HPCToolkit: Sampling-based Performance
Tools for Leadership Computing

John Mellor-Crummey
Department of Computer Science
Rice University
johnmc@cs.rice.edu

CScADS 2009 Workshop on Leadership Computing 1

http://hpctoolkit.org

Acknowledgments

o Staff
— Laksono Adhianto
— Mike Fagan
— Mark Krentel

e Student
— Nathan Tallent

e Alumni
— Gabriel Marin (ORNL)
— Robert Fowler (RENCI)
— Nathan Froyd (CodeSourcery)

Challenges

e Gap between typical and peak performance is huge

e Complex architectures are harder to program effectively
— processors that are pipelined, out of order, superscalar
— multi-level memory hierarchy
— multi-level parallelism: multi-core, SIMD instructions

e Complex applications pose challenges
— for measurement and analysis
— for understanding and tuning

 Leadership computing platforms: additional complexity
— more than just computation: communication, 1/O
— immense scale
— unique microkernel-based operating systems

Performance Analysis Principles

 Without accurate measurement, analysis is irrelevant

— avoid systematic measurement error
— instrumentation is often problematic

— measure actual system, not a mock up
— fully optimized production code on the platform of interest

 Without effective analysis, measurement is irrelevant

— pinpoint and explain problems in terms of source code
— binary-level measurements, source-level insight

— compute insightful metrics
— “unused bandwidth” or “unused flops” rather than “cycles”

 Without scalability, a tool is irrelevant
— large codes
— large-scale node parallelism + multithreading

Performance Analysis Goals

e Accurate measurement of complex parallel codes
— large, multi-lingual programs
— fully optimized code: loop optimization, templates, inlining
— binary-only libraries, sometimes partially stripped

— complex execution environments
— dynamic loading vs. static linking
— SPMD parallel codes with threaded node programs
— batch jobs

o Effective performance analysis

— insightful analysis that pinpoints and explains problems
— correlate measurements with code (yield actionable results)
— intuitive enough for scientists and engineers
— detailed enough for compiler writers

e Scalable to petascale systems

HPCToolkit Design Principles

 Binary-level measurement and analysis
— observe fully optimized, dynamically linked executions
— support multi-lingual codes with external binary-only libraries

e Sampling-based measurement (avoid instrumentation)
— minimize systematic error and avoid blind spots
— enable data collection for large-scale parallelism

Collect and correlate multiple derived performance metrics
— diagnosis requires more than one species of metric
— derived metrics: “unused bandwidth” rather than “cycles”

 Associate metrics with both static and dynamic context
— loop nests, procedures, inlined code, calling context

Support top-down performance analysis
— intuitive enough for scientists and engineers to use
— detailed enough to meet the needs of compiler writers

Outline

e Overview of Rice’s HPCToolkit

e Accurate measurement
o Effective performance analysis

 Pinpointing scalability bottlenecks

— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

e Using HPCToolkit

e Coming attractions

HPCToolkit Workflow

] _ profile
compile & link e e call stack
profile
[hpcrun]

app.
source

program
structure

visualization interpret profile
| database correlate w/ source
[hpcprof]

HPCToolkit Workflow

- : profile
compile & link e e call stack
' profile
[hpcrun]

program
structure

* For dynamically-linked executables on stock Linux
— compile and link as you usually do: nothing special needed
* For statically-linked executables (e.g. for BG/P, Cray XT)

— add monitoring by using hpclink as prefix to your link line
— uses “linker wrapping” to catch “control” operations
process and thread creation, finalization, signals, ...

visualization interpret profile
| database correlate w/ source
[hpcprof]

HPCToolkit Workflow

profile
execution
[hpcrun]

call stack
profile

compile & link
app.
source

* Measure execution unobtrusively

— launch optimized application binaries

— dynamically-linked applications: launch with hpcrun to measure
— statically-linked applications: measurement library added at link time
control with environment variable settings

