	Exp	
E	Experiment Summary Console Function : compute_gen_stag Event CPU_CLK_UNHALTED.THREAT INST_RETIRED.ANY UOPS_EXECUTED.CORE_STA	Ple - quark_str	uff4.c Samp 32, 35,: 16,:	lles 722 65,444 237 70,474 111 32,222	Events 4,000,000 4,000,000	Issue Hot Fund Clocks J Executio	ction = 0.1 per Instruct on Stall Cyr	919 tions Retire cles = 0.49	ed - CPI = 0				C	Exp	
	Experiment Summary Console Function : compute_gen_stag Event CPU_CLK_UNHALTED.THREAT INST_RETIRED.ANY UOPS_EXECUTED.CORE_STA UOPS_RETIRED.STALL_CYCL	D ALL_CYCLES	ad Profile Info 83 uff4.c Samp 32, 35,: 16,: 14,:	ules 722 65,444 237 70,474 111 32,222 930 29,860	Events 4,000,000 4,000,000 2,000,000	Issue Hot Fund Clocks g Execution Retirem	ction = 0.1 per Instruct on Stall Cyr ent Stall Cy	919 tions Retire cles = 0.49	ed - CPI = 0				<	Exp	
	Experiment Summary Console Function : compute_gen_star Event CPU_CLK_UNHALTED.THREAT INST_RETIRED.ANY UOPS_RETIRED.STALL_CYCL RESOURCE_STALLS RS_FULL	ple - quark_str ple - quark_str D ALL_CYCLES .ES	2d Profile Info 23 uff4.c 32, 35, 16, 14, 20,0	lles 722 65,444 237 70,474 111 32,222 930 29,860 074 40,141	Events 4,000,000 4,000,000 2,000,000 0,000,000	Execution Retirem	ction = 0.1 per Instruct on Stall Cy ent Stall Cy = 0.6135	919 tions Retire cles = 0.49 ycles = 0.4	ed - CPI = 0 924 1563	0.9286	•		<	Exp	
E	Experiment Summary Console Function : compute_gen_stag Event CPU_CLK_UNHALTED.THREAT INST_RETIRED.ANY UOPS_EXECUTED.CORE_STA UOPS_RETIRED.STALL_CYCL	ple - quark_str ple - quark_str D ALL_CYCLES .ES	ad Profile Info 83 uff4.c Samp 32, 35,: 16,: 14,:	lles 722 65,444 237 70,474 111 32,222 930 29,860 074 40,141	Events 4,000,000 4,000,000 2,000,000 0,000,000	Execution Retirem	ction = 0.1 per Instruct on Stall Cyr ent Stall Cy	919 tions Retire cles = 0.49 ycles = 0.4	ed - CPI = 0 924 1563	0.9286	•		(Exp	
	Experiment Summary Console Function : compute_gen_star Event CPU_CLK_UNHALTED.THREAT INST_RETIRED.ANY UOPS_RETIRED.STALL_CYCL RESOURCE_STALLS RS_FULL	ple - quark_str ple - quark_str D ALL_CYCLES .ES - CAL_DRAM	2d Profile Info 23 uff4.c 32, 35, 16, 14, 20,0	eles 722 65,444 237 70,474 111 32,222 930 29,866 074 40,144 366 23	Events 4,000,000 4,000,000 2,000,000 0,000,000 8,000,000 3,660,000	E Issue Hot Fund Clocks J Executio Retirem RS Full = LLC Ioa	ction = 0.1 per Instruct on Stall Cy ent Stall Cy = 0.6135	919 tions Retire cles = 0.49 ycles = 0.4	ed - CPI = 0 924 1563	0.9286	•		<	Exp	
E	Experiment Summary Console Function : compute_gen_stap Event CPU_CLK_UNHALTED.THREAT INST_RETIRED.ANY UOPS_EXECUTED.CORE_STAT UOPS_RETIRED.STALL_CYCL RESOURCE_STALLS.RS_FULL MEM_UNCORE_RETIRED.LOC	ple - quark_str ple - quark_str D ALL_CYCLES .ES - CAL_DRAM	ed Profile Info 8 uff4.c Samp 32, 35, 16, 14, 20, 23,	eles 722 65,444 237 70,474 111 32,222 930 29,866 074 40,144 366 23	Events 4,000,000 4,000,000 2,000,000 0,000,000 8,000,000 3,660,000	E Issue Hot Fund Clocks J Executio Retirem RS Full = LLC Ioa	ction = 0.1 per Instruct on Stall Cyr ent Stall Cy = 0.6135 d driven m	919 tions Retire cles = 0.49 ycles = 0.4	ed - CPI = 0 924 1563	0.9286	•		<	Exp	
E	Experiment Summary Console Function : compute_gen_stap Event CPU_CLK_UNHALTED.THREAT INST_RETIRED.ANY UOPS_EXECUTED.CORE_STAT UOPS_RETIRED.STALL_CYCL RESOURCE_STALLS.RS_FULL MEM_UNCORE_RETIRED.LOC	ple - quark_str ple - quark_str D ALL_CYCLES .ES - CAL_DRAM ISS	ed Profile Info 8 uff4.c Samp 32, 35, 16, 14, 20, 23, 10,	lles 722 65,444 237 70,474 111 32,222 2930 29,866 074 40,144 366 23 787 10	Events 4,000,000 4,000,000 2,000,000 0,000,000 3,660,000 7,870,000	Issue Hot Fund Clocks J Executio Retirem RS Full = LLC load	ction = 0.1 per Instruct on Stall Cyr ent Stall Cy = 0.6135 d driven m	919 tions Retire cles = 0.49 ycles = 0.4 isses - 10cc isses = 0.3	ed - CPI = 0 324 1563 al dram = 1 3297	0.9286			<	Exp	
E	Experiment Summary Console Function : compute_gen_stap Event CPU_CLK_UNHALTED.THREAT INST_RETIRED.ANY UOPS_EXECUTED.CORE_STAT UOPS_RETIRED.STALL_CYCL RESOURCE_STALLS.RS_FULL MEM_UNCORE_RETIRED.LLC_MI RAT_STALLS.ROB_READ_POP	ple - quark_str ple - quark_str D ALL_CYCLES .ES - CAL_DRAM ISS	ed Profile Info 8 uff4.c Samp 32, 35, 16, 14, 20, 23, 10, 19,	les 722 65.44 237 70.474 111 32.222 330 29.861 074 40.144 366 233 787 10 912 39.824	Events 4,000,000 2,000,000 0,000,000 8,000,000 3,660,000 7,870,000	l Issue Hot Func Clocks p Execution Retirem RS Full = LLC Ioao LLC Ioao Rob rea	ction = 0.1 per Instruct on Stall Cy ent Stall Cy = 0.6135 d driven m d driven m d driven m	919 tions Retire cles = 0.49 ycles = 0.49 isses - 10cc isses = 0.3 Cycles =	ed - CPI = 0 324 1563 al dram = 1 3297	0.9286			(Exp	
	Experiment Summary Console Function : compute_gen_stap Event CPU_CLK_UNHALTED.THREAT INST_RETIRED.ANY UOPS_EXECUTED.CORE_STAT UOPS_RETIRED.STALL_CYCL RESOURCE_STALLS.RS_FULL MEM_UNCORE_RETIRED.LLC_MI	ple - quark_str ple - quark_str D ALL_CYCLES .ES - CAL_DRAM ISS	ed Profile Info 8 uff4.c Samp 32, 35, 16, 14, 20, 23, 10, 19,	les 722 65.44 237 70.474 111 32.222 330 29.861 074 40.144 366 233 787 10 912 39.824	Events 4,000,000 2,000,000 0,000,000 8,000,000 3,660,000 7,870,000	l Issue Hot Func Clocks p Execution Retirem RS Full = LLC Ioao LLC Ioao Rob rea	ction = 0.1 per Instruct on Stall Cy ent Stall Cy = 0.6135 d driven mi d driven mi	919 tions Retire cles = 0.49 ycles = 0.49 isses - 10cc isses = 0.3 Cycles =	ed - CPI = 0 324 1563 al dram = 1 3297	0.9286			(÷ Exp	
	Experiment Summary Console Function : compute_gen_stap Event CPU_CLK_UNHALTED.THREAT INST_RETIRED.ANY UOPS_EXECUTED.CORE_STAT UOPS_RETIRED.STALL_CYCL RESOURCE_STALLS.RS_FULL MEM_UNCORE_RETIRED.LLC_MI RAT_STALLS.ROB_READ_POP	ple - quark_str ple - quark_str D ALL_CYCLES .ES - CAL_DRAM ISS	ed Profile Info 8 uff4.c Samp 32, 35, 16, 14, 20, 23, 10, 19,	les 722 65.44 237 70.474 111 32.222 330 29.861 074 40.144 366 233 787 10 912 39.824	Events 4,000,000 2,000,000 0,000,000 8,000,000 3,660,000 7,870,000	l Issue Hot Func Clocks p Execution Retirem RS Full = LLC Ioao LLC Ioao Rob rea	ction = 0.1 per Instruct on Stall Cy ent Stall Cy = 0.6135 d driven m d driven m d driven m	919 tions Retire cles = 0.49 ycles = 0.49 isses - 10cc isses = 0.3 Cycles =	ed - CPI = 0 324 1563 al dram = 1 3297	0.9286			(lain

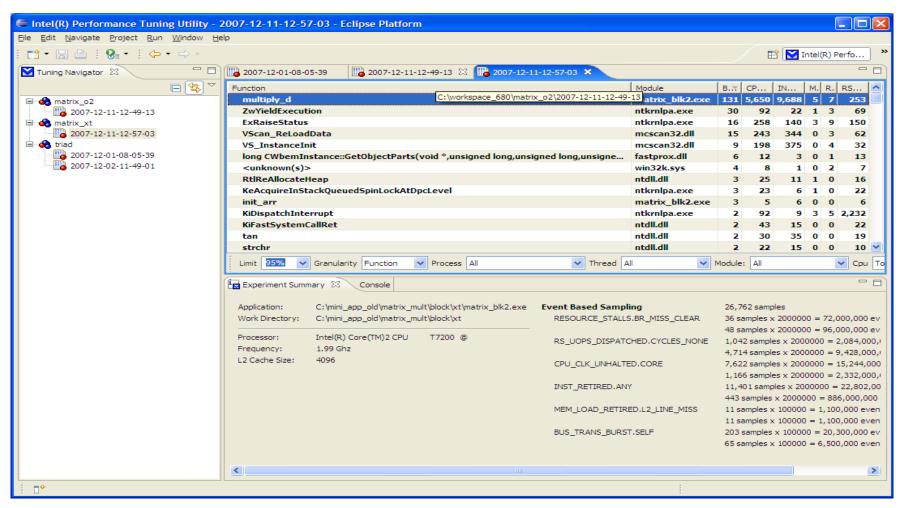
Get Tuning Advice for the Selected Event/Ratio: Highlighting the Event Row Enables Explanation

Applications Places System 🗾 🎈		evinth@levinth-nhmb:~	Inte	el(R) Perform	ance Tunir	ng Utility ·	Loop Ana	alysis with	n Call Site	es (200
	Intel(R) Performance	Explain	→ E	clipse Platf	orm				(
<u>E</u> dit <u>N</u> avigate <u>P</u> roject <u>R</u> un <u>W</u> in	idow <u>H</u> elp	Long latency loads can dominate the performance of an application.								
- 🖫 💩 🚱 - 🗇 - ↔		Reducing the effective latency can be accomplished by a variety of						F		;
• [] [] [] [] [] [] [] [] [] [] [] [] []		techniques including data blocking, to keep cachelines closer to the core (in								
Tuning Navigator 🕱 🛛 🗖 🗍	Basic Sampling (2009-0)	cache), changing data layout or access patterns, to enhance hardware prefetching efficiency and explicit software prefetch instruction usage. The	s	with Call Site	s (2009-0	1-05-12-	51-57) 🛙			- 6
□ 🔄 🔻	Function	number of posibilities is almost limitless. What follows is a short discussion of		UOPS	MEM	RAT	RES	MEM	UOP	RE
	Compute_gen_staple	a few more common issues. Nested loops: HW prefetching is driven by the			10,787					
🔒 milc		access pattern of the inner loop for the most part. If there are address	ΙĔ							
\mu Basic Sampling (2009-01-01-:	<unknown(s)></unknown(s)>	discontinuities at the termination of the inner loop, (large strides induced by changes in outer loop index) then long latency loads are likely at the change.		91 598,992	-		598		9,120	
Basic Sampling (2009-01-05-:	<pre>> path_product</pre>	This is perhaps most easily solved by using SW prefetches executing several			13,485					
Loop Analysis with Call Sites (▶ u_shift_hw_fermion_p	outer loop index values ahead. If inner and outer loop indexes going in			12,587					
Loop Analysis with Call Sites (add_3f_force_to_mo.	opposite directions this can cause this discontinuities even when the entire			1,903			-		
	dslash_fn_on_temp_s	address space is being accessed. Simply reversing the direction of one of	5	47 2,136			1,983	721	22,081	1
	u_shift_hw_fermion_r	the loops is usually the simplest solution. Indiretly accessed data: Consider an access of Data[address[loop index]] address is accessed sequentially	Þ	02 3,713	4,010	4,437	4,014	5,435	9,488	1
	badd 3f force to mo	and will be effctively prefetched by the HW prefetcher. Data will not. By far	3	94 2 043	695	1 662	774	1 540	14 674	14
		the simplest solution is to us SW prefetches, but the prefetch distance (as								
	Limit 95% 🔻 Granu	defined by the value of loop_index_pref is set to loop_index + pref_distance)		▼ Cp	u Total	-				
	Experiment Summary Con	is dependent on the latency and the time per iteration of the loop (after correcting for the latency) approximately pref_dist is set to latency/								- 6
le l		ideal cycles per iteration. If the ideal cycles/iteration is very small there								
	Function : compute gen	may be little that can be gained as the Reservation Station will be able to do								
		the prefetching by itself. For example a simple gather loop does not improve	LE							
	Event	when SW prefetches are added. Further in such cases it is important to							Exp	ain
	CPU_CLK_UNHALTED.TH	organize the data so that the fewest number of cachelines and thus SW prefetches are needed. Arrays of large structures: Looping over arrays of Jarge structures, while using only a fraction of the structure components can								
	INST RETIRED ANY	large structures, while using only a fraction of the structure components can		tired - CPI = I	9286					
	UOPS_EXECUTED.CORE	result in discontinuous strides which defeat the HW prefetchers. In such		0.4924						
		cases not only will the HW prefetchers not prefetch the desired cachelines								
	UOPS_RETIRED.STALL_C	but they can pollute the caches by prefetching unused cachelines. The use	F	0.4563						
	RESOURCE_STALLS.RS_F	of SW prefetches can over come the first issue and lower the latency. The best solution is to split the large structures into parallel structures and thus								
	MEM UNCORE RETIRED.	parallel arrays, defined by the applications use. The Array of Structure		local dram =	0.5356					
	MEM LOAD RETIRED.LLC	histographs and the event filtering canabilities in DTU were designed for		0.3297						
		exactly this purpose and are reccomended. Pointer chasing: Structure	IF	0.0207						
		access by pointer chasing (mystruc is set to mystruc->next) is a very								
	RAT_STALLS.ROB_READ_	common data access coding style. It results in assembly instructions that look like: mov register [register+const]. Thus are fairly easy to recognize	s	= 0.6085						
	UOPS_RETIRED.ANY	even when there is no source nor symbolic information. In most cases there								
		is little that can be done. Hyperthreading is usually effective for applications								
¢		whose performance is limitted by the resulting latency associated with			1					
		pointer chasing. If the linked list is stable over repeated accesses then it is								


Differences of EBS Measurments

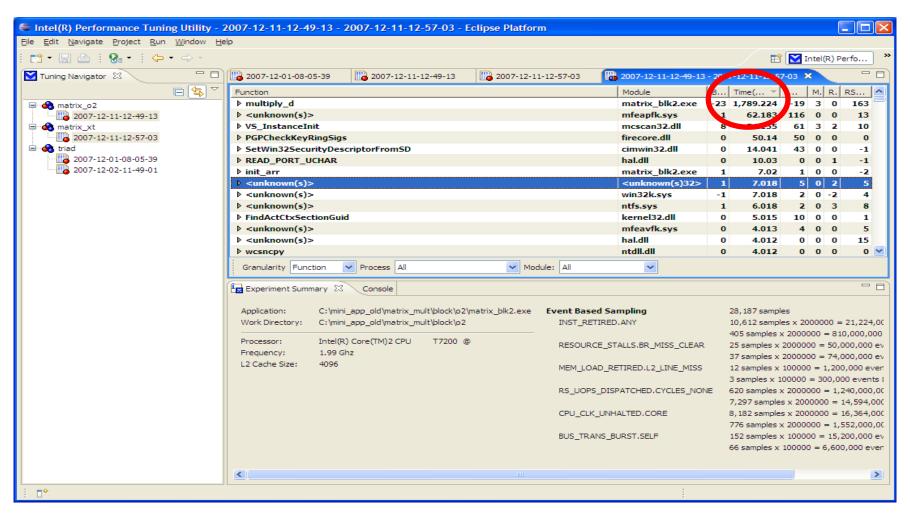
- Intel® PTU supports an analysis of differences of experiments
- This requires
 - Event names must be the ~same
 - Load Modules have the same names
 - They can be the same, with data taken on different machines
 - They can be different but built from the same source
 - Allowing differences to be analyzed down to source view
 - They can be completely different (sources and binaries)
 - PTU will compare functions with the same names for modules with the same names
- Identify compiler differences/regressions
- Multi core scaling

For perfect scaling and identical work, total event counts, summed over cores, will be equal



Data blocked 2X2 unrolled Matrix Multiply compiled at -O2 (Binary = o2\matrix_blk2.exe) Cycle_Usage Profile

Data blocked 2X2 unrolled Matrix Multiply compiled at -O3 -QxT (Binary = xt\matrix_blk2.exe) Cycle_Usage Profile



Only Significant Difference is Cycle Count Create Difference Display

- Control click to select 2 experiments
- Right click to select "Compare Experiments"

Intel(R) Performance Tuning Utility - le Edit Navigate Project Run Window H	2007-12-11-12-57-03 - Eclipse Platform				(
	ep		-	🕆 💌 Inte		erfo
Tuning Navigator ×	2007-12-01-08-05-39		-			
		1	1	[. [= [
□ 🔄 🏹	Function	Module matrix_blk2.exe	B.X CP 131 5,650			RS
□ • • • • • • • • • • • • • • • • • • •	multiply_d ZwYieldExecution	ntkrnlpa.exe	30 92	9,688 : 22 :	5 7	253 E
	ExRaiseStatus	ntkrnlpa.exe	16 258		3 9	150
2007-12-11-12 57 02	VC-1n_ReLoadData	mcscan32.dll	15 243	344 (62
triad New	h_keloadbata	mcscan32.dll	9 198			32
2007-12-01-08 Compare Experim			6 12		0 1	13
2007-12-02-11	known(s)>	win32k.sys	4 8		0 2	7
Rename	eAllocateHeap	ntdll.dll	3 25	11		16
Delete	quireInStackQueuedSpinLockAtDpcLevel	ntkrnlpa.exe	3 23		1 0	22
Repeat	arr	matrix blk2.exe	3 5			6
Repeat Re-convert	patchInterrupt	ntkrnlpa.exe	2 92			2.232
Re-convert	stSystemCallRet	ntdll.dll	2 43	15 (22
🔊 Refresh	F5	ntdll.dll	2 30			19
	strchr	ntdll.dll	2 22			10
						_
	Limit 25% 🗸 Granularity Function 💙 Process All 💙 Thread A		Module: All			Cpu
	Experiment Summary 23 Console					
	Application: C:\mini_app_old\matrix_mult\block\o2\matrix_blk2.exe Event Based Samp	ling	28, 187 sam	ples		
	Work Directory: C:\mini_app_old\matrix_mult\block\o2 INST_RETIRED.AN	٩Y	10,612 sam	ples x 2000	0000 =	21,224,
			405 samples	s x 200000	0 = 81	0,000,00
		.S.BR_MISS_CLEAR	25 samples	x 2000000	= 50,0	000,000 e
	Frequency: 1.99 Ghz		37 samples	x 2000000	= 74,0	000,000 e
	L2 Cache Size: 4096 MEM_LOAD_RETIR	RED.L2_LINE_MISS	12 samples	x 100000 =	= 1,200	0,000 eve
			3 samples x	100000 =	300,00	00 events
	RS_UOPS_DISPAT	CHED.CYCLES_NONE	620 samples	s x 200000	0 = 1,2	240,000,0
			7,297 samp	les x 20000	000 = 1	14,594,00
	CPU_CLK_UNHALT	ED.CORE	8,182 samp	les x 20000	000 = 1	16,364,00
			776 samples			
	BUS_TRANS_BURS	ST.SELF	152 samples			
			66 samples	× 100000 =	= 6,600	0,000 eve
						>

Differences of Samples Differences in Cycles Shown in msec to Correct for Comparison of Machines at Different Frequencies

Scaling Analysis: Sort by Time and see what causes non scaling

13

Drill down by Double Click on Function to Source in difference view

It is likely to ask where to find the source file

🖶 Map Source File 🔀
Could not find the following source file:
multiply_t2i2j_blk.c
Choose file from a different location:
C:\mini_app_old\matrix_mult\block\multiply_t2i2j_blk.c
Add directory to the project search directories list
Never show this dialog for this project again (show assembly only instead)
OK Assembly Only Cancel