— collect statistical call path profiles of events of interest

visualization interpret profile
[hpeviewer] database correlate w/ source
[hpcprof]

program
structure

10

HPCToolkit Workflow

profile
execution
[hpcrun]

call stack
profile

compile & link

app.
source

e Analyze binary with hpcstruct: recover program structure
— analyze machine code, line map, debugging information
— extract loop nesting & identify inlined procedures
— map transformed loops and procedures to source

visualization interpret profile
| database correlate w/ source
[hpcprof]

program
structure

11

HPCToolkit Workflow

] _ profile
compile & link e e call stack
profile
[hpcrun]

app.
source

program
structure

e Combine multiple profiles
— multiple threads; multiple processes; multiple executions

e Correlate metrics to static & dynamic program structure

visualization interpret profile
[hpcviewer] database —| correlate w/ source
[hpcprof]

12

HPCToolkit Workflow

profile
execution
[hpcrun]

call stack
profile

compile & link
app.
source

* Visualization
— explore performance data from multiple perspectives
— rank order by metrics to focus on what’s important

— compute derived metrics to help gain insight
— e.g. scalability losses, waste, CPI, bandwidth

visualization interpret profile
[hpeviewer] | € database correlate w/ source
[hpcprof]

program
structure

13

Outline

e QOverview of Rice’s HPCToolkit

e Accurate measurement

o Effective performance analysis

 Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

e Using HPCToolkit

e Coming attractions

14

Measurement

] _ profile
compile & link e e call stack
profile
[hpcrun]

app.
source

program
structure

visualization interpret profile
[hpeviewer] database correlate w/ source
[hpcprof]

15

Call Path Profiling

Measure and attribute costs in context
— sample timer or hardware counter overflows
— gather calling context using stack unwinding

Call path sample Calling context tree
return address

return address
return address

instruction pointer ‘

:
5 p

...not call frequency

Overhead proportional to sampling frequency...

16

Unwinding Optimized Code

e Optimized code presents challenges for unwinding

—optimized code often lacks frame pointers

—no compiler information about epilogues

—routines may have multiple epilogues, multiple frame sizes
—code may be partially stripped: no info about function bounds

e What we need

—where is the return address of the current frame?
— aregister, relative to SP, relative to BP

—where is the FP for the caller’s frame?
— aregister, relative to SP, relative to BP

e Approach: use binary analysis to support unwinding

17

Dynamically Loaded Code (Linux)

New code may be loaded/unloaded at any time

e When a new module is loaded
—note new code segment mappings
—build table of new procedure bounds

e When a module is unloaded

—mark end of profiler epoch: code addresses no longer apply
—flush stale cached information

18

Measurement Effectiveness

e Accurate

— PFLOTRAN on Cray XT @ 8192 cores
— 148 unwind failures out of 289M unwinds
— 5e-5% errors

— Flash on Blue Gene/P @ 8192 cores
— 212K unwind failures out of 1.1B unwinds
— 2e-2% errors

— SPEC2006 benchmark test suite (sequential codes)
— fully-optimized executables: Intel, PGI, and Pathscale compilers
— 292 unwind failures out of 18M unwinds (Intel Harpertown)
— 1e-3% error

e Low overhead

— e.g. PFLOTRAN scaling study on Cray XT @ 512 cores
— measured cycles, L2 miss, FLOPs, & TLB @ 1.5% overhead

— suitable for use on production runs

19

Outline

e QOverview of Rice’s HPCToolkit

e Accurate measurement

o Effective performance analysis

 Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

e Using HPCToolkit

e Coming attractions

20

Effective Analysis

compile & link

app.
source

P rofll_e call stack
execution -
profile
[hpcrun]

program
structure

interpret profile -
database -1 correlate w/ source
[hpcprof] e

Recovering Program Structure

 Analyze an application binary
— identify object code procedures and loops
— decode machine instructions
— construct control flow graph from branches
— identify natural loop nests using interval analysis
— map object code procedures/loops to source code
— leverage line map + debugging information

— discover inlined code
— account for many loop and procedure transformations

Unique benefit of our binary analysis

 Bridges the gap between
— lightweight measurement of fully optimized binaries

— desire to correlate low-level metrics to source level abstractions

22

Analyzing Results with hpcviewer

" mbperf_iMesh.cpp &2 | "% TypeSequenceManager.hpp &3

public: bool

J iﬁ %} ‘Cs

22 * Define less-than comparison for EntitySequence
23 * of the entity handles in the pointed-to Entity$
24 */
25 class SequenceCompare {
26