Same Source can Display Difference per Source Line

Intel(R) Performance Tuning Utility -	multiply_t2i2j_blk.c - Eclipse Platform	
<u> E</u> dit <u>N</u> avigate <u>P</u> roject <u>R</u> un <u>W</u> indow <u>H</u>	dp	
📸 • 🔚 👜 🕴 🥵 • 🕴 🗇 • 🔿 •	🖹 🔀 Intel(R) Perfo]
Tuning Navigator 🛛 🗖 🗖	2007-12-01-08-05-39 2007-12-11-12-49-13 2007-12-11-12-57-03 2007-12-11-12-49-1 📑 multiply_t2/2j_blk.c ×	' 6
□ 🔄 🏹	Source Assembly (1st exp.) Assembly (2nd exp.) 📰 🗮 🥻 🌤 🆘 🌺 🤰 👔 Event of Interest: BUS_TRANS_BURST.SELF 💌	
2007-12-11-12-49-13	L., Source B.,, Tim.,, INS.,, M., R.,, RS.,,	^
2007-12-11-12-57-03	7 int i,j,k,ii,jj,numi,numj; 8 int i2,j2,numi2,numj2;	
in 💫 triad 2007-12-01-08-05-39	9 double temp:	
2007-12-02-11-49-01	10 //transpose b 11 for(i=0;i <num;i++) td="" {<=""><td></td></num;i++)>	
	12 for(k=0;k <num;k++) 10<="" 4="" 5="" td="" {=""><td></td></num;k++)>	
	13 T[i][k] = b[k][i]; -1 -15 1 -11	
	14 }	
	15 }	
	16 numi = 256; 17 numj = 16;	
	17 numj = 16; 18	
	19 for(ii = 0; ii <num; ii+="numi){</td"><td></td></num;>	
	20 for(jj = 0; jj <num; jj+="numj){</td"><td></td></num;>	
	21	
	22 for(i=ii; i <ii+numi-1; i+="2)" td="" {<=""><td></td></ii+numi-1;>	
	23 for(j=jj; j <jj+numj-1; -4="" 1<="" j+3="" td=""><td></td></jj+numj-1;>	
	24 for(k=0; k <num; -5="" 134="" 153="" 23<="" k++)="" td="" {=""><td></td></num;>	
	25 c[i][j] = c[i][j] 3 241 -490 1 1 46	
	26 c[i+1][j] = c[i+117 546 362 2 36	
	27	
	28 c[i][j+1] = c[i][5 516 155 -1 29	
	29 c[i+1][j+1] = c[i2 364 -199 -1 29	
	30	
	31	
	32 }	~
	Total Selected:	
	Experiment Summary 🕱 Console	1
□∻		

Shift Right click to Highlight a Region and Display Subtotal at the Bottom

▼ Tring Havigator Zi ■ 2007-12-01-08-05-39 ■ 2007-12-11-12-49-13 ■ 2007-12-01-49-13 ■ 2007-12-01-49-13 ■ 2007-12-01-49-13 ■ 2007-12-01-49-13 ■ 2007-12-01-49-13 ■ 2007-12-01-49-13 <t< th=""><th>Intel(R) Performance Tuning Utility -</th><th>multiply_t2i2j_blk.c - Eclipse Platform</th><th></th></t<>	Intel(R) Performance Tuning Utility -	multiply_t2i2j_blk.c - Eclipse Platform	
Turing Havigator ⊠ 2007-12011-08-05-39 2007-12011-12-57-03 2007-12011-12-49-1 Image: multiply_toxy_toxy_toxy_toxy_toxy_toxy_toxy_tox	<u>File Edit N</u> avigate <u>P</u> roject <u>R</u> un <u>W</u> indow <u>H</u>	elp	
Image: Source Image: Source<	📬 • 🔚 📥 🚱 • 🗇 • 🔿 •	en e	Intel(R) Perfo
■ metrix.02 ■ metrix.02 ■ metrix.01 ■ metrix.02		🔀 2007-12-01-08-05-39 🛛 🔀 2007-12-11-12-49-13 🔹 2007-12-11-12-57-03 🖓 2007-12-11-12-49-1 🚺 multiply_t222j	blk.c 🗙 🖳 🗖
image: provide state in the state in th	□ □	Source Assembly (1st exp.) Assembly (2nd exp.)	~
• max v.t • max v.t • max v.t • max v.t • max v.t • max v.t • max v.t • max v.t • max v.t • max v.t • max v.t • max v.t • max v.t • max v.t • max v.t • max v.t • for(i=0):(NUM: i++) (• 10 // Construction v.t • 0 // Construction v.t • 0 // Construction v.t • 0 // Construction v.t	matrix_o2		~
<pre>7 int i, j, k, ii, jj, numi, numj; 8 int i, j, k, ii, jj, numi, numj; 9 double temp; 10 //transpose b 11 for(i=0; i(NUM; i++) { 4 5 4 10 12 for(k=0; k<num; 10<br="" 4="" 5="" k++)="" {="">13 T(i][k] = b(k][i]; 1 -15 1 1 -11 14 } 15 } 16 numi = 256; 17 numj = 16; 18 for(i = 0; ii(NUM; ii+=num) { 4 0 1 1 -11 19 for(ii = 0; ii(NUM; ii+=num) { 4 0 1 1 -11 19 for(ij = 0; ij(NUM; ij==num) { 4 0 1 1 -11 19 for(ij = 0; ij(NUM; ij==num) { 4 0 1 1 -11 19 for(ij = 0; ij(NUM; ij==num) { 4 0 1 1 -11 10 for(ij = 0; ij(NUM; ij==num) { 4 0 1 1 -11 10 for(ij = 0; ij(NUM; ij==num) { 4 0 1 1 -11 10 for(ij = 0; ij(NUM; ij==num) { 4 0 1 1 -11 10 for(ij = 0; ij(NUM; ij==num) { 4 0 1 1 -11 10 for(ij = 0; ij(NUM; ij==num) { 4 0 1 1 -11 10 for(ij = 0; ij(NUM; ij==num) { 4 0 1 1 -11 10 for(ij = 0; ij(NUM; ij==num) { 4 0 1 1 -16 10 for(ij = 0; ij(NUM; ij==num) { 4 0 1 1 -16 10 for(ij = 0; ij(NUM; ij==num) { 4 0 1 1 -16 10 for(ij = 0; ij(NUM; ij==num) { 4 0 1 1 -16 10 for(ij==0; ij(j)== c(ij[j] = c(ij[j] = c(ij[j] = c(ij](j] = c(ij](j] = c(ij](j] = c(ij](j] = c(ij](j] = c(ij](j] = c(ij] = c(ij](j] = c(ij] =</num;></pre>			
<pre>8 int i2, j2, numj2;</pre>			
<pre>2007-12-01-08-05-39 2007-12-02-11-49-01 9</pre>			
11 for(i=0; i <num; i++)="" td="" {<=""> 4 5 4 10 12 for(k=0; i<num; k++)="" td="" {<=""> 4 5 4 10 13 T(i][k] = b[k][i]; -1 -1 -11 14 } -1 -1 -1 15 } -1 -1 -1 14 > - -1 -1 15 > - - - - 16 numi = 256; - - - - 17 numj = 15; - - - - 18 - - - - - - 19 for(ii = 0; ii<num; ij+="numi){</td"> - - - - - 21 for(ji = 0; j) (NUM; jj+=numj){ -</num;></num;></num;>			
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2007-12-02-11-49-01	10 //transpose b	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
14 } 15 } 16 nuni = 256; 17 nunj = 16; 18		12 for(k=0;k <num;k++) 10<="" 4="" 5="" td="" {=""><td></td></num;k++)>	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
16 numi = 256; 17 numj = 16; 18 19 for(ii = 0; ii <num; ii+="numi){</td"> 20 for(jj = 0; jj(NUM; jj+=numj){ 21 22 for(j=jj; j(j+numj-1; i+=2) { 23 for(i=i:; i(i+numi-1; i+=2) { 24 for(i=0; k:NUW k++) { -5 25 c[i][j] = c[i][j] 3 241 26 c[i][j] = c[i][j] 3 241 27 </num;>			
17 nunj = 16; 18 19 for(ii = 0; ii <num; ii+="nuni){</td"> 20 for(jj = 0; jj<num; jj+="nunj){</td"> 21 </num;></num;>			
18 19 for(ii = 0; ii <num; ii+="numi){</td"> 1 20 for(jj = 0; jj<num; jj+="numj){</td"> 1 1 21 1 1 1 1 22 for(i=ii; i<ii+numi-1; i+="2)" td="" {<=""> 1 1 1 24 for(k=0; k<w1m; k+)="" td="" {<=""> -5 134 153 23 25 c[i][j] = c[i][j] 3 241 -490 1 1 46 26 c[i][j] = c[i][j] 3 241 -490 1 1 46 26 c[i][j] = c[i][j] 3 241 -490 1 1 46 27 c[i][j] = c[i][j] 3 241 -490 1 1 46 27 c[i][j] = c[i][j] 3 241 -490 1 1 46 28 c[i][j]+1] = c[i][5 516 155 -1 29 -29 -2 364 -199 -1 29 30 </w1m;></ii+numi-1;></num;></num;>			
19 for(ii = 0; ii <num; ii+="nuni){</td"> 1 1 20 for(jj = 0; jj<num; jj+="nunj){</td"> 1 1 21 for(i=ii; i<ii+nuni-1; i+="2)" td="" {<=""> 1 1 22 for(j=jj; j<jj+nunj-1; j+<="" td=""> -3 -4 1 24 for(s) k<num; k++)="" td="" {<=""> -5 134 153 2 25 c[i][j] = c[i][j]. -3 241 490 1 1 46 26 c[i][j] = c[i][j]. -3 241 490 1 1 46 26 c[i][j] = c[i][j]. -5 516 129 2 36 27 </num;></jj+nunj-1;></ii+nuni-1;></num;></num;>			
20 for(jj = 0; jj <num; jj+="numj){</td"> </num;>			
21 2 for(i=ii; i <ii+numi-1; i+="2)" td="" {<=""> </ii+numi-1;>			
22 for(i=ii; i <ii+numi-1; i+="2)" td="" {<=""> -3 -4 1 23 for(j=jj; j<jj+numj-1; j+<="" td=""> -3 -4 1 24 for(k=0; k<num; k+++)="" td="" {<=""> -5 134 153 23 25 c[i][j] = c[i][3 241 -40 1 1 26 c[i][j] = c[i][3 241 -40 1 1 26 c[i][j] = c[i][-17 546 362 2 36 27 </num;></jj+numj-1;></ii+numi-1;>			
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
25 c[i][j] = c[i][j] 3 241 -490 1 1 46 26 c[i+1][j] = c[i+1 -17 546 362 2 36 27		23 for(j=jj; j <j+numj-1; -4="" 1<="" j+3="" td=""><td></td></j+numj-1;>	
26 c[i+1][j] = c[i+1 -17 546 362 2 36 27 28 c[i][j+1] = c[i][-5 516 155 -1 29 29 c[i+1][j+1] = c[i -2 364 -199 -1 29 30 31 32 3 - - - - 32 3 - - - 163 - - Experiment Summary & Console		24 for(k=0; k <num; -5="" 134="" 153="" 23<="" k++)="" td="" {=""><td></td></num;>	
27			
28 c[i][j+1] = c[i][-5 516 155 -1 29 29 c[i+1][j+1] = c[i -2 364 -199 -1 29 30 31 32 Total Selected: -26 1,801 -19 3 -1 163			
29 c[i+1][j+1] = c[i -2 364 -199 -1 29 30 31 32 3			
30 31 32 31 32 <t< td=""><td></td><td></td><td></td></t<>			
31 32 } 0			
32 } -26 1,801 -19 3 -1 163 Total Selected: -26 1,801 -19 3 -1 163			
Total Selected: -26 1,801 -19 3 -1 163 Experiment Summary & Console Console Console Console Console			
Experiment Summary & Console			<u> </u>
		Total Selected: -26 1,801 -19 3 -1 163	
		Experiment Summary X Concele	
		Console	
	: •		

Select "Assembly (1st Exp.)" Only Contributing Basic Blocks are Displayed

Intel(R) Performance Tuning Utility - r	nultiply_t2i2j_blk.c - Eclipse Platform			
Ele Edit Navigate Project Run Window He	p			
i 📬 • 🔚 👜 i 🚱 • i ⇔ • ↔ •				Thtel(R) Perfo
Tuning Navigator 🛛 🗖		2007-12-11-12-		
	Source Assembly (1st exp.) Assembly (2nd exp.)	🗄 🐼 🖇 K	😂 🔄 🚺 Event of Interest:	BUS_TRANS_BURST.SELF
🖃 😪 matrix_o2	L., Source File	B Tin 🔨	Address L., Assembly ((1st exp.)
2007-12-11-12-49-13	6 {	D 111	Block 9 multiply	
🖨 🔥 matrix_xt	<pre>0 1 7 int i,j,k,ii,jj,numi,numj;</pre>		0x1435 25 mov	ecx, DWORD PTR [esp+034h]
2007-12-11-12-57-03	8 int i2,j2,numi2,numj2;		0x1439 25 mov	DWORD PTR [esp+034h], ebp
□ 😪 triad	9 double temp;		0x1439 25 mov	esi, ebp
2007-12-01-08-05-39	• · ·		0x143E 25 mov	DWORD PTR [esp+04h], eax
2007-12-02-11-49-01				esi, 0x6h
	11 for(i=0;i <num;i++) td="" {<=""><td>4</td><td>0x1443 25 shl 0x1446 25 add</td><td></td></num;i++)>	4	0x1443 25 shl 0x1446 25 add	
	12 for(k=0;k <num;k++) {<br="">13 T[i][k] = b[k][i]:</num;k++)>			esi, ebp
		-1	0x1448 25 mov	DWORD PTR [esp], edx
	14 }		0x144B 25 shl	esi, 0x7h
	15 }		0x144E 25 lea	ecx, DWORD PTR [ecx+esi]
	16 numi = 256;		0x1451 25 add	esi, DWORD PTR [esp+02ch]
	17 numj = 16;	≡	0x1455 25 mov	DWORD PTR [esp+0ch], ecx
	18		0x1459 25 mov	ebp, ecx
	<pre>19 for(ii = 0; ii<num; ii+="numi){</pre"></num;></pre>		0x145B 25 mov	ecx, edi
	<pre>20 for(jj = 0; jj<num; jj+="numj){</pre"></num;></pre>		0x145D 25 shl	ecx, 0x6h
	21		0x1460 25 add	ecx, edi 💳
	<pre>22 for(i=ii; i<ii+numi-1; i+="2)" pre="" {<=""></ii+numi-1;></pre>		0x1462 25 shl	ecx, 0x7h
	<pre>23 for(j=jj; j<jj+numj-1; j+<="" pre=""></jj+numj-1;></pre>		0x1465 25 add	ecx, DWORD PTR [esp+038h]
	24 for(k=0; k <num; k++)="" td="" {<=""><td>-5</td><td>0x1469 25 mov</td><td>DWORD PTR [esp+010h], ecz</td></num;>	-5	0x1469 25 mov	DWORD PTR [esp+010h], ecz
	25 c[i][j] = c[i][j]	3	0x146D 25 mov	edx, ecx
	26 c[i+1][j] = c[i+1	-17 📃	0x146F 25 mov	ecx, edi
	27		0x1471 25 shl	ecx, 0x3h
	28 c[i][j+1] = c[i][-5	Block 10 multiply_	d+0a4h:
	29 c[i+1][j+1] = c[i	-2	0x1474 24 mov	eax, -0x400
	30		▼ Block 11 2 multiply_	d+0a9h:
	31	~	0x1479 25 fld	QWORD PTR [esi+eax*8+020 🗸
	<	>	< 1	
			5 - 2	
	Total Selected:	-26 1,80	Total Sele	cted (40 instructions):
	Experiment Summary 🖄 Console			
	The start is a but it was a start			
			1	

Select "Assembly (2nd Exp.)" Only Contributing Basic Blocks are Displayed Now for BOTH Binaries

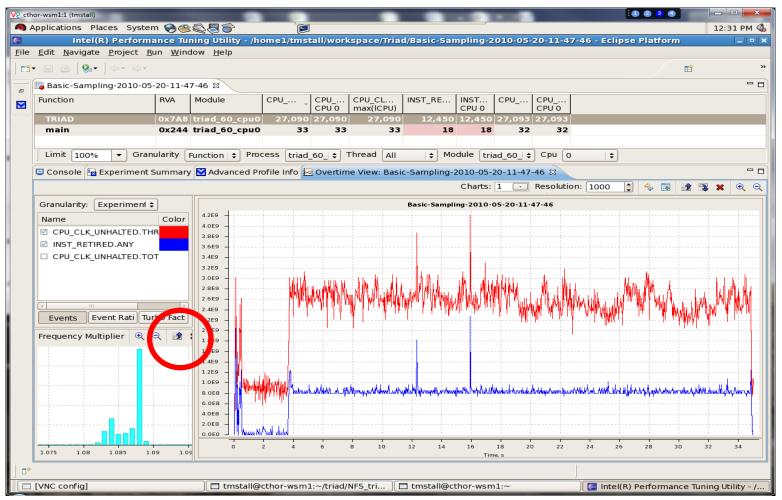
Intel(R) Performance Tuning Utility - m	ultiply t2i2i blk.c - Eclipse Platform				
Eile Edit Navigate Project Run Window Hel					
					Intel(R) Perfo
	2007-12-01-08-05-39	2007-12-11-12-	57-03	2007-12-11-12-4	9-1 📔 multiply_t2i2j_blk.c 🗙 🖓 🗆
	Source Assembly (1st exp.) Assembly (2nd exp.)	📃 💫 🍛 र	1 🗠 🗠	Event of Interest	BUS_TRANS_BURST.SELF
🖃 😪 matrix_o2	L. Source	B Tim		1 R RS	^
2007-12-11-12-49-13	22 for(i=ii; i <ii+numi-1; i+="2)" td="" {<=""><td>D 11m</td><td>1NS P</td><td>1 R RS</td><td></td></ii+numi-1;>	D 11m	1NS P	1 R RS	
matrix_xt	23 for(j=jj; j <jj+numj-1; j+<="" td=""><td>-3</td><td>-4</td><td>1</td><td></td></jj+numj-1;>	-3	-4	1	
= 4 triad	24 $for(k=0; k < NUM; k++) $	-5 134		23	
2007-12-01-08-05-39	25 c[i][j] = c[i][j]	3 241		1 1 46	
2007-12-02-11-49-01	26 $c[i+1][j] = c[i+1$	-17 546		2 36	
_	27				=
	28 c[i][j+1] = c[i][
	29 c[i+1][j+1] = c[i	-2 364	-199	-1 29	
	30				~
	Total Selected:	-26 1,801	-19	3 -1 163	
	Address L Assembly (1st exp.)	~	Address	L., Assembly	(2nd exp.)
				10 2 multiply	_d+014fh:
	0x1435 25 mov ecx, DWORD PTR [es	sp+034h]	0×	151F 25 moved	xmm3, MMWORD PTR [esi]
	0x1439 25 mov DWORD PTR [esp+08h	1], ebp 🛑	0×	1523 26 movsd	xmm2, MMWORD PTR [esi+02
	0x143D 25 mov esi, ebp		0×	1528 28 movsd	xmm1, MMWORD PTR [esi+08]
	0x143F 25 mov DWORD PTR [esp+04h	n], eax		(1530 29 movsd	xmm0, MMWORD PTR [esi+02
	0x1443 25 shl esi, 0x6h			1538 29 mov	edx, -0x400
	0x1446 25 add esi, ebp			11 2 multiply	-
	0x1448 25 mov DWORD PTR [esp], e	edx		(153D 25 movsd	xmm4, MMWORD PTR [edi+ed
	0x144B 25 shl esi, 0x7h			(1546 25 mulsd	xmm4, MMWORD PTR [ebx+ed
	0x144E 25 lea ecx, DWORD PTR [ec	-		(154F 25 addsd	xmm3, xmm4
	0x1451 25 add esi, DWORD PTR [es			1553 25 movsd	MMWORD PTR [esi], xmm3
	0x1455 25 mov DWORD PTR [esp+0ch	n], ecx		1557 26 moved	xmm5, MMWORD PTR [edi+ed
	0x1459 25 mov ebp, ecx			(1560 26 mulsd	xmm5, MMWORD PTR [ebx+ed
	0x145B 25 mov ecx, edi	>	0x	1569 26 addsd	xmm2, xmm5
	Total Selected (40 instructions):			Total Se	lected (23 instructions):
	Experiment Summary 🕴 Console				
				~ ŀ	
				1	

Export Selected Source and the Contributing Basic Blocks from Both Binaries to a Single CSV Spread Sheet Instant Compiler Regression Bug Report

			ly_t2i2	j_blk.	c - Ecli	pse Pla	tforn	n									-	
3 - IBI d	- 	← → → →														🕆 🔀 Inte	l(R) Per	rfo
2007-12-01	1-08-05-39	2007-12-11-12-49-13		2007-12	2-11-12-	57-03		2007-	12-11	-12-49-13 - 2007	7-12-	11-12-57-03	multiply t2i2i b	k.c ×				
Interf(d) Performance Tuning Utility - multiply_f2/2 blk.c + Eclipse Platform Edit Hangels Project Run Window Heb Image: Project Run Window Heb </td																		
<u> </u>	(ssembly (ist ex	(p.) Assembly (2nd exp.)	= = =					Lven	. 01 111	erest. [b03_ik	AND_	DOKSTISEL						
				В	Tim	INS	M	R	RS									
			-															
				-			·	_		-								
	IOT()							-		-								
								- 1		-								
				-17	540	302	2											
		c[i][j+1] = <u>c[i]</u>	[-5	516	155		-1	2	9								
9				-2	364	-199		-1	2	9								
0										Export to CSV F	ile							
1											ard							
Tabel C	-1			26	1 001	10	-			Select All								
Total Se	elected:			-20	1,601	-19	3	-1		Export selected	l sour	rce and asso	ciated basic blocks					
Bath Navigate Project Run Window Help																		
Block 9	multip	ly_d+065h:			1					▼ Block 10	2	multiply_o	d+014fh:	1	22	9	1	
0x143	35 25 mov	ecx, DWOR								0×151F	25	movsd	mmm3, MMWO		1			
0x143	39 25 mov	DWORD PTR								0x1523	26	movsd			14	7	1	
		•											•	1	7	1		
																1		
		· •															1	6
													•	-				
														-				
														-				2
														-				
0x145																		
0		• ·																
	10 25 MOV													-				
Edit Navgate Projet Run Window Help •																		
Edit Navgate Projet Run Window Help •																		
Edit Navigate Project Nam Vindow Help 9 • I • • • • • • • • • • • • • • • • •																		
Edit Navigate Project Nam Vindow Help 9 • I • • • • • • • • • • • • • • • • •																		

Measuring non parallel execution

- With turbo enabled, non parallel execution will result in a frequency boost to the core executing the serial code
- The serial functions can be identified using the filtering capability of the over time display



Single threaded execution with turbo boost enabled

	m1:1 (tmstall)				-										:1 2	3 4)
Applic	ations Places	System 🥪 🍕	<u> </u>															12:27	РМ
		rformance T		- /home	1/tmsta	all/work	(space/Tria	d/Basic-Sa	mplin	1g-201	0-05-2	20-11-4	7-46	- Eclip	se Pla	tform			_)(•
ndow M	<mark>4enu</mark> vigate <u>P</u> roj	ect <u>R</u> un <u>W</u> ii	ndow <u>H</u> elp																
3▼ 🔡	⊜ 9₌• ⇔•	<>.															E		
🔋 🖪 Ba	asic-Sampling-20	10-05-20-11-	47-46 🕱																-
Add.	I Function		Module	CP	U	CPU CPU 0	CPU_CL max(ICPU)	INST_RE	. INST CPU		PU	CPU CPU 0							
0x8	IE TRIAD		triad_60_c	pu0 2	27,089	27,089	27,089	12,45	0 12,4	150 27	7,092	27,092							
0x4	34 main		triad_60_c	pu0	33	33	33	1	8	18	31	31							
0x9	8D TRIAD		triad_60_c	pu0	1	1	1		0	0	0	C)						
0x5	3D main		triad_60_c	-	0	0			0	0	1	3							
0x7/	A8 TRIAD		triad_60_c	pu0	0	0	0		0	0	1	1							
Lin	mit 100% 🔻	Granularity	Basic Blo 🖨	Process	triad_6	50_\$	Thread All	≑ №	lodule	triad_	60_ \$	Cpu	0	•					
📮 Co	onsole 🔁 Experi	ment Summa	ry 🔀 Advance	ed Profile	e Info 🛃	Overtim	ne View: Basi	c-Sampling	-2010-	05-20-	11-47-	46 🛙							-
									Cha	rts: 1	•	Resolut	ion: 10	000	1		A R	×	Q (
Gra	nularity: Experi	ment ¢						Basic-Sa	npling-2	2010-05	5-20-11	-47-46							
Nan	me	Cc S	cale						r.										
	CPU CLK UNHALT	ED.THR	4.0E9 -																
	INST RETIRED.AN																		
	CPU CLK UNHALT		3.5E9 -																
		LD.IOI						- I											
			3.0E9 -		ti i ti i	. JANA	a kulu k a		1.6	di bishili	data	1.1	U 1		ALL ALL			111	
			2.5E9 -		- MAR	WATEN	'hai'h leh haile	A.MUWA	ola Mille	₩/WW	WW	allah	Males in	և վե	199	W.A.	Luh	MA	M.
E	Events Event F	Ratic T rbo Fa		1	P	⁶⁴ - 1-10 - 10 - 10 - 10 - 10 - 10 - 10 -		haile - h - fa d	Albert Line	din web d	t W	M. A.A	Les Ma	N WWY	'IN	74 144	WIN	M	MN
Freq	quency Multiplier	🤨 Q 🖻	X 0E9 -																
1			1.5 -																
1000																			
			1.0E9 -	Line to bill															
				Albade Alba	1 Minute	hadden a	Mangarahikanka	wythickly gewyntlyn	myfurtul	whenhe	whenthe	hittigeAward	un Werter	MALIAN	alphaaplig	philadautan	maantaa	hondlyhy/\	in the
			5.0E8 -	1. T. B.															
			0.0E -	H hunne Northad	կ պորպ ։														<u>i</u> 1
0	0.2 0.4 0.6	5 0.8 1		2	4	6	8 10	12 14	16	5 18 Time,) 22	24	26	28	30) 3	2 3	84
<u></u>																			
				- 110 - 11		there is a		3 have be 1100	-							_			
1 [VINC	config]			an@ccho	n-wsm1:	~/triad/	NFS_tri		cenor-\	wsm1:				Intel(F	() Perfo	ormano	e iuni	ng util	ity

Zoom in on frequency multiplier select range and filter up

Source View Shows what is Executed

pplications	1 <mark>(levinth)</mark> Places	System 🗐 🥱 🕥	🔳 levinth	@levinth-r	nhmb:~						Intel(R) Per	ormance Tuni	ng Utility - quai	rk_stuff4.c - E	clipse Platf	orm
			Intel(R)	Perform	ance Tu	ning Utili	ty - quark	_stuff4.c	- Eclipse	Platforn	n				. (_ []
<u>E</u> dit <u>N</u> avi	gate <u>P</u> roj	iect <u>R</u> un <u>W</u> indow <u>H</u> elp														
- 8 -	8 <												E		:	
8 - 0	Rasic	Sampling (2009-01-0	Basic Sampling (2009-01-0			alysis with (all Sit	🗊 nath	_product.c	Rra	nch_Analysis (2009-01-	🗐 guark stuff4.c X 🧧		
												Terr_Analysis (2005 01			
= [≌)	Source Assembly Control Graph 🔠 🗏 🍄 🍄 🥸 1 Event of Interest: CPU_CLK_UNHALTED.THREAD															
milc	Line Source		CPU_C		NST	BR_I	CPU_C	Addre	Address Line Assembly				CPU_C	INST	BR_	
Basic S	1939	FORALLSITES (i, s)		88	79	766	88	0)x1541B	1945 add	r13	, r dx		45	160	
Basic S	1940	mult_su3_mat_hwvec_fo	r_inline	4,505	12,886	2,661	4,505	C	x1541E	1945 lea	r12	QWORD PTR	r10+r8]			
Branch	1941	}								1945 xor	r14	d,r14d				
📙 Loop A		else /* backward shift	*/						ck 12					11,974	5,896	= I
	1943	(1945 mov		kmm6,xmm5		75	43	
	1944 1945	FORALLSITES(i,s) mult_adj_su3_mat_hwve	0/5/0->1	50	177	502 2,932	50			1945 mov 1945 mov	A	xmm8,xmm4		39	148	
	1945	Muit_adj_sus_mat_nwve	C(&(S*>1	14,277	13,301	2,932	14,277			1945 mov	-	xnm2				
	1940	,								1945 mov	· ·	cmin-		69	86	
	1948	if(*mtag == NULL)								1945 mov		nm7, DWOR	R [r14+r13]	35	156	-
							Þ				11					
	1	lotal Selected:	:	14,277 13,301 2,932 14,277 3 Total Selected (1 instruction):							75	43	1,2			
	25	Block 26 Block 27		Block 1 Line 194		Block 11 Line 1945 Block 18 Line 195		ock 12 2 1945 ock 19	Block Line 19	945 L	Block 14 Line 1945 Block 40	Block 54	Block	5 Bloc		
• • • • • • • • • • • • • • • • • • •	Experim	ent Summary Console 💟 Adv	anced Profile Info	12]			- 6

Cmp in Blk 15 Controls Loop, Comparing R8 and R11. R8 increments by 48 (30H)

V2 levinth-nhmb:1	(levinth)				
🧠 Applications	Places System 🗾 🥱 🚫	🔲 levinth@levinth-nhmb:~		📄 Intel(R) Performance Tuning Utility - quark_	stuff4.c - Eclipse Platform
e		Intel(R) Performance Tu	ning Utility - quark_stu	uff4.c - Eclipse Platform	
<u>File Edit Navig</u>	jate <u>P</u> roject <u>R</u> un <u>W</u> indow <u>H</u> elp				
∎- 8 è	⊗ ∎▼				🗈 »
🛛 🛛 🗖	Basic Sampling (2009-01-0	Basic Sampling (2009-01-0	Loop Analysis with Call S	Sit 📄 path_product.c 📑 Branch_Analysis (2009-01] quark_stuff4.c 🕺 🦳 🗖
	Source Assembly Control Graph) 📰 🗏 ቅ 🏘 🧐 🦉 🚺	Event of Interest: CPU_CL	LK_UNHALTED.THREAD	
Basic S	Line Source	CPU_C INST	BR_I CPU_C	Address Line Assembly	CPU_C INST BR
Basic S	1940 mult_su3_mat_hwvec_fo	r_inline 4,505 12,886	2,661 4,505	0x155DE 1945 movss DWORD PTR [r14+r12+01c	91 301
	1941 }			0x155E5 1945 add r14,08h	134 518
Branch	1942 else /* backward shift	*/		0x155E9 1945 cmp r14,018h	1 1
📙 Loop A	1943 {			0x155ED 1945 jnge Block 14	1
	1944 FORALLSITES(i,s)	50 177	502 50	▼Block 15 1	48 177
	1945 mult_adj_su3_mat_hwve	c(&(s->1 14,277 13,301	2,932 14,277	0x155F3 1944 add r8,030h	10 59
	1946 }			0x155F7 1944 add rax,08h 0x155FB 1944 add rdx,0468h	37 110 1 8
	1947 1948 if(*mtag == NULL)			0x15602 1944 cmp r8,r11	1 0
	1949 *mtag = start_gather_	from tem		0x15605 1944 jnge Block 11	
	(•
	Total Selected:	50 177	502 50	Total Selected (5 instructions):	48 177 5
			Block 11 Block 1	BIOCK 53 Block 54	
		Block 15 Line 1944	Line 1945	45 Block 13 Line 1945 Block 14	Blor
			Block 1	Line 1945	Block 43
	25		Block 18 Line 1952	Block 41	
	Block 26 Block 27			Block 40	•
	•				
<	Experiment Summary Console 🔀 Adv	vanced Profile Info 🔀			- 0
2]	
* JI					

Register Values Collected with Precise Event Br_inst_retired.all_branches in Blk 11 Yield Values for R11 (14 samples)

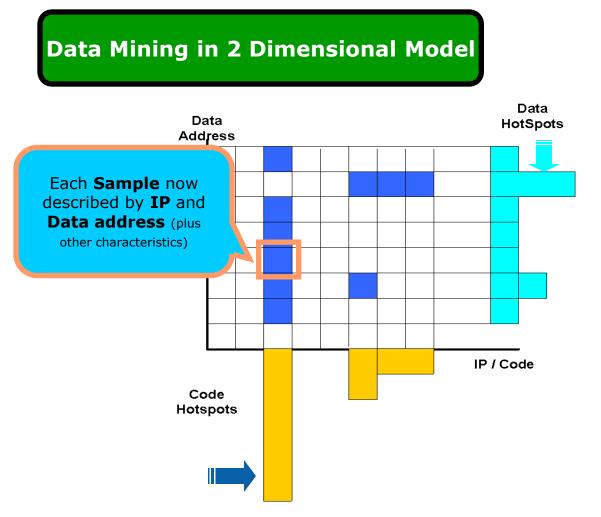
Applications	Places System 🝺 🔗 🕥	🔲 levinth@levinth-nhmb:~		🕒 Ir	tel(R) Performa	nce Tuning Utility - d	quark_stuff4.c - Eclipse Pla	atform			
		Intel(R) Performance Tu	ning Utility - o	quark_stuff4.c - Eclipse Platform							
<u>E</u> dit <u>N</u> avig	ate <u>P</u> roject <u>R</u> un <u>W</u> indow <u>H</u> elp										
- 8 8	♀ _■ ▼						E	,			
8 - 0	Basic Sampling (2009-01-0	Basic Sampling (2009-01-0	with Call Sit	ct.c Branch Analysis (2009-01 🗍 guark_stuff4.c 🕱 🧧 🕻							
	Source Assembly Control Graph 💷 🖶 🌤 🍲 🥸 I Event of Interest: CPU_CLK_UNHALTED.THREAD 🔽										
🔁 🚽	Source Assembly Control Graph		Event of Interes	t: CPO_CER_ONHALIED.THREAD	•						
Basic S	Line Source	C Address	Line Assen	nbly	CPU_C INS	ST BR_INST_RE	TIRED.ALL_BRANCHES	CPU 📤			
Basic S	1941 }	0x153E	3 1945 movsx	d r15,r15d							
	1942 else /* backward shift *	/ 0x153E	6 1945 lea	r15,QWORD PTR [r15+r15*8]							
📙 Branch	1943 {		A 1945 lea	r11,QWORD PTR [r11+r11*2]		N .					
📙 Loop A	1944 FORALLSITES (i, s)		E 1945 shl	r11,04h							
	1945 mult_adj_su3_mat_hwvec				274	555	14	4			
	1946 }		2 1945 mov	rsi,QWORD PTR [rax+rdi]	50	152	14	4			
	1947		6 1945 movss		16	6					
	1948 if(*mtag == NULL)		A 1945 movss		70	37					
	1949 *mtag = start_gather_f		F 1945 movss		1	2					
	1950 dir, EV	BNANDOD	4 1945 movss	xmm2,DWORD PTR [rsi+0ch]	41	149		•			
	Total Selected:	14,	Total	Selected (11 instructions):	274	555	14				
		BIOCK IU		(LB	BIOCK 23						
							Blo				
			Block 11 /	Block 12	E	Block 54					
		Block 15	Line 1945	Line 1945		Bloc	ck 55	Blo			
		Line 1944		Line 1045		Diot	× 330				
		~	/		lock 14 1e 1945		Block 43				
								=			
			/	Block 19		Bloc	ck 42				
			Block 18								
	25 Block 26 Block 26										
	Block 27										
	•			III				Þ			
	Experiment Summary Console 🔀 Adva	anced Profile Info 🕱						- 0			
¢											

Select the Asm Line, Right Click and Show Register Statistics

Applications	(levinth) Places System 😰 🏀 🕥	🔲 levinth@levi	inth-nhmb:~) 🖨 In	tel(R) Perfor	mance Tur	ning Utility - gua	rk stuff4.c - Eclipse	Platform		
		Intel(R) Perf	ormance Tuning	ı Utility - qua	rk_stuff4.c -	Eclipse Platform							
<u>E</u> dit <u>N</u> avig	ate <u>P</u> roject <u>R</u> un <u>W</u> indow <u>H</u> elp				_								
- 8 6	Q _≣ + ⇔ + ⇔ +									F	**		
				op Analysis with		1							
×	Basic Sampling (2009-01-0	path_product.c	t.c 📑 Branch_Analysis (2009-01										
	Source Assembly Control Graph	n 📰 🗮 🗛 😽	🧐 垫 🚺 Ever	nt of Interest:	CPU_CLK_UNH	ALTED.THREAD	•						
8 milc	Line Source	C 🔺	Address L	ine Assembly	,		CPU_C	INST	BR_INST_RETIR	RED.ALL_BRANCHES	G CPU		
Basic S	1941 }		0x153E3 1	945 novsxd	r15,r15	d							
Basic S	1942 else /* backward shift	*/	0x153E6 1	945 lea	r15,QWORD	PTR [r15+r15*8]							
📙 Branch	1943 {		0x153EA 1	945 lea	r11, QWORD	PTR [r11+r11*2]							
📑 Loop A	1944 FORALLSITES(i,s)		0x153EE 1	945 shl	r11,04h								
	1945 mult_adj_su3_mat_hwve	c(&(s->1	▼ Block 11 1				274	555			14		
	1946 }		0x153F2	ort to CSV File.	rai OMORD	PTR [rax+rdi]	50				14		
	1947		0x153F	by to Clipboard		RD PTR [rsi]	16	6					
	1948 if(*mtag == NULL)		0x153F Sele			RD PTR [rsi+04h]	70	37					
	1949 *mtag = start_gather_					RD PTR [rsi+08h]	1						
	1950 dir, F	VENANDOD	0x1540 Exp	and All	RD PTR	RD PTR [rsi+Och]	41	149					
	Total Selected:	14,		Collapse All		truction):	50	152			14 !		
			Show register										
		Ы		BIOCK 53									
			Input Methods					Block 54					
			Block 15 Block 11 Block 12 Line 1945 + Line 1945						Block 55 Bloc				
		Lin	Line 1944										
			Block 14 Line 1945 Block 43 Block 43										
					Block 19				Block 4	2			
				ock 18				Block 4	1				
	25 Block 26			- Diock +	-								
	Block 27							/			•		
											•		
	Experiment Summary Console 🔀 Ad	vanced Profile Info 🛿									- 8		
•													

Tripcount is constant (min=max=avg, rms=0) and Equals 786432/48 = 16384 Which is the 4-Dim Lattice size for this Problem

Applications	Places Syste	em 🗾 🔗 🕥	levinth@	levinth-nhmb:~			😂 Intel(R) Pe	rformance Tu	ning Utility - quar	k_stuff4.c - Eclipse P	atform
			Intel(R) Pe	erformance Tuning	Utility - quark_s	tuff4.c - Eclipse	Platform				
<u>E</u> dit <u>N</u> avig	ate <u>P</u> roject	<u>R</u> un <u>W</u> indow <u>H</u> elp									
• 8 4]	8 ∎•							_		E	,
x - D	📙 Basic Sam	npling (2009-01-0 📑 Ba	Registers Sta	ts			-	ch_Analysis	a (2009-01	quark_stuff4.c 8	
- (-	Source	Assembly Control Graph	Name	Min	Max	Average	Std. Dev				
a milc		Control Graph	rax	10112	130952	74449	42080		-		
Basic S	Line Source	ce	rbx	442533120	443450736	443066835	344925	. INST	BR_INST_RETIR	ED.ALL_BRANCHES	CPU 📤
Basic S	1941)	•	rcx	4	7	5	1				
Branch		se /* backward shift */	rdx	47519491776912	47519508815352	47519500848529	5933300				
Loop A	1943 1944	(FORALLSITES(i,s)	rsi	453042848	459092256	456269140	1786479				
Loop /		<pre>nult_adj_su3_mat_hwvec(&</pre>	rdi	442533120	443450736	443010654	287229	4 555		1	4
	1946		rbp	14073609518390	14073609518392	14073609518391	9	0 152			4
	1947		rsp	14073609518320	14073609518320	14073609518320	0	6 6			
	1948 if	(*mtag == NULL)	r8	60672	785712	446698	252480	0 37			
	1949	*mtag = start_gather_fro	r9	443057472	443450736	443226013	160002	1 2			
	1950	dir, EVEN	r10		458524272	457170075		1 149			
	Total	Selected:	r11	786432	786432	786432	0	0 152		1	
				456225552	459078528	457622725	1038897				
			r13	47519491776108	47519508814404	47519500847633	5933283				Blo
			r14	24	24	24	0	Block 5	4		
									Block 5	5	Blo
						Click outside or	press <esc> to clos</esc>	e			
							Line 1945	• -		Block 43	
						19		1	Block 4	2	
				Bloc	ck 18						
	25			Line	1952			Block 4	1		
		Block 27					Block 40				-
	•						- · · · · · · · · · · · · · · · · · · ·				Þ
	Experiment S	ummary Console 🔀 Advand	ed Profile Info	3							
	2. perment o	Advance Advance									