@. stl_tree.h

ntitySequence*
start_handle();

costs for
¢ inlined procedures

loops

e function calls in full context

w\\ Callers View 'l-;, Flat View

Scope
¥ main

v

¥ [P testB(void*, int, double const*, int const*)

inlined from mbperf_iMesh.c
¥| loop at mbperf=iMesh.cpp: 280-313
¥ [BP imesh_getvtxarrcoords_

| PAPI_L1_DCM (I) ¥ PAPI_TOT_CYC () F

.8le+08
.43e+08
.20e+08

W W o o

¥ [MBCore:get_coords(unsigned long const*, int, double*) cc 3.20e+08

V| loop at MBCore.cpp: 681-693|

¥| inlined from stl_tree.h: 472
¥|loop at stl_tree.h: 1388

¥|inlined from TypeSequenceManager.hpp: 27 |1 78e+08

3.20e+08
2.04e+08
2.04e+08

TypeSequenceManager.hpp: 27 1.78e+08

S —————

37.
37.
23.
23.
20.
20.

.63e+08 100 %
.35e+08 96.7%

1%
1%
7%
6%
6%
6%

l1.13e+11 100 % &

1.10e+11 97.6%m|

0w o O Y NN

e+

.l16e+10
.16e+10
.38e+09
.37e+09
.56e+09
.56e+09

19.
19.
8.
8.

7

7.

RS

.5%
.9%
.3%
1%
1%
3%
3%
.6%‘:

6%

Principal Views

e (Calling context tree view
— “top-down” (down the call chain)
— associate metrics with each dynamic calling context
— high-level, hierarchical view of distribution of costs

e (Caller’s view
— “bottom-up” (up the call chain)
— apportion a procedure’s metrics to its dynamic calling contexts
— understand costs of a procedure called in many places

 Flat view
— “flatten” the calling context of each sample point
— aggregate all metrics for a procedure, from any context
— attribute costs to loop nests and lines within a procedure

24

Outline

e QOverview of Rice’s HPCToolkit

e Accurate measurement

o Effective performance analysis

* Pinpointing scalability bottlenecks

— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

e Using HPCToolkit

e Coming attractions

25

The Problem of Scaling

Efficiency

1.000 e—
0.875
0.750
— ldeal efficiency
0.625 — Actual efficiency
0.500
v &8

CPUs

Note: higher is better
26

Goal: Automatic Scaling Analysis

 Pinpoint scalability bottlenecks
e Guide user to problems
* Quantify the magnitude of each problem

 Diagnose the nature of the problem

27

Challenges for Pinpointing Scalability Bottlenecks

e Parallel applications
— modern software uses layers of libraries
— performance is often context dependent

* Monitoring
— bottleneck nature: computation, data movement, synchronization?

— 2 pragmatic constraints
— acceptable data volume
— low perturbation for use in production runs

Example climate code skeleton

28

Performance Analysis with Expectations

e Users have performance expectations for parallel codes
— strong scaling: linear speedup
— weak scaling: constant execution time

 Putting expectations to work

— measure performance under different conditions
— e.g. different levels of parallelism or different inputs

— express your expectations as an equation

— compute the deviation from expectations for each calling context

— for both inclusive and exclusive costs
— correlate the metrics with the source code
— explore the annotated call tree interactively

29

Weak Scaling Analysis for SPMD Codes

Performance expectation for weak scaling
— work increases linearly with # processors
— execution time is same as that on a single processor

 Execute code on p and q processors; without loss of generality, p < q
« LetT, = total execution time on i processors

« For corresponding nodes n, and n,
— let C(n,) and C(n,) be the costs of nodes n, and n,

- Expectation: C(n_)=C(n,)

|C -C |
 Fraction of excess work: X (n)= (n,)-C(n,) parallel overhead

total time

30

Strong Scaling Analysis for SPMD Codes

Performance expectation for strong scaling
— work is constant
— execution time decreases linearly with # processors