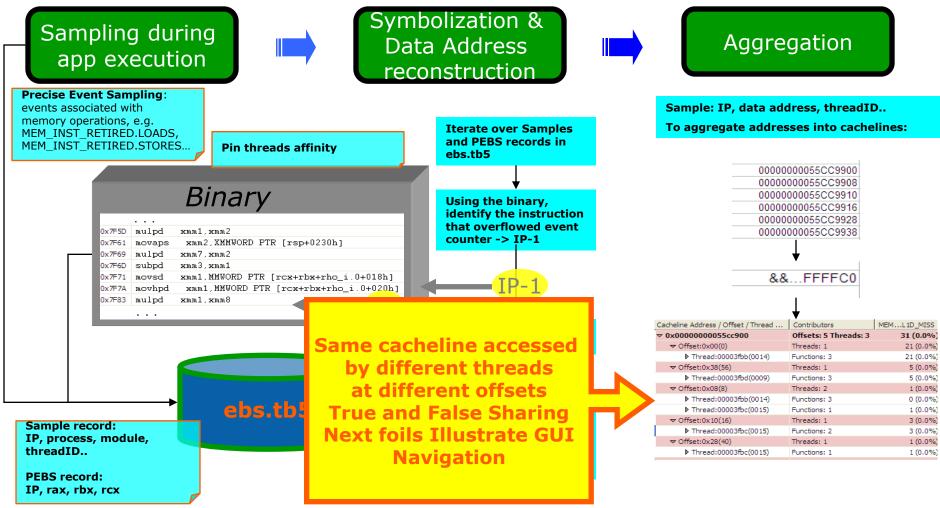


Source/Asm View Text Search Utility

nth-nhmb:1						
oplications	Places System 🗾 🔗 🕥	levinth@levinth-nhmb:~		🏮 Intel(R) Performance Tu	ning Utility - quark_stu	
		Intel(R) Performance Tu	ining Utility - quark_stuff4.	c - Eclipse Platform		_0
Edit Navig	ate <u>P</u> roject <u>R</u> un <u>W</u> indow <u>H</u> elp					
Bè	8∎ • │ <> • ⇒ •					E
3	Basic Sampling (2009-01-0	Basic Sampling (2009-01-0	Loop Analysis with Call Sit	📄 path_product.c	(2009-01	uark_stuff4.c 🕱 🗖
- (
milc	Source Assembly Control Graph		Event of Interest: CPU_CLK_UN	IHALTED.THREAD		
Basic 5	Line Source	CPU_C INST	BR Address Line	Assembly	CPU_C INST	BR_INST_RETIRED.AL
-	1941)		😂 Find 📐 🖸	ovsxd r15,r15d		
Basic S	1942 else /* backward shift	*/	Find:	ea r15,QWORD PTR [r15+r15*8]		
🔥 Branch	1943 (ea r11,QWORD PTR [r11+r11*2]		
谒 Loop A	1944 FORALLSITES (i, s)	50 177	Direction Scope	hl r11,04h		
	1945 mult_adj_su3_mat_hwve	c(&(s->1 14,277 13,301	Forward Source		274 555	
	1946 }		○ Backward ○ Assembly	ov rsi,QWORD PTR [rax+rdi]	50 152	
	1947		Options	pvss xmm5,DWORD PTR [rsi]	16 6	
	1948 if (*mtag == NULL)	5	Case Sensitive	bvss xmm4, DWORD PTR [rsi+04h]	70 37	
	1949 *mtag = start_gather_	VENANDOD	Match Whole Word	bvss xmm3,DWORD PTR [rsi+08h] bvss xmm2,DWORD PTR [rsi+0ch]	41 149	
	1950 dir, B	VENANDOD		bvss xmm2,DWORD PTR [rsi+0ch]	41 149	•
	Total Selected:	14,277 13,301	Find Next Bookmark All	otal Selected (1 instruction):	50 152	2
		BIOCK LU	Close	BIOCK 53		Blo
				Block 5	4	
		Block 15	Block 11 Block 12			/
		Line 1944	Line 1945	BIUCK 13	Block 55	Blo
			、 / L	Line 1945 Block 14		Block 43
			/	Line 1945	_	
			Block 19		Block 42	
			Block 18 Line 1952		1	
	25 Block 26			Block 4	1	
	Block 27			Block 40		t
	•					Þ
	Experiment Summary Console 🔀 Adv	anced Profile Info 없				-
	-					

Data Address Profiling and False Sharing Detection

Sorting – repositioning segments of the axes


- Applying granularity – changing scale of the axis
- Filtering projecting slices onto another dimension

Filtering by cachelines marked as "falsely-shared" isolate the causing instructions And the data objects

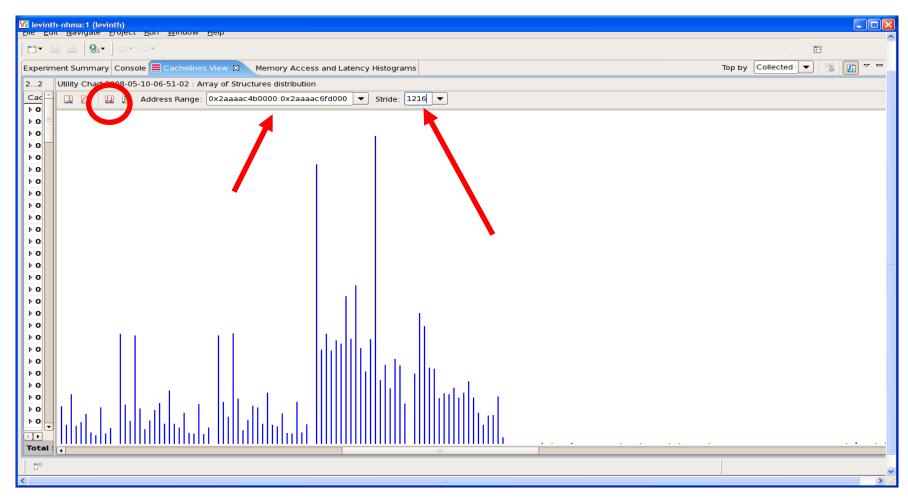
This foil is best viewed in animation mode

Data Address Profiling and False Sharing Detection

Use Cacheline Access Count to Measure Working Set Size

		20.21	00.10.01.00	2008-05-06-14-5	i3- 18 %	- 8
	8-05-06-14-53-00		1			
Function	Module	BR_INSTANCHES	_	MEM_INSLOADS	MEM_INSSTORES	
OpenMPUpdateStress	test_seismic_static_r100.ex					
OpenMPUpdateVelocity	test_seismic_static_r100.ex				518,283 (33.2%)	
<unknown(s)></unknown(s)>	vtune_drv	7,794 (1.4%)		3,136 (0.0%)	2,105 (0.1%)	
<unknown(s)></unknown(s)>	vmlinux-2.6.18-53.el5	1,508 (0.3%)	3 (3.3%)	2,683 (0.0%)	1,664 (0.1%)	
kmp_fork_call	libguide.so	129 (0.0%)	0 (0.0%)	262 (0.0%)	206 (0.0%)	
Total Selected:						
Granularity Function Process test_seismic_static_r100.ex	xe 🔻 Thread All 💌	Module All		▼ Filter by selection	on 🖹 者 🗶	
Console Experiment Summary 🗮 Cachelines View 🛛					Top by Collected	
2008-05-06-14-53-00 (2)	Utilit	a. 2008-05-06-14-53-0	0 (2) : Workir	a Set		
Cacheline Address / Offset B., B., MEM ADS MEMRES				-		
▶ 0x000000000d7ffc0 0 0 233 (0.0%) 53 (0.0%)		📕 🛄 Address Ra	ange:	Stride: 100 🔻		
▷ 0x00000000000000000000000000000000000						
▷ 0x00000000000000000000000000000000000						
▶ 0x000000000d7e080 0 0 180 (0.0%) 72 (0.0%)	Offsets: 9 Threads: 1					
 ▷ 0x000000000d7e080 ○ 0x0000000000c08fc0 ○ 0 0 205 (0.0%) ○ 38 (0.0%) 	Offsets: 9 Threads: 1 Offsets: 9 Threads: 1					
▷ 0x00000000d7e080 00. 180 (0.0%) 72 (0.0%) ▷ 0x00000000c08fc0 00. 205 (0.0%) 38 (0.0%) ▷ 0x00000000d7c140 00. 188 (0.0%) 54 (0.0%)	Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1					
 ▷ 0x000000000d7e080 ○ 0x0000000000c08fc0 ○ 0 0 205 (0.0%) ○ 38 (0.0%) 	Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1 Offsets: 9 Threads: 1					
▷ 0x00000000d7e080 00. 180 (0.0%) 72 (0.0%) ▷ 0x00000000c08fc0 00. 205 (0.0%) 38 (0.0%) ▷ 0x00000000d7c140 00. 188 (0.0%) 54 (0.0%) ▷ 0x00000000d55040 00. 181 (0.0%) 57 (0.0%)	Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1 Offsets: 9 Threads: 1 Offsets: 9 Threads: 1					
> 0x000000000d7e080 00. 180 (0.0%) 72 (0.0%) > 0x000000000c08fc0 00. 205 (0.0%) 38 (0.0%) > 0x000000000d7c140 00. 188 (0.0%) 54 (0.0%) > 0x000000000d55040 00. 181 (0.0%) 57 (0.0%) > 0x000000000c05140 00. 176 (0.0%) 58 (0.0%)	Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1 Offsets: 9 Threads: 1					
> 0x000000000d7e080 00. 180 (0.0%) 72 (0.0%) > 0x000000000c08fc0 00. 205 (0.0%) 38 (0.0%) > 0x000000000d7c140 00. 188 (0.0%) 54 (0.0%) > 0x000000000d55040 00. 181 (0.0%) 57 (0.0%) > 0x000000000c05140 00. 176 (0.0%) 58 (0.0%) > 0x000000000da9fc0 00. 192 (0.0%) 41 (0.0%)	Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1 Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1					
▷ 0x000000000d7e080 0 0 180 (0.0%) 72 (0.0%) ▷ 0x000000000c08fc0 0 0 205 (0.0%) 38 (0.0%) ▷ 0x000000000d7c140 0 0 188 (0.0%) 54 (0.0%) ▷ 0x000000000d55040 0 0 181 (0.0%) 57 (0.0%) ▷ 0x000000000c05140 0 0 176 (0.0%) 58 (0.0%) ▷ 0x000000000da9fc0 0 0 192 (0.0%) 41 (0.0%) ▷ 0x000000000c2e180 0 0 175 (0.0%) 58 (0.0%)	Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1 Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1 Offsets: 9 Threads: 1					
▷ 0x000000000d7e080 0 0 180 (0.0%) 72 (0.0%) ▷ 0x000000000c08fc0 0 0 205 (0.0%) 38 (0.0%) ▷ 0x000000000d7c140 0 0 188 (0.0%) 54 (0.0%) ▷ 0x000000000d55040 0 0 181 (0.0%) 57 (0.0%) ▷ 0x000000000c05140 0 0 176 (0.0%) 58 (0.0%) ▷ 0x000000000c2e180 0 0 175 (0.0%) 58 (0.0%) ▷ 0x000000000d2c000 0 0 187 (0.0%) 43 (0.0%)	Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1 Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1 Offsets: 9 Threads: 1 Offsets: 9 Threads: 1				40 19/1 Potes 42710/0	
▷ 0x000000000d7e080 0 0 180 (0.0%) 72 (0.0%) ▷ 0x000000000c08fc0 0 0 205 (0.0%) 38 (0.0%) ▷ 0x000000000d7c140 0 0 188 (0.0%) 54 (0.0%) ▷ 0x000000000d55040 0 0 181 (0.0%) 57 (0.0%) ▷ 0x000000000c05140 0 0 176 (0.0%) 58 (0.0%) ▷ 0x000000000c2e180 0 0 175 (0.0%) 58 (0.0%) ▷ 0x000000000d2c000 0 0 187 (0.0%) 43 (0.0%) ▷ 0x000000000cdbeco 0 0 173 (0.0%) 57 (0.0%)	Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1 Offsets: 9 Threads: 1	Mem	ory Size: 5 Mt	o 688 Kb (Cumulative:	49.1%) Refs: 43710 (C	Cumulative: 80.8%)
▷ 0x000000000d7e080 0 0 180 (0.0%) 72 (0.0%) ▷ 0x000000000c08fc0 0 0 205 (0.0%) 38 (0.0%) ▷ 0x000000000d7c140 0 0 188 (0.0%) 54 (0.0%) ▷ 0x000000000d55040 0 0 181 (0.0%) 57 (0.0%) ▷ 0x000000000c05140 0 0 176 (0.0%) 58 (0.0%) ▷ 0x000000000c2e180 0 0 175 (0.0%) 58 (0.0%) ▷ 0x000000000c2e180 0 0 187 (0.0%) 43 (0.0%) ▷ 0x000000000cdbec0 0 0 173 (0.0%) 57 (0.0%) ▷ 0x000000000cdf9380 0 0 176 (0.0%) 53 (0.0%)	Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1 Offsets: 9 Threads: 1	Mem	ory Size: 5 Mt	9 688 Kb (Cumulative:	49.1%) Refs: 43710 (C	Cumulative: 80.8%)
▷ 0x000000000d7e080 0 0 180 (0.0%) 72 (0.0%) ▷ 0x000000000c08fc0 0 0 205 (0.0%) 38 (0.0%) ▷ 0x000000000d7c140 0 0 188 (0.0%) 54 (0.0%) ▷ 0x000000000d55040 0 0 181 (0.0%) 57 (0.0%) ▷ 0x000000000c05140 0 0 176 (0.0%) 58 (0.0%) ▷ 0x000000000c2e180 0 0 175 (0.0%) 58 (0.0%) ▷ 0x000000000c2e180 0 0 187 (0.0%) 58 (0.0%) ▷ 0x000000000cdbec0 0 0 173 (0.0%) 57 (0.0%) ▷ 0x000000000cdf9380 0 0 176 (0.0%) 53 (0.0%) ▷ 0x000000000cccc4c0 0 0 166 (0.0%) 63 (0.0%)	Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1 Offsets: 9 Threads: 1	Mem	ory Size: 5 Mt	9 688 Kb (Cumulative:	49.1%) Refs: 43710 (C	Cumulative: 80.8%)
▷ 0x000000000d7e080 0 0 180 (0.0%) 72 (0.0%) ▷ 0x000000000d7c140 0 0 205 (0.0%) 38 (0.0%) ▷ 0x00000000d7c140 0 0 188 (0.0%) 54 (0.0%) ▷ 0x000000000d55040 0 0 181 (0.0%) 57 (0.0%) ▷ 0x000000000c05140 0 0 176 (0.0%) 58 (0.0%) ▷ 0x00000000c2e180 0 0 192 (0.0%) 41 (0.0%) ▷ 0x00000000c2e180 0 0 187 (0.0%) 58 (0.0%) ▷ 0x00000000c2e180 0 0 173 (0.0%) 57 (0.0%) ▷ 0x000000000c2e180 0 0 173 (0.0%) 57 (0.0%) ▷ 0x000000000c2e180 0 0 173 (0.0%) 57 (0.0%) ▷ 0x000000000cc44ec 0 0 176 (0.0%) 53 (0.0%) ▷ 0x000000000cc4c40 0 0 166 (0.0%) 63 (0.0%)	Offsets: 9 Threads: 1 Offsets: 9 Threads: 1 Offsets: 10 Threads: 1 Offsets: 9 Threads: 1	Mem	ory Size: 5 Mt	o 688 Kb (Cumulative:	49.1%) Refs: 43710 (C	Cumulative: 80.8%)

Performance comparison difference may be due to Cache Size


NEW – Exact latency / Latency - Exact latency in CPU cycles for loads collected with

- Latency events
- Intel[®] PTU offers a latency histogram
 - Can be filtered by selected hotspots
 - IP and address spreadsheets, and memory histogram can be filtered by latency region (shown below)

Function	Module	Unkce >>>	On Core	>> L	ocal LLC 🛛 😕	RC≫	Local DRAM 🛛 😕	ReAM >>	Unknown Home	Locme	Remote Home	MEM_INSTOLD_128
nain	glob-obj	0 (0.0%)	6 503 (24.	.4%)	97 (16.1%)	0 (N/A)	139 (16.1%)	0 (N/A)	0 (N/A	0 (0.0%)	6 7394.0%)	6 739 (23.9%)
fotal Selected:												
Granularity Func	tion 🔽 Pro	cess glob-obj		~	Thread All	~	Module All		Filter by sel	ection 📑	3 🗙	
Memory Access	and Latency H	istograms 🗙								Memory Acce	ess Bin Size: 64 k	(byte 🔽 🔍 🔍 🗖
ob-obj-nhm-lat Description	Value											
Low VA displayed High VA displayed Max Reference Number of bins							<u> </u>					
Sin Size Filter Cow VA displayed High VA displayed Number of bins	64 Kb 0xDA0000 0x1910000 124		101 cm 1 cd		di selimiten i			Latency: 231 cy	cles References: ;			
in Size iiter ow VA displayed ligh VA displayed lumber of bins	64 Kb 0xDA0000 0x1910000 124		Console Tu	uning Nav	vigator		11	atency: 231 cy	des References: 1		IS Sliected Data Refs	• • • • • • • • • • • • • • • • • • •
iin Size iilter ow VA displayed tigh VA displayed jumber of bins periment Summar ob-obj-nhm-lat	64 Kb 0xDA0000 0x1910000 124 y Cachelin	nes View 🛛								Top by Cc		
In Size Filter ow VA displayed righ VA displayed Number of bins	64 Kb 0xDA0000 0x1910000 124 y Cachelin Size (bytes)		@Line U.	e »	On Core >>	LC >	11	» RM»	Une Locn	Top by Co	Illected Data Refs	RETIRETHRESHOLD_128 3 851 (13.7%

Array of Structures (address-base)% struct_size Most structure elements never accessed

Filtering to a Single Thread Displays the Data Decomposition

ning Navigator 🛿 🗖 🗖										Ê	
	2008-04-28-11	-08-58	8-11-09-36		11-08-58 ((2) 🕱					- 0
□ 🔄 🎽	Function	Module					RemRAM >>		MEM_UHITM		
cg		gather_fma16_omp							2,368 (98.2%)		
gather_numa	<unknown(s)></unknown(s)>	vmlinux-2.6.18-53.el	5 O (N/A) O (N/	A) O (N/A)	0 (N/A)	5 (0.2%)	44 (1.8%)	5 (0.2%)	44 (1.8%)		
109-36											
gather_omp											
2008-04-28-11-08-58	Total Select										
OMP_triad	Granularity Func	tion 🔻 Process gath	er_fma16_omp	Thread	000039bb((0003) v M	odule All	•	Filter by selection	- 🕞 💦 🗙	
sp.B									(
👌 triad		nary Console Cacheline	s View 🛄 Memory	Access and	Latency H	listograms 🛿		Memory Acces	s Bin Size: 4 MByt	• • • •	⊇ - □
	2008-04-28-11-08-	-58 (2)									
	Description	1					1	1			
	Low VA displa		1			× .				I	
	High VA displa			i Li ur		0x2AAB184000	00 Samples:53				
	Max Referenc										
	Max Reference							. data a data da		u U II II	
			. <mark>A stand a standar a</mark>	n a tradition	. հ. հ. հ.			dalla dallah			
	Number of bin							de de la compañía de		l de l <mark>u</mark> nder de la composition	
	Number of bir Bin Size							d Arbeite	, <mark>Hu</mark> ulla (M		
	Number of bin							h <mark>l</mark> ahdar			
	Number of bir Bin Size			n <mark>lo</mark> panilo)							
	Number of bir Bin Size Filter		b ata da								
	Number of bin Bin Size Filter Low VA displa High VA displa		b ppad								
	Number of bin Bin Size Filter Low VA displa										
	Number of bin Bin Size Filter Low VA displa High VA displa		b pappad								
	Number of bin Bin Size Filter Low VA displa High VA displa		, og som								
	Number of bin Bin Size Filter Low VA displa High VA displa			Hann,							
	Number of bir Bin Size Filter Low VA displa High VA displa Number of bir			N. M.							
	Number of bin Bin Size Filter Low VA displa High VA displa										
	Number of bir Bin Size Filter Low VA displa High VA displa Number of bir										
	Number of bir Bin Size Filter Low VA displa High VA displa Number of bir										
۵ ۵	Number of bir Bin Size Filter Low VA displa High VA displa Number of bir										

A Different Thread

• 🔛 🖆 🛛 🥵 + 🖉 🗇 + 🗇 +													Ē		**
uning Navigator 🕱 📃 🗖	2008-04-28-11	-08-58	2008-04-28	-11-09-36	20	008-04-28	11-08-58	(2) 🗙						-	
□ 🔄 ▽	Function	Module		Ue »	0e »	LC »	RC >>	Local DRAM	» RemRAM	»	MEM_UHITM	MEM_UHITM			٦
CG		gather_fm) 2,369 (98.2%			
gather_numa	<unknown(s)></unknown(s)>	vmlinux-2	.6.18-53.el5	0 (N/A)	0 (N/A)	0 (N/A)	0 (N/A)	2 (0.19	%) 43 (1	.8%)	2 (0.1%) 43 (1.8%)		_
2008-04-28-11-09-36															
gather_omp															
10 2008-04-28-11-08-58	Total Select														
OMP_triad	Granularity Fund	tion 🔻 P	rocess gathe	er_fma16_d	omp 🔻	Thread	рооозэр	9(0008) 🔻	Module All		•	Filter by selecti	on 🕄 者	×	
sp.B				(#5										0 0 5	
alaa	Experiment Summ 2008-04-28-11-08		e Cachelines	View 🛄 N	4emîbry A	ccess and	Latency	Histograms 🛛			Memory Acces	s Bin Size: 4 MB	/te	€	
	High VA displa					1							1		
	Max Referenc Number of bir Bin Size Filter Low VA displa High VA displa Number of bir														
	Number of bin Bin Size Filter Low VA displa High VA displa Number of bin														

Example: False Sharing What is it and why is it a Problem

- Cache coherency protocols require that all cores use the most current version of every cacheline
- Shared lines can be modified by any thread
 - Causing lines to be renewed regularly, if any thread writes to any byte in the line
 - (replace an invalid state copy with new valid copy)
 - Line renewal can cause a cache miss by other threads
 - and a 40-300 cycle execution stall
 - Depending on cacheline location

 False sharing is when different threads access nonoverlapping regions of a cacheline

False Sharing Causes Avoidable 40-300 Cycle Stalls For Every Read Following a Write by Another Thread

Synthetic Example: Heavy Contention on this Line --Multiple Threads Accessing Different Offsets Indicate False Sharing (Identified by Rose Highlighting)

<u>Project R</u> un <u>W</u> indow <u>H</u> elp									
}∎ • 🕴 🗇 • 🔿 ∗									🖹 🔀 In
2007-12-15-08-22-51	07-12-15-08-33-27 🖾								
Function	Module	Collected Data Refs (%Total)	LLC Misses (%Total)	Avg. Latency	Total Latency (%	Total) Cad	nelines # Pag	ges # (%Total)	MEM_LOAD_RETIRE
sort	main_share.exe	8,594,000,000 (100.0%	6) 400,000 (100.0%)) 3	3 26,186,000,000	0 (100.0%)	1,029	24 (85.7%)	
<									
Total Selected:									
Experiment Summary Console 🗮 Ca	chelines View 🛛							Top by	Collected Data Refs
2007-12-15-08-33-27									
2007-12-15-08-33-27 Cacheline Address / Offset / Thread /	Function Collected			al Latency (C		MEM_LOAD_RE	MEM_LOAD_RE	E INST_RETIR	Contributo
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / • 0x0042a3c0	Function Collected 1,959,60	0,000 400,000 (100	3 6,25	52,000,000 90	09,100,000 (400,000 (100	39,200,000 (E INST_RETIR	Contributo
2007-12-15-08-33-27 Cacheline Address / Offset / Thread /	Function Collected I 1,959,600 836,000,/	0,000 400,000 (100 ,000 (0 (0.0%)	3 6,25 3 2,50	52,000,000 90 98,000,000	09,100,000 (0 (N/A)	400,000 (100 0 (0.0%)	39,200,000 (4 0 (0.0	E INST_RETIR B 1,920,000 9%) 836,000,00	00 Offsets: 2 00 Offsets: 1
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / ▶ 0x0042a3c0 ▶ 0x0064ff40 ▶ 0x0054ff40	Function Collected 1 1,959,60 836,000,/ 764,000,/	0,000 400,000 (100 ,000 (0 (0.0%) ,000 (0 (0.0%)	3 6,25 3 2,50 3 2,29	52,000,000 90 08,000,000 92,000,000	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 0 (0.0%) 0 (0.0%)	39,200,000 (4 0 (0.0 0 (0.0	E INST_RETIR B 1,920,000 1%) 836,000,00 1%) 764,000,00	Contributo 00 Offsets: 2 01. Offsets: 1 01 Offsets: 1
2007-12-15-08-33-27 Cacheline Address / Offset / Thread /	Function Collected I 1,959,600 836,000,/	0,000 400,000 (100 ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%)	3 6,25 3 2,50 3 2,29 3 1,09	52,000,000 90 98,000,000	09,100,000 (0 (N/A)	400,000 (100 0 (0.0%)	39,200,000 (1 0 (0.0 0 (0.0 0 (0.0	E INST_RETIR B 1,920,000 1%) 836,000,00 1%) 764,000,00 1%) 366,000,00	Contributor 00 Offsets: 2 0 Offsets: 1 0 Offsets: 1
2007-12-15-08-33-27 Cacheline Address / Offset / Thread /	Function Collected 1,959,600 836,000, 764,000, 366,000,	0,000 400,000 (100 ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%)	3 6,25 3 2,50 3 2,29 3 1,09 3 828,	52,000,000 90 08,000,000 90 92,000,000 90 98,000,000 90	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 0 (0.0%) 0 (0.0%) 0 (0.0%)	39,200,000 (4 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0	INST_RETIR 8 1,920,000 9%) 836,000,00 9%) 764,000,00 9%) 366,000,00 9%) 366,000,00 9%) 326,000,00	Contributo 00 Offsets: 2 0 (Offsets: 1 0 (Offsets: 1 0 (Offsets: 2 0 (Offsets: 2 0 (Offsets: 2
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / ▶ 0x0042a3c0 ▶ 0x0064ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0054ff80	Function Collected I 1,959,600 836,000, 764,000, 366,000, 276,000,	0,000 400,000 (100 ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%)	3 6,25 3 2,50 3 2,29 3 1,09 3 828, 3 42,0	52,000,000 90 98,000,000 92,000,000 98,000,000 ,000,000 (09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	39,200,000 (i 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0	E INST_RETIP B 1,920,000 1%) 836,000,00 1%) 764,000,00 1%) 366,000,00 1%) 276,000,00 1%) 14,000,000	Contributo 00 Offsets: 2 01 Offsets: 2 01 Offsets: 1 01 Offsets: 1 01 Offsets: 2 01 Offsets: 2 01 Offsets: 2 01 Offsets: 7
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / ▶ 0x0064ff40 ▶ 0x0054ff40 ▶ 0x0054ff60 ▶ 0x0054ff60 ▶ 0x0064ff60 ▶ 0x0064ff60	Function Collected I 1,959,600 836,000, 764,000, 366,000, 276,000, 14,000,00	0,000 400,000 (100 ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 0 (0.0%)	3 6,25 3 2,50 3 2,29 3 1,09 3 828, 3 42,0 3 42,0	52,000,000 90 08,000,000 90 92,000,000 90 98,000,000 90 000,000 (90 000,000 (0 90	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	39,200,000 (d 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0	E INST_RETIP B 1,920,000 1%) 836,000,00 1%) 764,000,00 1%) 366,000,00 1%) 14,000,000 1%) 14,000,000	Contributo 00 Offsets: 2 01 Offsets: 1 01 Offsets: 1 01 Offsets: 1 01 Offsets: 2 01 Offsets: 3
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / ▶ 0x0042a3c0 ▶ 0x0064ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0054ff80 ▶ 0x004369c0 ▶ 0x0042e580	Function Collected I 1,959,600 836,000,/ 764,000,/ 366,000,/ 276,000,/ 14,000,00 14,000,00 14,000,00	0,000 400,000 (100 ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 0 (0.0%) ,000 (0 0 (0.0%) ,000 (0 0 (0.0%)	3 6,25 3 2,50 3 2,29 3 1,09 3 828, 3 42,0 3 42,0 3 42,0 3 42,0	52,000,000 91 58,000,000 92,000,000 58,000,000 98,000,000 5000,000 (900,000 (0 5000,000 (0 900,000 (0	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	39,200,000 (i 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0	E INST_RETIP B 1,920,000 1 1%) 836,000,00 1%) 764,000,00 1%) 366,000,00 1%) 276,000,00 1%) 14,000,000 1%) 14,000,000 1%) 14,000,000	Contributo 00 Offsets: 1 01 Offsets: 1 01 Offsets: 1 01 Offsets: 2
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / ▶ 0x0042a3c0 ▶ 0x0054ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0054ff80 ▶ 0x0064ff80 ▶ 0x004369c0 ▶ 0x0042e580 ▶ 0x0042f380	Function Collected I 1,959,600 836,000, 764,000, 366,000, 276,000, 14,000,00 14,000,00 14,000,00 14,000,00 14,000,00	0,000 400,000 (100 ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 0 (0.0%) ,000 (0 0 (0.0%) ,000 (0 0 (0.0%) ,000 (0 0 (0.0%) ,000 (0 0 (0.0%) ,000 (0 0 (0.0%)	3 6,25 3 2,50 3 2,29 3 1,09 3 828, 3 42,0 3 42,0 3 42,0 3 42,0 3 3 6,0	52,000,000 91 98,000,000 92,000,000 98,000,000 900,000 (900,000 (0 900,000 (0	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	39,200,000 (i 0 (0.0 0 (0.0	E INST_RETIP B 1,920,000 (9%) 836,000,00 9%) 764,000,00 9%) 14,000,000 9%) 14,000,000 9%) 14,000,000 9%) 14,000,000	Contribute 00 Offsets: 2 01 Offsets: 2 0 (Offsets: 4
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / ▶ 0x0042a3c0 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0054ff80 ▶ 0x0043f9c0 ▶ 0x0042e580 ▶ 0x0042f380 ▶ 0x0042f380 ▶ 0x004327c0	Function Collected I 1,959,600 836,000, 764,000, 366,000, 276,000, 14,000,00 14,000,00 14,000,00 12,000,00 12,000,00	0,000 400,000 (100 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 0 (0.0%)	3 6,25 3 2,50 3 2,29 3 1,09 3 828, 3 42,0 3 42,0 3 42,0 3 42,0 3 36,0 3 36,0	52,000,000 91 08,000,000 92,000,000 98,000,000 000,000 (000,000 (0 000,000 (0 000,000 (0	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	39,200,000 (i 0 (0.0 0 (0.0))))))))))))))))))))))))))))))))))	E INST_RETIP B 1,920,000 19%) 764,000,00 19%) 276,000,00 19%) 276,000,00 19%) 14,000,000 19%) 14,000,000 19%) 12,000,000 19%) 12,000,000	Contributo 00 Offsets: 2 01 Offsets: 4 01 Offsets: 4 01 Offsets: 5
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / ▶ 0x0042a3c0 ▶ 0x0064ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0064ff80 ▶ 0x00426580 ▶ 0x00426580 ▶ 0x00427c0 ▶ 0x00427c0 ▶ 0x00440900	Function Collected 1,959,600 836,000,0 764,000,0 366,000,0 276,000,0 14,000,00 14,000,00 14,000,00 12,000,00 12,000,00 12,000,00 12,000,00	0,000 400,000 (100 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 0 (0.0%) 0,000 (0 0 (0.0%)	3 6,25 3 2,50 3 2,29 3 1,09 3 828, 3 42,0 3 42,0 3 42,0 3 36,0 3 36,0 3 36,0 3 36,0 3 36,0	52,000,000 91 08,000,000 92,000,000 98,000,000 000,000 (000,000 (0 000,000 (0 000,000 (0 000,000 (0	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	39,200,000 (i 0 (0.0 0 (0.0) 0 (0.0)	E INST_RETIP: B 1,920,000 1%) 836,000,00 1%) 764,000,00 1%) 276,000,00 1%) 14,000,000 1%) 14,000,000 1%) 14,000,000 1%) 12,000,000 1%) 12,000,000 1%) 12,000,000	Contributo 00 Offsets: 2 01 Offsets: 1 01 Offsets: 2 01 Offsets: 4 01 Offsets: 4 01 Offsets: 5
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / ▶ 0x0064ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0054ff80 ▶ 0x0044ff80 ▶ 0x0042ff80 ▶ 0x0042f880 ▶ 0x0042f380 ▶ 0x0042f380 ▶ 0x0042f380 ▶ 0x0042g80 ▶ 0x0042g90	Function Collected I 1,959,600 836,000,/ 764,000, 366,000,/ 276,000,/ 14,000,00 14,000,00 14,000,00 12,000,00 12,000,00 12,000,00 12,000,00	0,000 400,000 (100 ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 0 (0.0%) ,000 (0 0 (0.0%) ,000 (0 0 (0.0%) ,000 (0 0 (0.0%) ,000 (0 0 (0.0%)	3 6,25 3 2,50 3 2,29 3 1,09 3 828, 3 42,0 3 42,0 3 42,0 3 36,0 3 36,0 3 36,0 3 36,0 3 36,0 3 36,0 3 36,0 3 36,0 3 3 36,0	52,000,000 94 88,000,000 92,000,000 98,000,000 (900,000 (900,000 (0 900,000 (0 900,000 (0 900,000 (0 900,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	39,200,000 (i 0 (0.0 0 (0.0) 0	E INST_RETIP: B 1,920,000 1%) 836,000,00 1%) 764,000,00 1%) 366,000,00 1%) 14,000,000 1%) 14,000,000 1%) 12,000,000 1%) 12,000,000 1%) 12,000,000 1%) 12,000,000	Contributo 00 Offsets: 2 01 Offsets: 1 01 Offsets: 2 01 Offsets: 4 01 Offsets: 5
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / ▶ 0x0042a3c0 ▶ 0x0054ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0044f80 ▶ 0x0044f80 ▶ 0x0042580 ▶ 0x00422580 ▶ 0x00422380 ▶ 0x00422380 ▶ 0x004229c0 ▶ 0x0042e9c0 ▶ 0x0042960	Function Collected I 1,959,600 835,000,/ 764,000,/ 366,000,/ 276,000,/ 14,000,00 14,000,00 14,000,00 12,000,00 12,000,00 12,000,00 12,000,00 12,000,00 12,000,00	0,000 400,000 (100 ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 0 (0.0%) ,000 (0 0 (0.0%) ,000 (0 0 (0.0%) ,000 (0 0 (0.0%) ,000 (0 0 (0.0%) ,000 (0 0 (0.0%) ,000 (0 0 (0.0%) ,000 (0 0 (0.0%) ,000 (0 0 (0.0%)	3 6,25 3 2,50 3 2,29 3 1,09 3 828, 3 42,0 3 42,0 3 42,0 3 36,0 3 36,0 30,0 30,0 30,0 30,0 30,0 30,0 30,0	52,000,000 91 18,000,000 12,000,000 10,000,000 (1000,000 (0 1000,000 (0 1000,000 (0 1000,000 (0 1000,000 (0 1000,000 (0 1000,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	39,200,000 (i 0 (0.0 0 (0.0) (0.0 0 (0.0) (0	E INST_RETIP B 1,920,000 1 19(6) 836,000,00 19(6) 366,000,00 19(6) 276,000,00 19(6) 14,000,000 19(6) 14,000,000 19(6) 12,000,000 19(6) 12,000,000 10(6) 12,000,	Contributo 00 Offsets: 2 01 Offsets: 3 01 Offsets: 4 01 Offsets: 5
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / ▶ 0x0042a3c0 ▶ 0x0054ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x004369c0 ▶ 0x0042580 ▶ 0x0042f380 ▶ 0x0042f380 ▶ 0x0042f380 ▶ 0x0042f380 ▶ 0x0042f380 ▶ 0x0042g380 ▶ 0x0042g380 ▶ 0x0042g360 ▶ 0x00439c0	Function Collected I 1,959,600 836,000, 764,000, 366,000, 276,000, 14,000,00 14,000,00 14,000,00 12,000,00 12,000,00 12,000,00 12,000,00 12,000,00 12,000,00 12,000,00 12,000,00	0,000 400,000 (100 ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 (0.0%) ,000 (0 0 (0.0%) ,000 (0 0 (0.0%) ,000 (0 0 (0.0%) ,000 (0 0 (0.0%) ,000 (0 0 (0.0%) ,000 (0 0 (0.0%) ,000 (0 0 (0.0%) ,000 (0 0 (0.0%) ,000 (0 0 (0.0%)	3 6,25 3 2,50 3 2,29 3 1,09 3 42,0 3 42,0 3 42,0 3 42,0 3 36,0 3 36,0 33	52,000,000 91 18,000,000 12,000,000 100,000 (100,000 (0 100,000 (0 100,000 (0 100,000 (0 100,000 (0 1000,000 (0 1000,000 (0 1000,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 0 (0.0%) 0 (0.0%)	39,200,000 (i 0 (0.0 0 (0.0) (0	E INST_RETIP B 1,920,000 1%6) 836,000,00 1%6) 764,000,00 1%6) 276,000,00 1%6) 14,000,000 1%6) 14,000,000 1%6) 12,000,000 1%6) 12,000,000 1%6) 12,000,000 1%6) 12,000,000 1%6) 12,000,000 1%6) 12,000,000	Contributor 00 Offsets: 2 0 (Offsets: 1 0 (Offsets: 2 0 (Offsets: 2
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / ▶ 0x0042a3c0 ▶ 0x0064ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0043f9c0 ▶ 0x0042580 ▶ 0x004227c0 ▶ 0x00427c0 ▶ 0x00429c0 ▶ 0x004399c0 ▶ 0x004399c0 ▶ 0x004399c0 ▶ 0x004399c0 ▶ 0x00440c0	Function Collected I 1,959,600 836,000, 764,000, 366,000, 276,000, 14,000,00 14,000,00 14,000,00 12,000,00 12,000,00 12,000,00 12,000,00 12,000,00 12,000,00 12,000,00 12,000,00 12,000,00 12,000,00	0,000 400,000 (100 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 0 (0.0%) 0,000 (0 0 (0.0%) 0,000 (0 0 (0.0%) 0,000 (0 0 (0.0%) 0,000 (0 0 (0.0%) 0,000 (0 0 (0.0%) 0,000 (0 0 (0.0%) 0,000 (0 0 (0.0%)	3 6,25 3 2,59 3 2,29 3 1,09 3 828, 3 42,0 3 42,0 3 42,0 3 42,0 3 36,0 3 3 36,0 3 3 3,0 0 3 30,0	52,000,000 94 58,000,000 52,000,000 58,000,000 (000,000 (0 1000,000 (0 1000,000 (0 1000,000 (0 1000,000 (0 1000,000 (0 1000,000 (0 1000,000 (0 1000,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 0 (0.0%) 0 (0.0%)	39,200,000 (i 0 (0.0 0 (0.0))))))))))))))))))))))))))))))))))	E INST_RETIP B 1,920,000 1%6) 836,000,00 1%6) 764,000,00 1%6) 276,000,00 1%6) 14,000,000 1%6) 14,000,000 1%6) 12,000,000 1%6) 12,000,000 1%6) 12,000,000 1%6) 12,000,000 1%6) 12,000,000 1%6) 12,000,000	Contributo 00 Offsets: 2 01 Offsets: 2 01 Offsets: 1 01 Offsets: 2 01 Offsets: 1 01 Offsets: 1 01 Offsets: 1 01 Offsets: 2 01 Offsets: 2 01 Offsets: 2 01 Offsets: 3 01 Offsets: 4 01 Offsets: 5 01 Offsets: 5
2007-12-15-08-33-27 Cacheline Address / Offset / Thread / ▶ 0x0064ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0054ff80 ▶ 0x0042f80 ▶ 0x0042580 ▶ 0x0042580 ▶ 0x0042580 ▶ 0x004227c0 ▶ 0x004327c0 ▶ 0x004327c0 ▶ 0x004327c0 ▶ 0x004396c0 ▶ 0x004396c0 ▶ 0x004396c0 ▶ 0x004396c0 ▶ 0x00430280	Function Collected 1,959,600 836,000,0 764,000,0 366,000,0 276,000,0 14,000,00 14,000,00 14,000,00 12,000,00 12,000,00 12,000,00 12,000,00 12,000,00 12,000,00 12,000,00 12,000,00 12,000,00 12,000,00 10,000,00 10,000,00	0,000 400,000 (100 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 (0.0%) 0,000 (0 0 (0.0%) 0,000 (0 0 (0.0%) 0,000 (0 0 (0.0%) 0,000 (0 0 (0.0%) 0,000 (0 0 (0.0%) 0,000 (0 0 (0.0%) 0,000 (0 0 (0.0%) 0,000 (0 0 (0.0%)	3 6,25 3 2,59 3 2,29 3 1,09 3 828, 3 42,0 3 42,0 3 42,0 3 42,0 3 36,0 3 3 36,0 3 3 3,0 0 3 30,0	52,000,000 94 58,000,000 52,000,000 58,000,000 (500,000 (0 500,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 0 (0.0%) 0 (0.0%)	39,200,000 (i 0 (0.0 0 (0.0))))))))))))))))))))))))))))))))))	E INST_RETIP B 1,920,000 19%) 764,000,00 19%) 764,000,00 19%) 276,000,00 19%) 14,000,000 19%) 14,000,000 19%) 12,000,000 19%) 12,000,000 19%) 12,000,000 19%) 12,000,000	Contributo 00 Offsets: 2 01 Offsets: 2 01 Offsets: 1 01 Offsets: 2 01 Offsets: 1 01 Offsets: 1 01 Offsets: 1 01 Offsets: 1 01 Offsets: 2 01 Offsets: 2 01 Offsets: 2 01 Offsets: 7 01 Offsets: 5 01 Offsets: 5

Expanding the "arrow" we see the 2 threads access the line at Different Offsets...This is False Sharing