 Execute code on p and q processors; without loss of generality, p < q
« Let T, =total execution time on i processors

« For corresponding nodes n, and n,,
— let C(n,) and C(n,) be the costs of nodes n, and n,

e Expectation: qu(i’lq) =Pcp(np)

C (n)-pC (n arallel overhead
e Fraction of excess work: XS(C,nq)=[q (1)~ PC,(p)] P
q1, total time

31

Pinpointing and Quantifying Scalability Bottlenecks

-~ ~ -~ ~
v
P x ¢ OK ~ Qx %g‘j\,i\!&f —
LAY S S L
AV
%l .ZOOK

32

Scaling on Multicore Processors

e Compare performance
— single vs. multiple processes on a multicore system

e Strategy

— differential performance analysis
— subtract the calling context trees as before, unit coefficient for each

33

Multicore Losses at the Procedure Level

65606 hpcviewer: [Profile Name] (-
"¢ getrates.f "¢ rhsf.f90 &3 | "% diffflux_gen_uj.f =0
L subroutine rhsf(q, rhs)
s 0

! Changes

! Ramanan Sankaran - 01/04/05

! 1. Diffusive fluxes are computed without having to convert units.

6! Ignore older comments about conversion to CGS units.

‘! This saves a lot of flops.
! 2. Mixavg and Lewis transport modules have been maede interchengeable
! by adding dummy arguments in both.

Author: James Sutherland

!

12 !} Date: April, 2082
13 !
14 ! This routine calculates the time rate of change for the ’
15 ! momentum, continuity, energy, and species equations.
1A)

¢ Calling Context View | 5 Callers View | ™% Flat View =0

284 7|6 o
Scope 1-core (ms) (1) l-core (ms) (E) | 8-core(l) (ms) () 8-core(l) (ms) (B)... Multicore Loss ¥
Experiment Aggregate Metrics 1.11e08 100 % 1.11e08 100 % 1.88e08 100% 1.88e08 100 % 7.64e07 100% ()
rhsf 1.07e08 96.5% 6.60e06 5.9% 1.77e08 94.1% 1.65e07 8.8%| 9.92e06 13.0% -
diffflux_proc_looptool 2.86e06 2.6% 2.86e06 2.6% B.12e06 4.3% 8.12e06 4.3%| 5.27e06 6.9%
integrate_erk_jstage_|t 1.09e08 98.1% 1.25e06 1.1% 1.84e08 97.9% 5.94e06 3.2%| 4.70e06 6.13%
GET_MASS_FRAC.in.VARIABLES_M1.49e06 1.3% 1.49e06 1.3% €.08e06 3.2% 6.08e06 3.2%| 4.59006 6£.0%
ratx 1.0le07 9.1% 1.00e07 9.0%| 4.4le07 23.5% 1.40e07 7.4%| 3.95e06 5.2%
qssa 3.52e06 3.2% 3.52e06 3.2% 5.71e06 3.0% 5.71e06 3.0% 2.18e06 2.9%
ratt 3.26e07 29.2% 1.48e07 13.3% 4.38e07 23.3% 1.66e07 8.8%| 1.76e06 2.3%
CALC_INV_AVG_MOL WT.in.THER9.70e05 0.9% 9.70e05 0.9% 2.68e06 1.4% 2.68e06 1.4%| 1.70e06 2.2%
computeheatflux_looptool 1.46006 1.3% 1.46e06 1.3% 2.88¢06 1.5% 2.88e06 1.5% 1.41¢06 1.8% :
rdwdot 3.09e06 2.8% 3.09e06 2.8% 4.33e06 2.3% 4.33e06 2.3%| 1.24e06 1.6%

34

Multicore Losses at the Loop Level

65606 hpcviewer: [Profile Name] =
"¢ getrates.f "¢ rhsf.f0 " diffflux_gen_uj.f &3 =0
193 *ge. 2) then —~