<u>P</u> roject <u>R</u> un <u>W</u> indow <u>H</u> elp									
8 ∎ • 🗄 🗢 • ⇔ ∗									🗈 🔀 Inte
2007-12-15-08-22-51	2007-12-15-08-33-2								
Function	Module Colle	cted Data Refs (%Total)	LLC Misses (%Total)	Avg. Latency	Total Latency (%	Total)	Cachelines #	Pages # (%Total)	MEM_LOAD_RETIRED.
sort		3,594,000,000 (100.0%)			3 26,186,000,000		1,029		
<u><</u>									
Total Selected:									
Granularity Fiction V Pro	ocess main_share.exe	✓ Thread 📶	Module 📕	~	Filter by selecti	ion 🕄 🟦	×		
								Top by	Collected P
Experimer Summary Console	Cachelines View 🔀 🔪							TOP Dy	
Experimer Summary Console	Cachelines View X							TOP By	
2007-25-08-33-27		LLC Misses (%T A	Avg. Latency Total	Latency (ontention (%	MEM LOAD RE	Mem Loai		
	ad / Function Collected Data					MEM_LOAD_RE		D_RE INST_RET R	ED Contributors
2007-25-08-33-27 Cacheline Address / Offset / Three	ad / Function Collected Data 1,959,600,00	0 400,000 (100	3 6,252	2,000,000 90	09,100,000 (400,000 (100	39,200,00	D_RE INST_RET.R 00 (8 1,920,0 0,0	ED Contributors
2007- 15-08-33-27 Cacheline Address / Offset / Three ▼ 0x0042a3c0 ▶ Offset:0x04(4)	ad / Function Collected Data 1,959,600,00 1,050,500,000	0 400,000 (100 (100,000 (25.0%)	3 6,252 3 3,319	2,000,000 90	0 9,100,000 (0 (N/A)	400,000 (100 100,000 (25.0	 39,200,00	D_RE INST_RET R 00 (8 1,920,0 0,0 0 (46 1,030,00 0)	ED Contributors 000 Offsets: 2 Th 00 (Threads: 1
2007-05-08-33-27 Cacheline Address / Offset / Three ▼ 0x0042a3c0	ad / Function Collected Data 1,959,600,00 1,050,500,000 909,100,000 (1	0 400,000 (100 (100,000 (25.0%) 1 300,000 (75.0%)	3 6,252 3 3,319 3 2,933	2,000,000 90 9,000,000 (3,000,000 (0 9,100,000 (0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0 300,000 (75.0	39,200,00 0%) 20,400,000 0%) 18,800,000	D_RE INST_RETAR 00 (8 1,920,0 0,0 0 (46 1,030,00 0) 0 (42 890,000,00	ED Contributors 000 Offsets: 2 Th 00 (Threads: 1 1 Threads: 1
2007: \$-08-33-27 Cacheline Address / Offset / Three ▼ 0x0042a3c0 ▶ Offset:0x04(4) ▶ Offset:0x00(0) ▶ 0x0064ff40	ad / Function Collected Data 1,959,600,00 1,050,500,000 909,100,000 (1 836,000,000	0 400,000 (100 (100,000 (25.0%) 300,000 (75.0%) (0 (0.0%)	3 6,252 3 3,319 3 2,933 3 2,508	2,000,000 90 9,000,000 (3,000,000 (8,000,000	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0 300,000 (75.0 0 (0.0	39,200,00 0%) 20,400,000 0%) 18,800,000 0%) 0	D_RE INST_RET R 00 (8 1,920,0 0,0 0 (46 1,030,000 0) 0 (42 890,000,00 (0.0%) 836,000,00	ED Contributors 000 Offsets: 2 Th 00 (Threads: 1 1 Threads: 1 10 (Offsets: 1 Th
2007: 5-08-33-27 Cacheline Address / Offset / Three ▼ 0x0042a3c0 ▶ Offset:0x04(4) ▶ Offset:0x00(0)	ad / Function Collected Data 1,959,600,00 1,050,500,000 909,100,000 (1 836,000,000 764,000,000	0 400,000 (100 (100,000 (25.0%) 300,000 (75.0%) (0 (0.0%) (0 (0.0%)	3 6,253 3 3,319 3 2,933 3 2,500 3 2,292	2,000,000 90 9,000,000 (3,000,000 (8,000,000 2,000,000	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0 300,000 (75.0	39,200,00 0%) 20,400,000 0%) 18,800,000 0%) 0 0%) 0	D_RE INST_REFR 00 (8 1,920,0 0,0 0 (46 1,030,00 0) 0 (42 890,000,00 (0.0%) 836,000,00 (0.0%) 764,000,00	ED Contributors 000 Offsets: 2 Th 00 (Threads: 1 1 Threads: 1 10 (Offsets: 1 Th 10 (Offsets: 1 Th
2007- 5-08-33-27 Cacheline Address / Offset / Three ▼ 0x0042a3c0 ▶ Offset:0x04(4) ▶ Offset:0x00(0) ▶ 0x0064ff40 ▶ 0x0054ff40	ad / Function Collected Data 1,959,600,00 1,050,500,000 909,100,000 (1 836,000,000 764,000,000 366,000,000	0 400,000 (100 (100,000 (25.0%) 300,000 (75.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%)	3 6,253 3 3,319 3 2,933 3 2,508 3 2,293 3 2,293 3 1,098	2,000,000 90 3,000,000 (8,000,000 (8,000,000 2,000,000 8,000,000	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0 300,000 (75.0 0 (0.0 0 (0.0	39,200,00 0%) 20,400,00 0%) 18,800,00 0%) 0 0%) 0 0%) 0 0%) 0	D_RE INST_REPR 00 (8 1,920,0 0,0 0 (4c 1,030,000 0) 0 (42 890,000,00 (0.0%) 836,000,00 (0.0%) 764,000,00 (0.0%) 366,000,00	ED Contributors 000 Offsets: 2 Th 00 (Threads: 1 1 Threads: 1 00 (Offsets: 1 Th 00 (Offsets: 2 Th 00 (Offsets: 2 Th
2007: \$-08-33-27 Cacheline Address / Offset / Three • 0x0042a3c0 • Offset:0x00(4) • Offset:0x00(0) • 0x0054ff40 • 0x0054ff40 • 0x0054ff80	ad / Function Collected Data 1,959,600,00 1,050,500,000 909,100,000 (1 836,000,000 764,000,000 366,000,000 276,000,000	0 400,000 (100 (100,000 (25.0%) 300,000 (75.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%)	3 6,253 3 3,319 3 2,933 3 2,508 3 2,293 3 2,293 3 1,098 3 828,4	2,000,000 90 3,000,000 (8,000,000 (8,000,000 2,000,000 8,000,000 000,000 (09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0 300,000 (75.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0	39,200,00 0%) 20,400,00 0%) 18,800,00 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0	D_RE INST_REPR 00 (8 1,920,0 0,0 0 (46 1,030,000 0) 0 (42 890,000,00 (0.0%) 836,000,00 (0.0%) 764,000,00 (0.0%) 366,000,00 (0.0%) 276,000,00	ED Contributors 000 Offsets: 2 Th 00 (Threads: 1 1 Threads: 1 00 (Offsets: 1 00 (Offsets: 1 00 (Offsets: 2 Th 00 (Offsets: 2 Th
2007: \$-08-33-27 Cacheline Address / Offset / Three ▼ 0x0042a3c0 ▶ Offset:0x004(4) ▶ Offset:0x00(0) ▶ 0x0054ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0054ff80	ad / Function Collected Data 1,959,600,00 1,050,500,000 (1 836,000,000 764,000,000 366,000,000 276,000,000 14,000,000 (1	0 400,000 (100 (100,000 (25.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) 0 0 (0.0%)	3 6,253 3 3,319 3 2,933 3 2,506 3 2,293 3 2,293 3 2,293 3 2,293 3 2,293 3 2,294 3 2,295 3 2,29	2,000,000 9(3,000,000 (3,000,000 (8,000,000 2,000,000 8,000,000 000,000 (09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0 300,000 (75.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0	39,200,00 0%) 20,400,00 0%) 18,800,00 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0 0%) 0	D_RE INST_REFR 00 (8 1,920,0 0,0 0 (4c 1,030,00 0) 0 (42 890,000,00 (0.0%) 836,000,00 (0.0%) 366,000,00 (0.0%) 276,000,00 (0.0%) 14,000,000	ED Contributors 000 Offsets: 2 Th 00 (Threads: 1 14 Threads: 1 10 (Offsets: 1 Th 10 (Offsets: 1 Th 10 (Offsets: 2 Th 10 (Offsets: 2 Th 10 (Offsets: 7 Th
2007: S-08-33-27 Cacheline Address / Offset / Three ▼ 0x0042a3c0 ▶ Offset:0x04(4) ▶ Offset:0x00(0) ▶ 0x0054ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0054ff80 ▶ 0x0064ff80	ad / Function Collected Data 1,959,600,00 1,050,500,000 909,100,000 (1 836,000,000 764,000,000 366,000,000 276,000,000 14,000,000 (1 14,000,000 (1	0 400,000 (100 (100,000 (25.0%) 1 300,000 (75.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) 0 0 (0.0%) 0 0 (0.0%)	3 6,253 3 3,319 3 2,933 3 2,500 3 2,293 3 2,500 3 2,293 3 1,094 3 828,0 3 42,00 3 42,00 3 42,00	2,000,000 9(9,000,000 (8,000,000 (8,000,000 8,000,000 8,000,000 (000,000 (0 00,000 (0	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0 300,000 (75.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0	39,200,00 0% 20,400,00 0% 18,800,00 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0 0% 0	D_RE INST_REPR 00 (8 1,920,0 0,0 0 (46 1,030,00 00 0 (42 890,000,00 (0.0%) 836,000,00 (0.0%) 764,000,00 (0.0%) 366,000,00 (0.0%) 276,000,00 (0.0%) 14,000,000	ED Contributors 000 Offsets: 2 Th 00 (Threads: 1 1 Threads: 1 10 (Offsets: 1 Th 10 (Offsets: 1 Th 10 (Offsets: 2 Th 10 (Offsets: 2 Th 10 (Offsets: 7 Th 10 (Offsets: 6 Th
2007: S-08-33-27 Cacheline Address / Offset / Three ▼ 0x0042a3c0 ▶ Offset:0x04(4) ▶ Offset:0x00(0) ▶ 0x0064ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0064ff80 ▶ 0x004369c0 ▶ 0x0043e580 ▶ 0x0042e580 ▶ 0x0042f380	ad / Function Collected Data 1,959,600,00 1,050,500,000 909,100,000 (1 836,000,000 764,000,000 276,000,000 14,000,000 (1 14,000,000 (1 14,000 (1),000 (0 400,000 (100 (100,000 (25.0%) 300,000 (75.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%)	3 6,253 3 3,319 3 2,933 3 2,500 3 2,293 3 1,094 3 2,293 3 1,094 3 42,00 3 42,00 3 42,00 3 42,00 3 42,00	2,000,000 9(,000,000 (,000,000 (8,000,000 8,000,000 8,000,000 (000,000 (0 00,000 (0	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0 300,000 (75.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0 0 (0.0	39,200,00 3% 20,400,000 3% 18,800,000 9% 0 9% 0 9% 0 9% 0 9% 0 9% 0 9% 0 9% 0 9% 0 9% 0 9% 0 9% 0	D_RE INST_REP.K 00 (8 1,920,0 0,0 0 (46 1,030,00 0 0 (42 890,000,00 (0.0%) 836,000,00 (0.0%) 764,000,00 (0.0%) 276,000,00 (0.0%) 14,000,000 (0.0%) 14,000,000	ED Contributors 000 Offsets: 2 Th 00 (Threads: 1 1 Threads: 1 10 (Offsets: 1 Th 00 (Offsets: 1 Th 00 (Offsets: 2 Th 00 (Offsets: 2 Th 00 (Offsets: 6 Th 0 (0 Offsets: 6 Th 0 (0 Offsets: 6 Th
2007: S-08-33-27 Cacheline Address / Offset / Three ▼ 0x0042a3c0 ▶ Offset:0x04(4) ▶ Offset:0x00(0) ▶ 0x0064ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0064ff80 ▶ 0x0064ff80 ▶ 0x004369c0 ▶ 0x0042e580	ad / Function Collected Data 1,959,600,00 1,050,500,000 909,100,000 (1 836,000,000 764,000,000 276,000,000 14,000,000 ((14,000,000 ((14,000,000 ((12,000,000 ((0 400,000 (100 (100,000 (25.0%) 300,000 (75.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%)	3 6,253 3 3,319 3 2,933 3 2,500 3 2,293 3 1,090 3 828,4 3 828,4 3 42,00 3 42,00 3 42,00 3 3 6,00 3 3 6,00	2,000,000 9(,000,000 (8,000,000 8,000,000 8,000,000 8,000,000 (000,000 (00,000 (0 00,000 (0 00,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0 300,000 (75.0 0 (0.0 0 (0.0	39,200,00 3% 20,400,000 3% 18,800,000 3% 0	D_RE INST_REPR 00 (8 1,920,0 0,0 0 (4 1,030,000 0 0 (4 800,000,00 0 (42 890,000,00 (0.0%) 836,000,000 (0.0%) 366,000,000 (0.0%) 276,000,000 (0.0%) 14,000,000 (0.0%) 14,000,000 (0.0%) 12,000,000	ED Contributors D00 Offsets: 2 Th 00 (Threads: 1 1 Threads: 1 00 (Offsets: 1 Th 00 (Offsets: 2 Th 00 (Offsets: 2 Th 00 (Offsets: 7 Th 00 (Offsets: 6 Th 00 (Offsets: 4 Th 00 (Offsets: 4 Th
2007: S-08-33-27 Cacheline Address / Offset / Three ▼ 0x0042a3c0 ▶ Offset:0x00(4) ▶ Offset:0x00(0) ▶ 0x0054ff40 ▶ 0x0054ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0054ff80 ▶ 0x004369c0 ▶ 0x0042e580 ▶ 0x00432f380 ▶ 0x004327c0 ▶ 0x004327c0	ad / Function Collected Data 1,959,600,00 1,050,500,000 909,100,000 (1 836,000,000 764,000,000 276,000,000 14,000,000 (1 14,000,000 (1 14,000,000 (1 12,000,000 (1 14,000,000 (1 14,000,000 (1 14,000,000 (1 14,000,000 (1 12,000,000 (1 12,000 (1),000 (1 12,000,000 (1),000 (1	0 400,000 (100 (100,000 (25.0%) 100,000 (25.0%) (300,000 (75.0%) ((0 (0.0%) (0 (0.0%) (0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%)	3 6,253 3 3,319 3 2,933 3 2,500 3 2,293 3 1,096 3 828,0 3 42,00 3 42,00 3 42,00 3 42,00 3 36,00 3 36,00 3 36,00	2,000,000 9(,000,000 (8,000,000 8,000,000 8,000,000 000,000 (000,000 (0 00,000 (0 00,000 (0 00,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0 300,000 (75.0 0 (0.0 0 (0.0	39,200,00 0% 20,400,000 0% 18,800,000 %% 0 %% 0 %% 0 %% 0 %% 0 %% 0 %% 0 %% 0 %% 0 %% 0 %% 0 %% 0 %% 0 %% 0 %% 0 %% 0 %% 0	D_RE INST_REPR 00 (8 1,920,0 0,0 0 (46 1,030,000 0 0 (46 1,030,000 0 0 (46 836,000,000 (0.0%) 836,000,000 (0.0%) 764,000,000 (0.0%) 276,000,000 (0.0%) 14,000,000 (0.0%) 14,000,000 (0.0%) 12,000,000 (0.0%) 12,000,000	ED Contributors 000 Offsets: 2 Th 00 (Threads: 1 1 Threads: 1 100 (Offsets: 1 Th 00 (Offsets: 1 Th 00 (Offsets: 2 Th 00 (Offsets: 7 Th 00 (Offsets: 6 Th 00 (Offsets: 6 Th 00 (Offsets: 6 Th 00 (Offsets: 5 Th 00 (Offsets: 5 Th 00 (Offsets: 5 Th
2007- \$-08-33-27 Cacheline Address / Offset / Three ▼ 0x0042a3c0 ▶ Offset:0x004(4) ▶ Offset:0x00(0) ▶ 0x0064ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x004369c0 ▶ 0x004369c0 ▶ 0x0042c580 ▶ 0x0042c580 ▶ 0x004327c0	ad / Function Collected Data 1,959,600,00 1,050,500,000 909,100,000 (1 836,000,000 764,000,000 276,000,000 14,000,000 (1 14,000,000 (1 12,000,000 (1 14,000,000 (1 14,000,000 (1 12,000,000 (1 12,000 (1),000 (1 12,000,000 (1),000 (1	0 400,000 (100 (100,000 (25.0%) 300,000 (75.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%)	3 6,253 3 3,319 3 2,933 3 2,504 3 2,293 3 1,094 3 828,4 3 42,00 3 42,00 3 42,00 3 42,00 3 36,00 3 36,00 3 36,00 3 36,00	2,000,000 9(,000,000 (8,000,000 (2,000,000 2,000,000 000,000 (000,000 (0 000,000 (0 000,000 (0 000,000 (0 000,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0 300,000 (75.0 0 (0.0 0 (0.0	39,200,00 20,400,00 9%) 20,400,00 9%) 20,400,00 9%) 0 9%) 0 9%) 0 9%) 0 9%) 0 9%) 0 9%) 0 9%) 0 9%) 0 9%) 0 9%) 0 9%) 0 9%) 0 9%) 0 9%) 0 9%) 0 9%) 0 9%) 0	D_RE INST_REPR 00 (8 1,920,0 0,4 0 (46 1,030,000 0 0 (42 890,000,00 0 (0.0%) 836,000,00 0 (0.0%) 764,000,000 0 (0.0%) 764,000,000 0 (0.0%) 766,000,000 0 (0.0%) 14,000,000 0 (0.0%) 14,000,000 0 (0.0%) 12,000,000 0 (0.0%) 12,000,000 0	ED Contributors 000 Offsets: 2 Th 00 (Threads: 1 1 Threads: 1 1 Threads: 1 1 Threads: 1 1 Offsets: 1 1 Offsets: 1 1 Offsets: 2 Th 0 Offsets: 2 Th 0 Offsets: 4 Th 0 Offsets: 6 Th 0 Offsets: 5 Th 0 Offsets: 5 Th 0 Offsets: 5 Th 0 Offsets: 5 Th
2007: S-08-33-27 Cacheline Address / Offset / Three ▼ 0x0042a3c0 ▶ Offset:0x04(4) ▶ Offset:0x00(0) ▶ 0x0054ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x004369c0 ▶ 0x0042e580 ▶ 0x0042f380 ▶ 0x0042f380	ad / Function Collected Data 1,959,600,00 1,050,500,000 909,100,000 (1 836,000,000 764,000,000 276,000,000 14,000,000 (1 14,000,000 (1 12,000,000 (1 12,000 (1),000 (1 12,000,000 (1),000 (1),000 (1),000 (1)	0 400,000 (100 (100,000 (25.0%) 300,000 (75.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%)	3 6,253 3 3,319 3 2,933 3 2,508 3 2,508 3 2,508 3 2,508 3 2,508 3 2,508 3 2,508 3 2,508 3 42,00 3 42,00 3 42,00 3 42,00 3 3 6,00 3 3 6,000 3 3 6,0000 3 3 6,000 3 3 6,0000 3 3 6,0000 3 3 6,0000 3 3 6,0000 3 3	2,000,000 9(,000,000 (),000,000 (8,000,000 2,000,000 000,000 (000,000 (0 000,000 (0 000,000 (0 000,000 (0 000,000 (0 000,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0 300,000 (75.0 0 (0.0 0 (0.0	39,200,00 3% 20,400,000 3% <	D_RE INST_REPR 00 (8 1,920,0 0,0 0 (46 1,030,00 0 0 (42 \$90,000,00 (0.0%) 836,000,00 (0.0%) 764,000,00 (0.0%) 276,000,00 (0.0%) 276,000,00 (0.0%) 14,000,000 (0.0%) 14,000,000 (0.0%) 12,000,000 (0.0%) 12,000,000 (0.0%) 12,000,000	ED Contributors 000 Offsets: 2 Th 00 (Threads: 1 1 Threads: 1 1 Offsets: 1 Th 00 (Offsets: 1 Th 00 (Offsets: 1 Th 00 (Offsets: 2 Th 00 (Offsets: 2 Th 0 (Offsets: 6 Th 0 (Offsets: 6 Th 0 (Offsets: 6 Th 0 (Offsets: 5 Th
2007: S-08-33-27 Cacheline Address / Offset / Three ▼ 0x0042a3c0 ▶ Offset:0x04(4) ▶ Offset:0x00(0) ▶ 0x0054ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0054ff80 ▶ 0x004369c0 ▶ 0x0042c580 ▶ 0x0042c580 ▶ 0x0042c580 ▶ 0x0042c580 ▶ 0x0042c50 ▶ 0x0042c50 ▶ 0x0042e9c0 ▶ 0x004399c0	ad / Function Collected Data 1,959,600,00 1,050,500,000 909,100,000 (1 836,000,000 764,000,000 276,000,000 14,000,000 (1 14,000,000 (1 12,000,000 (1))	0 400,000 (100 (100,000 (25.0%) 300,000 (75.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%)	3 6,253 3 3,319 3 2,933 3 2,506 3 2,293 3 2,506 3 2,293 3 2,506 3 2,293 3 2,506 3 2,293 3 42,00 3 42,00 3 42,00 3 42,00 3 42,00 3 3 6,00 3	2,000,000 9(,000,000 (8,000,000 2,000,000 2,000,000 000,000 (000,000 (0 000,000 (0 000,000 (0 000,000 (0 000,000 (0 000,000 (0 000,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0 300,000 (75.0 0 (0.0 0 (0.0) 0 (0.0 0 (0.0) 0 (0.0	39,200,00 20,400,000 3% 18,800,000 %6) 0	D_RE INST_REPR 00 (8 1,920,0 0,0 0 (4 1,030,00 00 0 (4 890,000,00 (0.0%) 836,000,00 (0.0%) 836,000,00 (0.0%) 366,000,00 (0.0%) 366,000,00 (0.0%) 366,000,000 (0.0%) 366,000,000 (0.0%) 14,000,000 (0.0%) 14,000,000 (0.0%) 12,000,000 (0.0%) 12,000,000 (0.0%) 12,000,000 (0.0%) 12,000,000	ED Contributors 000 Offsets: 2 TH 00 (Threads: 1 11 Threads: 1 10 Offsets: 1 TH 100 (Offsets: 1 TH 100 (Offsets: 2 TH 100 (Offsets: 2 TH 100 (Offsets: 4 TH 100 (Offsets: 6 TH 100 (Offsets: 5 TH
2007: S-08-33-27 Cacheline Address / Offset / Three ▼ 0x0042a3c0 ▶ Offset:0x04(4) ▶ Offset:0x00(0) ▶ 0x0054ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x004369c0 ▶ 0x0042e580 ▶ 0x0042f380 ▶ 0x0042f380	ad / Function Collected Data 1,959,600,00 1,050,500,000 909,100,000 (1 836,000,000 764,000,000 276,000,000 14,000,000 (1 14,000,000 (1 12,000,000 (1 12,000 (1),000 (1 12,000,000 (1),000 (1),000 (1),000 (1)	0 400,000 (100 (100,000 (25.0%) 300,000 (75.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) (0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%) 0 0 (0.0%)	3 6,253 3 3,319 3 2,933 3 2,506 3 2,293 3 2,506 3 2,293 3 2,506 3 2,293 3 2,506 3 2,293 3 42,00 3 42,00 3 42,00 3 42,00 3 42,00 3 3 6,00 3	2,000,000 9(,000,000 (),000,000 (8,000,000 2,000,000 000,000 (000,000 (0 000,000 (0 000,000 (0 000,000 (0 000,000 (0 000,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0 300,000 (75.0 0 (0.0 0 (0.0	39,200,00 20,400,000 3% 18,800,000 %6) 0	D_RE INST_REPR 00 (8 1,920,0 0,0 0 (46 1,030,00 0 0 (42 \$90,000,00 (0.0%) 836,000,00 (0.0%) 764,000,00 (0.0%) 276,000,00 (0.0%) 276,000,00 (0.0%) 14,000,000 (0.0%) 14,000,000 (0.0%) 12,000,000 (0.0%) 12,000,000 (0.0%) 12,000,000	ED Contributors 000 Offsets: 2 TH 00 (Threads: 1 11 Threads: 1 10 Offsets: 1 TH 100 (Offsets: 1 TH 100 (Offsets: 2 TH 100 (Offsets: 2 TH 100 (Offsets: 4 TH 100 (Offsets: 6 TH 100 (Offsets: 5 TH

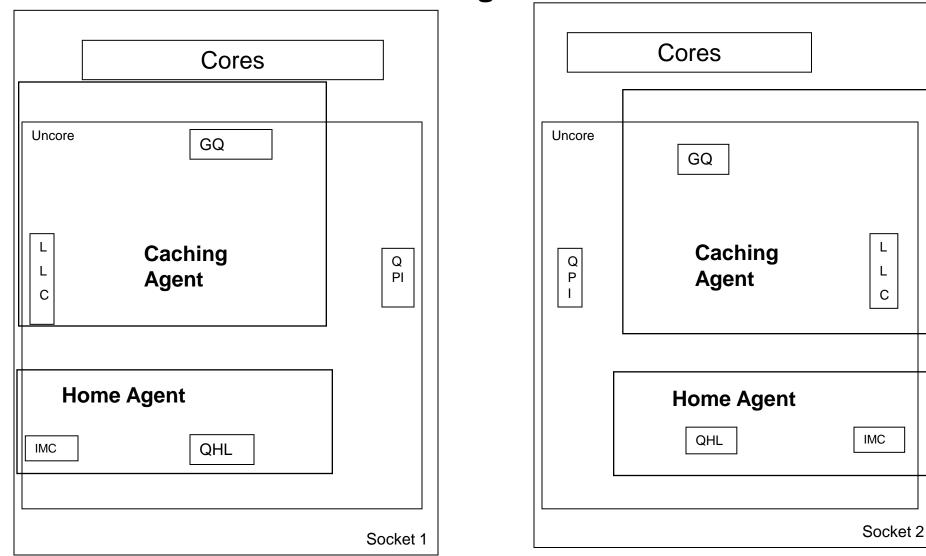
Select the falsely shared cacheline (now blue) and Filter the Hotspot view to only Display Accesses to that Line (multiple lines also work)

<u>P</u> roject <u>R</u> un <u>W</u> indow <u>H</u> elp									
8. • :									😭 🔀 Intel(R) Per
2007-12-15-08-22-51	2007-12-15-08-33-27								
Function	Module Colle	cted Data Refs (%Total)	LLC Misses (%Total)	Avg. Latency	Total Latency (%	Total) Cac	helines # Page	s # (%Total) M	IEM_LOAD_RETIRED.L2_MIS
sort		8,594,000,000 (100.0%)	400,000 (100.0%)		3 26,186,000,000		1,029	24 (85.7%)	400,00
<									
Total Selected:									
Granularity Function 🗸 Pro	ocess main_share.exe	✓ Thread ▲	Module 📶	*	Filter by stacti	on 🕄 🟦 🗴			
Experiment Summary Console	Cachelines View 🗙							Top by Co	llected Data Refs 🛛 🖌
2007-12-15-08-33-27									
Cacheline Address / Offset / Three	ad / Function Collected Data	LLC Misses (%T A	lvg. Latency Total La	atency (Co	ontention (%	MEM_LOAD_RE	MEM_ OAD_RE.	INST_RETIRED	Contributors
▼ 0x0042a3c0	1,959,600,00	0 400,000 (100	3 6,252,	000,000 90	09,100,000 (4	400,000 (100	39,200, 10 (8.	1,920,000,00	0 Offsets: 2 Threads: 2
♦ Offset:0x04(4)	1,050,500,000	(100,000 (25.0%)	3 3,319,0	00,000 (0 (N/A)	100,000 (25.0%)	20,400,000 (46	1,030,000,000	(Threads: 1
♦ Offset:0x00(0)	909,100,000 (3	1 300,000 (75.0%)	3 2,933,0	00,000 (0 (N/A)	300,000 (75.0%)	18,800,000 (42.	890,000,000 (1	1 Threads: 1
▶ 0x0064ff40	836,000,000	(0 (0.0%)	3 2,508,	000,000	0 (N/A)	0 (0.0%)	0 (0.0%)	6) 836,000,000	(Offsets: 1 Threads: 1
▶ 0x0054ff40	764,000,000	(0 (0.0%)	3 2,292,	000,000	0 (N/A)	0 (0.0%)	0 (0.0%)	6) 764,000,000	(Offsets: 1 Threads: 1
▶ 0x0054ff80	366,000,000			000,000	0 (N/A)	0 (0.0%)		%) 366,000,000	-
▶ 0x0064ff80	276,000,000		3 828,00		0 (N/A)	0 (0.0%)		(a) 276,000,000	
▶ 0x004369c0	14,000,000 (0 0 (0.0%)	3 42,000	,000 (0	0 (N/A)	0 (0.0%)	0 (0.0%)	6) 14,000,000 (0 Offsets: 7 Threads: 1
▶ 0x0042e580	14,000,000 (3 42,000		0 (N/A)	0 (0.0%)		6) 14,000,000 (
▶ 0x0042f380	14,000,000 (0 0 (0.0%)	3 42,000		0 (N/A)	0 (0.0%)			0 Offsets: 6 Threads: 1
▶ 0x004327c0	12,000,000 (0 0 (0.0%)	3 36,000		0 (N/A)	0 (0.0%)			0 Offsets: 4 Threads: 1
	12,000,000 (3 36,000		0 (N/A)	0 (0.0%)			0 Offsets: 5 Threads: 1
▶ 0x00440900	12,000,000 (3 36,000		0 (N/A)	0 (0.0%)			0 Offsets: 5 Threads: 1
▶ 0x0042e9c0		0 0 (0.0%)	3 36,000		0 (N/A)	0 (0.0%)			0 Offsets: 5 Threads: 1
 > 0x0042e9c0 > 0x004396c0 	12,000,000 (0 (N/A)	0 (0.0%)	0 (0.0%)	(a) 12,000,000 (0 Offsets: 5 Threads: 1
 ◊x0042e9c0 ◊x004396c0 ◊x004399c0 	12,000,000 (0 0 (0.0%)	3 36,000						
 > 0x0042e9c0 > 0x004396c0 		0 0 (0.0%)	3 36,000 3 36,000		0 (N/A)	0 (0.0%)	0 (0.0%)	%) 12,000,000 (0 Offsets: 5 Threads: 1
 ◊x0042e9c0 ◊x004396c0 ◊x004399c0 	12,000,000 (0 0 (0.0%)				0 (0.0%)) 0 (0.0%	6) 12,000,000 (6	0 Offsets: 5 Threads: 1

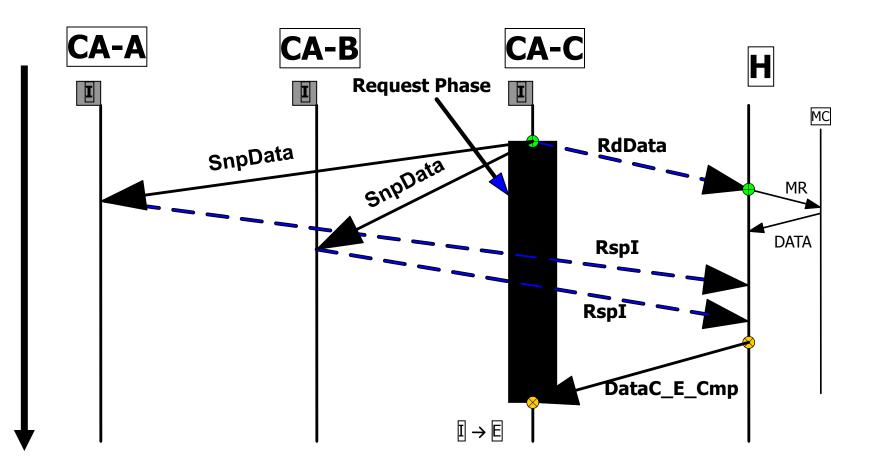
Only Events Referencing the Selected Line(s) are now in the Hotspot View Double Click to reach source/ASM view

Project Run Window Help									
8 • : ⇔ • ⇔ •									🔛 🔀 Inte
2007-12-15-08-22-51	2007-12-15-08-33-27 🕱								
Function	Module collected	Data Refs (%Total)	C Misses (%Total)	Avg. Latency	Total Latency (%Total) Cac	helines # Pages	# (%Total) MEI	M_LOAD_RETIRED.
sort		59,600,000 (22.8%				000 (23.9%)	1	1 (3.6%)	
<									
Total Selected:									
Total Scietted									
Granularity Function Proc	ess main_share.exe 🗸	Thread All	Module All	~	Filter by selec	tion 🕄 🟦 🔉	\$		
Experiment Summary Console	Cachelines View X							Top by Colle	ected Data Refs
2007-12-15-08-33-27	d / Euroction Collected Data	LLC Misses (%T	Avg Latency Total	Latency (C	optention (%	MEM LOAD RE	MEM LOAD RE	INST RETIRED	Contributors
2007-12-15-08-33-27 Cacheline Address / Offset / Thread		LLC Misses (%T			Contention (%	MEM_LOAD_RE	MEM_LOAD_RE	INST_RETIRED	
2007-12-15-08-33-27 Cacheline Address / Offset / Thread	1,959,600,000	400,000 (100	3 6,25	2,000,000 90	09,100,000 (400,000 (100	39,200,000 (8	1,920,000,000	Offsets: 2 T
2007-12-15-08-33-27 Cacheline Address / Offset / Thread 0x0042a3c0 ▶ Offset:0x04(4)	1,959,600,000 1,050,500,000 (400,000 (100 100,000 (25.0%)	3 6,25 3 3,319	2,000,000 90	09,100,000 (0 (N/A)	400,000 (100 100,000 (25.0%)	39,200,000 (8) 20,400,000 (46	1,920,000,000	Offsets: 2 T Threads: 1
2007-12-15-08-33-27 Cacheline Address / Offset / Thread	1,959,600,000	400,000 (100	3 6,25 3 3,319 3 2,933	2,000,000 90	09,100,000 (400,000 (100 100,000 (25.0%)	39,200,000 (8) 20,400,000 (46) 18,800,000 (42)	1,920,000,000	Offsets: 2 T Threads: 1 Threads: 1
2007-12-15-08-33-27 Cacheline Address / Offset / Threac	1,959,600,000 1,050,500,000 (909,100,000 (1	400,000 (100 100,000 (25.0%) 300,000 (75.0%)	3 6,25 3 3,319 3 2,933 3 2,504	2,000,000 90 ,000,000 (,000,000 (09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0%) 300,000 (75.0%)	39,200,000 (8 20,400,000 (46) 18,800,000 (42) 0 (0.0%	1,920,000,000 1,030,000,000 (. 890,000,000 (1	Offsets: 2 T Threads: 1 Threads: 1 Offsets: 1 T
2007-12-15-08-33-27 Cacheline Address / Offset / Threac ▼ 0x0042a3c0 ▶ Offset:0x00(4) ▶ Offset:0x00(0) ▶ 0x0064ff40	1,959,600,000 1,050,500,000 (909,100,000 (1 836,000,000 (400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%)	3 6,25 3 3,319 3 2,933 3 2,500 3 2,29	2,000,000 90 9,000,000 (9,000,000 (8,000,000	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%)	39,200,000 (8 20,400,000 (46 18,800,000 (42 0 (0.0%) 0 (0.0%)	1,920,000,000 1,030,000,000 (. 890,000,000 (1) 836,000,000 ()	Offsets: 2 T Threads: 1 Threads: 1 Offsets: 1 T Offsets: 1 T
2007-12-15-08-33-27 Cacheline Address / Offset / Threac ♥ 0x0042a3c0 ▶ Offset:0x00(4) ▶ Offset:0x00(0) ▶ 0x0064ff40 ▶ 0x0054ff40	1,959,600,000 1,050,500,000 (909,100,000 (1 836,000,000 (764,000,000 (400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%)	3 6,25 3 3,319 3 2,933 3 2,504 3 2,293 3 2,293 3 1,094	2,000,000 90 ,000,000 (,000,000 (3,000,000 2,000,000	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%)	39,200,000 (8 20,400,000 (46) 18,800,000 (42) 0 (0.0%) 0 (0.0%) 0 (0.0%)	1,920,000,000 1,030,000,000 (. 890,000,000 (1) 836,000,000 () 764,000,000 ()	Offsets: 2 T Threads: 1 Threads: 1 Offsets: 1 T Offsets: 1 T Offsets: 2 T
2007-12-15-08-33-27 Cacheline Address / Offset / Thread	1,959,600,000 1,050,500,000 (999,100,000 (1 836,000,000 (764,000,000 (366,000,000 (400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	3 6,25 3 3,319 3 2,93 3 2,50 3 2,29 3 1,09 3 828,1	2,000,000 9(,000,000 (,000,000 (8,000,000 2,000,000 8,000,000	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	39,200,000 (8 20,400,000 (45 18,800,000 (42 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	1,920,000,000 1,030,000,000 (. 890,000,000 (1) 836,000,000 () 764,000,000 () 366,000,000 ()	Offsets: 2 T Threads: 1 Threads: 1 Offsets: 1 T Offsets: 1 T Offsets: 2 T Offsets: 2 T Offsets: 2 T
2007-12-15-08-33-27 Cacheline Address / Offset / Thread	1,959,600,000 1,050,500,000 (909,100,000 (1 836,000,000 (764,000,000 (366,000,000 (276,000,000 (400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	3 6,25 3 3,319 3 2,93 3 2,50 3 2,250 3 1,09 3 1,09 3 828,1 3 42,00	2,000,000 90 ,000,000 (,000,000 (8,000,000 2,000,000 8,000,000	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	39,200,000 (8 20,400,000 (45 18,800,000 (42 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	1,920,000,000 1,030,000,000 (. 890,000,000 (1) 836,000,000 () 764,000,000 () 366,000,000 () 276,000,000 ()	Offsets: 2 T Threads: 1 Threads: 1 Offsets: 1 T Offsets: 1 T Offsets: 2 T Offsets: 2 T Offsets: 7 T
2007-12-15-08-33-27 Cacheline Address / Offset / Threac	1,959,600,000 1,050,500,000 (909,100,000 (1 836,000,000 (764,000,000 (366,000,000 (276,000,000 (14,000,000 (0	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	3 6,25 3 3,319 3 2,933 3 2,501 3 2,501 3 2,293 3 3,293 3 4,290 3 4,	2,000,000 90 ,000,000 (5,000,000 (8,000,000 2,000,000 8,000,000 000,000 (09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	39,200,000 (8 20,400,000 (46 18,800,000 (42 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	1,920,000,000 1,030,000,000 (. 890,000,000 (836,000,000 (366,000,000 (366,000,000 (1,276,000,000 (1,4,000,000 (0 1,4,000,000 (0	Offsets: 2 T Threads: 1 Threads: 1 Offsets: 1 T Offsets: 2 T Offsets: 7 T Offsets: 6 T Offsets: 6 T
2007-12-15-08-33-27 Cacheline Address / Offset / Threac ▼ 0x0042a3c0 ▶ Offset:0x00(4) ▶ Offset:0x00(0) ▶ 0x0054ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x0064ff80 ▶ 0x004369c0 ▶ 0x0042e580	1,959,600,000 1,050,500,000 (909,100,000 (1 836,000,000 (764,000,000 (366,000,000 (276,000,000 (14,000,000 (0 14,000,000 (0	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	3 6,25 3 3,319 3 2,50 3 2,50 3 2,29 3 1,09 3 828,1 3 42,00 3 42,00 3 42,00	2,000,000 90 ,000,000 (5,000,000 (8,000,000 2,000,000 8,000,000 000,000 (00,000 (0	09,100,000 (0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	39,200,000 (8 20,400,000 (46 18,800,000 (42 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	1,920,000,000 1,030,000,000 (. 890,000,000 (836,000,000 (764,000,000 (366,000,000 (276,000,000 (14,000,000 (0 14,000,000 (0)	Offsets: 2 T Threads: 1 Threads: 1 Offsets: 1 T Offsets: 2 T Offsets: 7 T Offsets: 6 T Offsets: 6 T
2007-12-15-08-33-27 Cacheline Address / Offset / Thread	1,959,600,000 1,050,500,000 (909,100,000 (1 836,000,000 (764,000,000 (276,000,000 (14,000,000 (0 14,000,000 (0 14,000,000 (0	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	3 6,25 3 3,319 3 2,93 3 2,50 3 2,29 3 1,09 3 828,0 3 42,00 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2,000,000 9(,000,000 (,000,000 (8,000,000 8,000,000 9,000,000 (000,000 (0 00,000 (0	09,100,000 ((N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	39,200,000 (8 20,400,000 (46 18,800,000 (47 0 0 (0.0%) 0 0 (0.0%)	1,920,000,000 1,030,000,000 (. 890,000,000 () 836,000,000 () 764,000,000 () 366,000,000 () 276,000,000 () 14,000,000 (0) 14,000,000 (0) 12,000,000 (0) 12,000,000 (0)	Offsets: 2 T Threads: 1 Threads: 1 Threads: 1 Offsets: 1 T Offsets: 1 T Offsets: 2 T Offsets: 2 T Offsets: 2 T Offsets: 7 T Offsets: 6 T Offsets: 4 T Offsets: 5 T
2007-12-15-08-33-27 Cacheline Address / Offset / Threac	1,959,600,000 1,050,500,000 (909,100,000 (1 836,000,000 (764,000,000 (276,000,000 (14,000,000 (0 14,000,000 (0 14,000,000 (0 12,000,000 (0	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	3 6,25 3 3,319 3 2,93 3 2,59 3 2,29 3 1,09 3 828, 3 42,01 3 42,01 3 42,01 3 42,01 3 42,01 3 3 6,01 3 36,01 3 36,01	2,000,000 94 ,000,000 (8,000,000 (8,000,000 8,000,000 000,000 (000,000 (0 000,000 (0 000,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	39,200,000 (8 20,400,000 (46 18,800,000 (47 0 0 (0.0%) 0 0 (0.0%)	1,920,000,000 1,030,000,000 (. 890,000,000 (836,000,000 (764,000,000 (366,000,000 (14,000,000 (14,000,000 (0 14,000,000 (0 12,000,000 (0	Offsets: 2 T Threads: 1 Threads: 1 Threads: 1 Offsets: 1 T Offsets: 1 T Offsets: 2 T Offsets: 2 T Offsets: 2 T Offsets: 7 T Offsets: 6 T Offsets: 4 T Offsets: 5 T
2007-12-15-08-33-27 Cacheline Address / Offset / Threac ♥ 0x0042a3c0 ▶ Offset:0x00(4) ▶ 0ffset:0x00(0) ▶ 0x0054ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x004359c0 ▶ 0x0042c580 ▶ 0x0042c580	1,959,600,000 1,050,500,000 (909,100,000 (1 836,000,000 (764,000,000 (276,000,000 (14,000,000 (0 14,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0) 12,000,000 (0) 12	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%)	3 6,25 3 3,319 3 2,50 3 2,50 3 2,29 3 1,09 3 828,1 3 42,00 3 42,00 3 42,00 3 42,00 3 36,00 3 36,000 3 36,0000 3 36,0000 3 36,0000 3 36,0000 3 36,00000 3 36,00000 3 36,00000 3 36,00000000000000000000000000000000000	2,000,000 94 ,000,000 (2,000,000 2,000,000 8,000,000 300,000 (00,000 (0 00,000 (0 00,000 (0 00,000 (0 00,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%)	39,200,000 (8 20,400,000 (42 18,800,000 (42 0 0 (0.0%) 0 0 (0.0%)	1,920,000,000 1,030,000,000 (. 890,000,000 (. 936,000,000 (764,000,000 (366,000,000 (14,000,000 (0 14,000,000 (0 14,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0)	Offsets: 2 T Threads: 1 Threads: 1 Offsets: 1 T Offsets: 2 T Offsets: 2 T Offsets: 5 T Offsets: 6 T Offsets: 5 T
2007-12-15-08-33-27 Cacheline Address / Offset / Threac	1,959,600,000 1,050,500,000 (909,100,000 (1 836,000,000 (764,000,000 (276,000,000 (14,000,000 (0 14,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	3 6,25 3 3,319 3 2,50 3 2,50 3 2,29 3 1,09 3 828,1 3 42,00 3 42,00 3 42,00 3 42,00 3 36,00 3 36,000 3 36,0000 3 36,0000 3 36,0000 3 36,0000 3 36,00000 3 36,00000 3 36,00000 3 36,00000000000000000000000000000000000	2,000,000 94 ,000,000 (8,000,000 2,000,000 000,000 (000,000 (000,000 (0 000,000 (0 000,000 (0 000,000 (0 000,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%)	39,200,000 (8 20,400,000 (46 18,800,000 (42 0 0 (0.0%) 0 0 (0.0%)	1,920,000,000 1,030,000,000 (. 890,000,000 (836,000,000 (764,000,000 (366,000,000 (366,000,000 (1,26,000,000 (1,4000,000 (0 14,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0	Offsets: 2 T Threads: 1 Threads: 1 Threads: 1 Offsets: 1 T Offsets: 1 T Offsets: 2 T Offsets: 2 T Offsets: 2 T Offsets: 6 T Offsets: 6 T Offsets: 5 T
2007-12-15-08-33-27 Cacheline Address / Offset / Threac ♥ 0x0042a3c0 ▶ Offset:0x00(4) ▶ 0ffset:0x00(0) ▶ 0x0054ff40 ▶ 0x0054ff40 ▶ 0x0054ff80 ▶ 0x004359c0 ▶ 0x0042c580 ▶ 0x0042c580	1,959,600,000 1,050,500,000 (909,100,000 (1 836,000,000 (764,000,000 (276,000,000 (14,000,000 (0 14,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0) 12,000,000 (0) 12	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%)	3 6,25 3 3,319 3 2,504 3 2,29 3 1,094 3 828,1 3 42,01 3 42,01 3 36,00 3 3 3 36,00 3 3 3 36,00 3 3 3 36,00 3 3 36,00 3 3 3 3 3 36,00 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2,000,000 94 ,000,000 (2,000,000 2,000,000 8,000,000 300,000 (00,000 (0 00,000 (0 00,000 (0 00,000 (0 00,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%)	39,200,000 (8 20,400,000 (46 18,800,000 (42 0 0 (0.0%) 0 0 (0.0%)	1,920,000,000 1,030,000,000 (. 890,000,000 (. 936,000,000 (764,000,000 (366,000,000 (14,000,000 (0 14,000,000 (0 14,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0)	Offsets: 2 T Threads: 1 Threads: 1 Threads: 1 Offsets: 1 T Offsets: 1 T Offsets: 2 T Offsets: 2 T Offsets: 2 T Offsets: 6 T Offsets: 6 T Offsets: 5 T
2007-12-15-08-33-27 Cacheline Address / Offset / Threac	1,959,600,000 1,050,500,000 (909,100,000 (1 836,000,000 (276,000,000 (14,000,000 (0 14,000,000 (0 14,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0) 12,000,000 (0) 12,	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)	3 6,25 3 3,319 3 2,504 3 2,29 3 1,094 3 828,1 3 42,01 3 42,01 3 36,00 3 3 3 36,00 3 3 3 36,00 3 3 3 36,00 3 3 36,00 3 3 3 3 3 36,00 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2,000,000 94 ,000,000 (8,000,000 (8,000,000 8,000,000 900,000 (000,000 (0 000,000 (0 000,000 (0 000,000 (0 000,000 (0 000,000 (0	09,100,000 (0 (N/A) 0 (N/A)	400,000 (100 100,000 (25.0%) 300,000 (75.0%) 0 (0.0%) 0 (0.0%)	39,200,000 (8 20,400,000 (46 18,800,000 (42 0 0 (0.0%) 0 0 (0.0%)	1,920,000,000 1,030,000,000 (. 890,000,000 (836,000,000 (764,000,000 (366,000,000 (366,000,000 (1,26,000,000 (1,4000,000 (0 14,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0 12,000,000 (0	Offsets: 2 T Threads: 1 Threads: 1 Threads: 1 Offsets: 1 T Offsets: 1 T Offsets: 2 T Offsets: 2 T Offsets: 2 T Offsets: 6 T Offsets: 6 T Offsets: 5 T

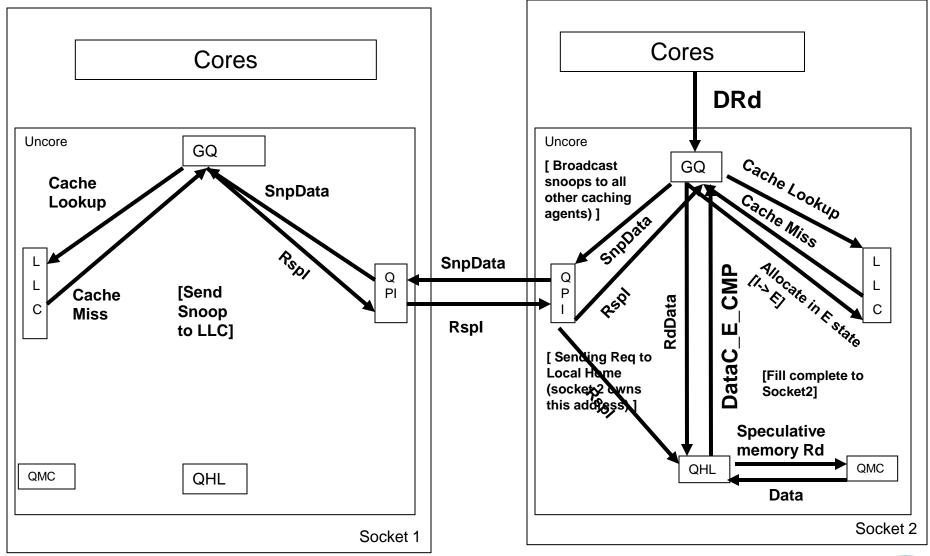
The Pointer "sum" is Causing the False Sharing


<u>E</u> dit <u>N</u> avigate <u>P</u> roject <u>R</u> un <u>W</u> indow <u>H</u> elp												
• 🔛 🖻 🕴 🚱 • 🗄 🗢 •											🔀 Intel(R) F	Perfo.
007-12-15-08-22-51												
ource Assembly Control Graph 🔠 🗮 🏹 🎲 🎲 🌺 🚺 Event	of Interest:	Collected Da	ta Refs	*								
Source	Collect	LLC Mis	Total	MEM L.	Address L.	Assembly			Collected D	LLC Mie	Total La	MEN
int sort(int* data, volatile int* sum, int size	Concern	220110111	10101111		0x1550 2		ebp		concetted offi	220110111	- Color Collin	
{					0x1551 2	-	ebp, esp					
					0x1553 2		ecx					
int i;					0x1554 2	push	esi					
<pre>for(i=0; i<size; +="data[i]*data[i];</pre" i++)*sum=""></size;></pre>	1,959,6	400,000	6,252	400,0	0x1555 5	mov	DWORD PTR [ebp-	4], 0x0h				
return *sum;					0x155C 5	jmp	sort+017h					
}					→ Block 1	sort+0eh:						
					0x155E 5	mov	eax, DWORD PTR	[ebp-4]				
					0x1561 5		eax, Ox1h					
					0x1564 5		DWORD PTR [ebp-	4], eax				
					⇒ Block 2	sort+017h:						
					0x1567 5		ecx, DWORD PTR					
					0x156A 5	-	ecx, DWORD PTR	[ebp+010h]				
					0x156D 5		sort+040h					
					▼ Block 3 5				1,959,600,0	400,000	6,252,00	40
					0x156F 5		edx, DWORD PTR					
					0x1572 5		eax, DWORD PTR					
					0x1575 5		ecx, DWORD PTR					
					0x1578 5		esi, DWORD PTR					
					0x157B 5		edx, DWORD PTR					
					0x157E 5		edx, DWORD PTR					
					0x1582 5		eax, DWORD PTR			400.000	0.004.00	
					0x1585 5		ecx, DWORD PTR	[eax]	553,600,000	400,000	2,034,00	40
					0x1587 5		ecx, edx					
					0x1589 5		edx, DWORD PTR		1 405 000 000		4.010.00	
					0x158C 5		DWORD PTR [edx]	, ecx	1,406,000,000		4,218,00	
					0x158E 5		sort+0eh					
					⇒ Block 4	sort+040h:		[_b0_b]				
					0x1590 6	MOA	eax, DWORD PTR					
]		>	<]		3
Total Selected:						Total Select	ted (4 instructions):					

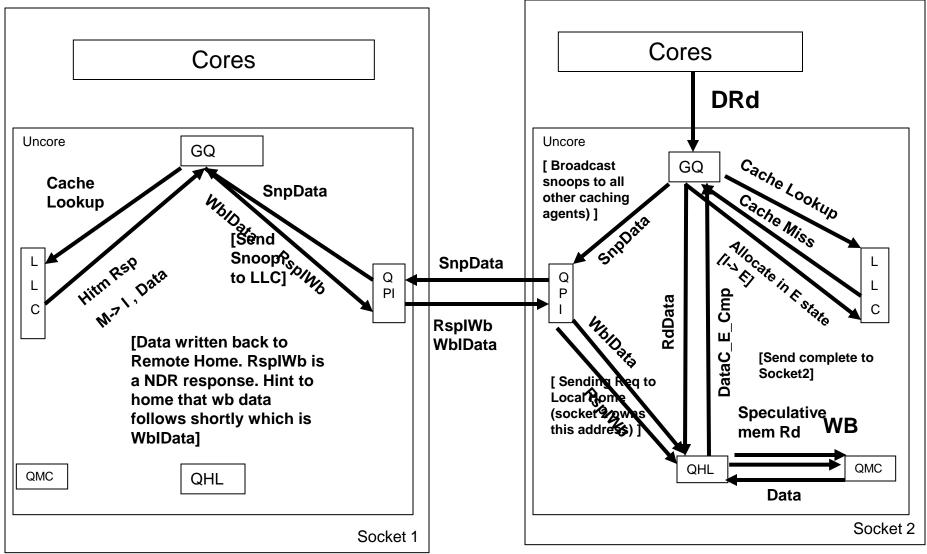
NUMA cacheline access



A NHM Socket is a Caching Agent and a Home Agent



Simple Data Read



RdData request after LLC Miss to Local Home (Clean Rsp)

RdData request after LLC Miss to Local Home (Hitm Response)

Uncore Opcode Match events

Match address, opcode using an MSR

- 37 bit address match
- 8 bit opcode match

Event	Event code	Umask
UNC_ADDR_OPCODE_MATCH.IOH_REQUEST_TRACKER	35	01
UNC_ADDR_OPCODE_MATCH.REMOTE_CORES_REQUEST_TRACKER	35	02
UNC_ADDR_OPCODE_MATCH.LOCAL_CORES_REQUEST_TRACKER	35	04

- Local Home data read, remote LLC hit
 - Ev=35, umask = 2, opcode = RspFwdS = 0001 1010, opcode only
- Local Home data read, remote LLC hitm
 - Ev=35, umask = 2, opcode = RspIWb = 0001 1101, opcode only
- RFO and perhaps other cases also (E->E problematic)

Summary

- Event based sampling performance analysis is extremely powerful on Intel® Core™ i7, XEON™ 5500 and 5600 Processor Families
- Correct methodology is essential
- Correct usage of events is essential
- Intel® PTU simplifies task

- PTU low level utilities can be invoked from the command line by adding the PTU bin directory to the path
- Low level PMU collector is SEP
 - -Invoked by vtsarun
 - Data is stored in file called tbsXXXYYY.tb5
 - -sep -start -ex 16 -ec
 - "CPU_CLK_UNHALTED.THREAD:sa=200000,UOPS _RETIRED.ANY,UOPS_RETIRED.STALL_CYCLES" app ./myapp -args " arg1 arg2"
 - -:sa=VAL explicitly sets SAV value for the event preceding it
 - -ex 16 causes sep to add PEBS buffer to event record
 - Selecting data profile does the same thing

- sep -start -ex 16 -ec "CPU_CLK_UNHALTED.THREAD:sa=2000000,UOPS _RETIRED.ANY,UOPS_RETIRED.STALL_CYCLES,BR_ INST_RETIRED.NEAR_CALL:lbr=2" -app ./myapp args " arg1 arg2"
 - Event names must be upper case
 - :lbr=VAL turns on LBR capture with filter value determined by VAL
 - Filter values can be determined with profile editor and show command button

LBR Value	Filter Result
1	All Branches
2	All Calls
3	User Calls
4	All Calls & Ret
5	User Calls & Ret

- sfdump5 creates test output based on data in tb5 file
- sfdump5 tbsXXXZZZ.tb5 -modules > modules.txt
 - -Summary of data
 - Total number of samples and events=samples*SAV
 - Events ordered by "event number"
 - Total number of samples/module/event_type

Example sfdump5 output

Event Summary CPU_CLK_UNHALTED.THREAD 2396 = Samples collected due to a 2000000 = Sample after value used 4792000000 = Total events (samples ²) INST_RETIRED.ANY 1327 = Samples collected due to a 2000000 = Sample after value used 2654000000 = Total events (samples ²)	during coller *SAV) this event during coller				
Module View (all values in decimal)					
Module Process					
Event	Events%	Samples	Events	Module Pa	ath
triad triad					
CPU_CLK_UNHALTED.THREAD		90.40%	2166	4332000000	/home/vtune/snb3/triad_src/triad
INST_RETIRED.ANY		89.98%	1194	2388000000	
vmlinux triad					
CPU_CLK_UNHALTED.THREAD		4.47%	107	214000000	vmlinux
INST_RETIRED.ANY		4.97%	66	132000000	

- Thus CPU_CLK_UNHALTED.THREAD is event 0 "ei-00"
- Thus Inst_RETIRED.ANY is event 1 "ei-01"

- Sfdump5 tbsXXXZZZ.tb5 /dumpsamples > samples.txt
 - -Text dump of all samples
 - -All sample records in a given file are same length
 - -Length = SUM of all required fields for all events
 - If PEBS record is collected for PEBS events, the corresponding fields exist for non PEBS event but are zero filled
 - Events with LBR collection are only collected with other events that have SAME LBR filter value
 - 33 X 64 bits are added

/dumpsamples example output

00000208 64--0033:0x00000000000000000 p-0x0000231C c-00 t-0x0000231C sgno-0x00000001 ei-00 tsc-0x0003C06F0CF15DD4 triad

•00000208 is the record number

•p-0x0000231C gives the process ID

•c-00 the core number of the interupt in this case 0

•t-0x0000231C the thread ID

•ei-00 the event number

•thus this is an record triggered by CPU_CLK_UNHALTED.THREAD

•See –modules output to determine event numbers for a particular collection •tsc-0x0003C06F0CF15DD4 the Time Stamp Counter •Triad the load module name

/dumpsamples example output LBRs

•record number is 91

•Event number (ei) is 0

- •Extra_01 -> extra_16 are the branch source addresses
- •Extra_17 -> extra_32 are the branch target addresses
- •extra_00 points to the most recent LBR source entry
 - In this case extra_06
- •Most recent target is extra_(extra_00+17)
 - •Thus last target is extra_23 = extra_23-0x00000000000400694
 - •And PEBS IP field is = 64--0033:0x00000000000400694-0

/dumpsamples example output PEBS

•Event number (ei) is 0 (in this case the latency event)

•Extra_01 is Event IP

IP of instruction after the instruction that caused the interupt ("IP+1")
Extra_02-> extra_17 are the register values at the completion of the offending instruction

PEBS Buffer field definitions

(x)->r_flags	//extra_00
(x)->linear_ip	//extra_01
(x)->rax	//extra_02
(x)->rbx	//extra_03
(x)->rcx	//extra_04
(x)->rdx	//extea_05
(x)->rsi	//extra_06
(x)->rdi	//extra_07
(x)->rbp	//extra_08
(x)->rsp	//extra_09
(x)->r8	//extra_10
(x)->r9	//extra_11
(x)->r10	//extra_12
(x)->r11	//extra_13
(x)->r12	//extra_14
(x)->r13	//extra_15
(x)->r14	//extra_16
(x)->r15	//extra_17
(x)->data_linear_address	//extra_18
(x)->data_source	//extra_19
(x)->latency	//extra_20

Precise Events

- Significant expansion of PEBS capability on Intel® Core[™] i7 Processors
 - 4 events simultaneously
 - Latency event = IPF data ear + bit pattern for data source
 - Branches retired by type
 - Calls retired + LBR gives call counts
 - Calls_retired + full PEBS gives function arguments on Intel64

Data Access Analysis and PEBS

- Data address profiling for loads and stores can be done as it is on Intel® Core[™]2 Processor Family
 - Full PEBS buffer + disassembly to identify registers with valid addresses at time of capture
 - Mem_inst_retired.load
 - Cannot deal with mov rax,[rax] type instruction
 - Mem_inst_retired.store
 - Not subject to constraint of loads
 - Inst_retired.any
 - Cannot deal with EIP+1 = first instr of Basic Block

Intel® Core™ i7 Processor PerfMon PEBS Buffer

63	BTS Buffer Base	0
	BTS Index	
	BTS Absolute Maximum	
	BTS Interrupt Threshold	
	PEBS Buffer Base	
	PEBS Index	
	PEBS Absolute Maximum	
	PEBS Interrupt Threshold	
	PEBS Counter Reset 0	
	PEBS Counter Reset 1	
	PEBS Counter Reset 2	
	PEBS Counter Reset 3	
	Merom/Penryn - Format 0000b	

Nehalem - Format 0001b

63	RFLAGS	0
	RIP	
	RAX	
	RBX	
	RCX	
	RDX	
	RSI	
	RDI	
	RBP	
	RSP	
	R8	
)		"
	R15	
	Global Perf Overflow MSR	
	Data Linear Address	
	Data Source (encodings)	
	Latency (core cycles)	

Load Latency Threshold Event:

Ability to trigger count on minimum latency

- Core cycles from load execute->data availability
- Linear address in PEBS buffer
 - Allows driver to collect physical address
 - Only total measurement of local/remote home access
- Data source captured in bit pattern
 - Actual NUMA source revealed

Only ONE latency event/min thresh can be taken per run

- Minimum latency programmed with MSR
- Global per core
 - 0x3F6 MS_PEBS_LD_LAT_THRESHOLD bits 15:0
- HW samples loads
 - EX: Sampling fraction for local dram= mem_inst_retired.latency_gt_128(DS= A or C) /mem_uncore_retired.local_dram

Front End/Decode Analysis

- Instruction decode BW has lower maximum
- Instruction flow interruption at RAT output
 - UOPS_ISSUED.STALL_CYCLES -RESOURCE_STALLS.ANY
 - HT ON
 - subtract half the cycles as well
 - Or UOPS_ISSUED.CORE_STALL_CYCLES-RESOURCE_STALLS.ANY
- ILD_STALL.LCP_STALL

NUMA, Intel® QuickPath Interconnect, and Intel ® Xeon 5500/5600 Processor DP systems

- Intel® QuickPath Interconnect (Intel® QPI) will greatly increase memory bandwidth of our platforms
- Integrated memory controllers on each socket access DIMMs
 - Intel® QPI provides cache coherency
 - Bandwidth improves by a lot
- Bandwidth improvement comes at a price
 - Non-Uniform Memory Access (NUMA)
 - -Latency to DIMMs on remote sockets is ~2X larger

Pealing away the Bandwidth layer reveals the NUMA Latency layer

NUMA Modes on DP Systems Controlled in BIOS

•Non-NUMA

- Even/Odd lines assigned to sockets 0/1
 - Line interleaving

•NUMA mode

- -First Half of memory space on socket 0
- -Second half of memory space on socket 1

Non-Uniform Memory Access and Parallel Execution

- Parallel processing is intrinsically NUMA friendly
 - Affinity pinning maximizes local memory access
 - Message Passing Interface (MPI)
 - Parallel submission to batch queues
 - Standard for HPC
- Shared memory threading is more problematic
 - Explicit threading, OpenMP* product, Intel® Threading Building Blocks (Intel® TBB)
 - NUMA friendly data decomposition (page-based) has not been required
 - OS-scheduled thread migration can aggravate situation

(intel)

*Other names and brands may be claimed as the property of others.

HPC Applications will see Large Performance Gains due to Bandwidth Improvements

- A remaining performance bottleneck may be due to Non-Uniform Memory Access latency
- This next level in the performance onion was not really addressed
 - Other performance tools offered little insight
 - Default usage of Non-NUMA BIOS settings
 - Except for some HPC accounts
- Intel® PTU data access profiling feature was designed to address NUMA
 - NHM events were designed to provide the required data

Gather and OOO execution

	no prefetch	pref = 8	pref = 16	pref = 32	pref = 64	pref = 96
2 fp ops	34.5	34.9	34.2	37.2	38.7	38.9
4 fp ops	44.5	34.5	33.6	38	42.2	41.4
8 fp ops	74.8	34.8	34.1	38.7	42.7	41.7
16 fp ops	108.9	34.6	34	42.2	50.9	45.6

Data collected on Core[™] 2 processor, prefetchers on

- PMU: Performance Monitoring Unit
 - Assembly of counters and programmable crossbars that allow counting and profiling using user selectable events

• FE: core pipeline Front End

- Responsible for branch prediction, instruction fetch, decode to uops, allocation of OOO backend resources
- BE: core pipeline Backend
 - Stage uops waiting for inputs, execute upon availability, retire in order

• RS: reservation station

- Where uops are staged for execution waiting for availability of their inputs
- ROB: Reorder Buffer
 - -Where uops wait prior to retirement until all older uops have retired and execution path is confirmed. Second point corrects when uops are executed on a mispredicted path.
- RAT: Resource Allocation Table
 - Allocates BE resources for uops prior to issuing them from front end of pipeline to the backend

- Cachelines are 64 bytes
- LLC: Last level Cache
 - -L3 on these processors
- LFB: line fill buffer
 - Buffers used for transfering cachelines into and out of L1D

• WB: writeback

- Modified data is written back to higher level in memory subsystem on eviction
- RFO: Read for Ownership
 - -Stores require cachelines are in exclusive ownership state so they can be modified

- Prefetch, by hardware (HW) or by explicit instruction (SW)
 - Request cacheline prior to execution of consuming instruction (load/store) with intention of hiding latency
- BW: bandwidth
 - Data moved/unit time. I prefer cachelines/cycle as that is what is measured
- Latency: time required to transfer a single line from source to usage.

- SIMD: Single instruction multiple data
 - -SSE parallel execution mode
 - -AKA vectorization
- X87: legacy floating point computation mode. In contrast to SSE FP instructions
- NT: Non Temporal
 - Data store mode that writebacks data in 64 byte aligned contiguous 64 byte chunks directly to dram without RFO
- HITM: Hit Modified
 - Snoop response when line is found in modified state in another cache

- HT: Intel® Hyper-threading Technology
 - Execution mode allowing uops from two threads to be executed in an intermingled flow, without an OS context switch, through a single core pipeline.
- Turbo: Intel® Turbo Boost Technology
 - Adjusting core frequency upwards on active core when other cores are under utilized, while staying within required power envelope.
 Enhances performance of single threaded execution