194 l__ujUpper3d = (3 -1 +1)/3*34+1-1

195 dom=1,1__ujUpper3d, 3

196 don=1, n_spec - 1

197 do 1¢__2 -1, nz

198 do 1¢__1 « 1, ny

199 do 1t__9@ = 1, nx

200 diffflux(1t__0, 1t__1, 1t__2, n, m) = -ds_mixavg

201 *(Le__0, 1t__1, 1t__2, n) * (grad_ys(1t__0, 1t__1, 1t__2, n, m) + y

202 *s(1t_.0, 1t__1, 1t__2, n) * grad_mixmw(1lt__0, 1t__1, 1t__2, m))

203 diffflux(le__0, 1t__1, 1t__2, n_spec, m) - difff

204 *lux(l1t__08, 1t__1, 1t__2, n_spec, m) - diffflux(1t__0, 1t__1, 1&__2 ()

205 *. n, m)

206 diffflux(lt__9, 1t__1, 1t__2, n, m+ 1) = -ds_m b

207 *xavg(1lt__ 0, 1t__1, 1t__2, n) * (grad_ys(1t__0, 1t__1, 1t__2, n, m

AR P 1) a wel1E A 1F 1 0% 2 A Y arad mivew(1lE A TF 1 Nk 2

*¢ Calling Context View l =< Callers View ["% Flat Vuewl =0

284 7|6/
Scope 1-core (ms) (1) l-core (ms) (E) | 8-core(l) (ms) () 8-core(l) (ms) (E)... Multicore Loss ¥

» loop at diffflux_gen_uj.f: 197-22:2.86e06 2.6% 2.86e06 2.6% 6.12e06 4.3% 8.12e06 4.3%8| 5.27e06 6.9% O
loop at integrate_erk_jstage_It_gel .09e08 98.1% 1.25e06 1.1% 1.84e08 97.9% 5.94e06 3.2%| 4.70e06 6.1%
loop at variables_m.f90: 88-99 1.49e06 1.3% 1.49e06 1.3% €.08e06 3.2% 6.08e06 23.28| 4.60e06 6.0%
loop at rhsf.f90: 516-536 2.70e06 2.4% 1.31e06 1.2%| 6.49e06 3.5% 3.72e06 2.0%| 2.41e06 3.13
loop at rhsf.f90: 538-544 3.35006 3.0% 1.45e06 1.3% 7.06e06 3.8% 31.82006 2.0%| 2.36e006 3.1%
loop at rhsf.f90: 546-552 2.56e06 2.3% 1.47e06 1.3% ©5.86e06 3.1% 3.42e06 1.8%| 1.96e06 2.6%
loop at thermchem_m.f90: 127-18.00e05 0.7% £.00e05 0.7% 2.28e06 1.2% 2.28e06 1.2% 1.48e06 1.9%
loop at heatflux_It_gen.f: 5-132 1.46e06 1.3% 1.46e06 1.3% 2.88e06 1.5% 2.88e06 1.5% 1.4le06 1.8%
loop at rhsf.f90: 576 6.65e05 0.6% 6.65e05 0.6% 1.87e06 1.0% 1.87e06 1.0%| 1.20e06 1.6%
loop at getrates.f: 504-505 8.00e06 7.2% 8.00e06 7.2% £8.74006 4.7% 8.74006 4.7%| 7.35¢05 1.0% S
loop at derivative_x.f90: 213-6901.78e06 1.6% 1.78e06 1.6% 2.47e08 1.3% 2.47e06 1.3%| 6.95e05 0.9% 3

35

Outline

e QOverview of Rice’s HPCToolkit

e Accurate measurement
o Effective performance analysis

 Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

e Using HPCToolkit

e Coming attractions

36

Where to Find HPCToolkit

e DOE Systems
— jaguar: /ccs/proj/hpctoolkit/pkgs/hpctoolkit
— intrepid: /home/projects/hpctoolkit/pkgs/hpctoolkit
— franklin: /project/projectdirs/hpctk/pkgs/hpctoolkit

e NSF Systems
— ranger: /scratch/projects/hpctoolkit/pkgs/hpctoolkit

* For your local systems, you can download and install it

— documentation, build instructions, link to our svn repository
— svn repository: https://outreach.scidac.gov/hpctoolkit

— we recommend downloading and building from svn

— important notes:

— obtaining information from hardware counters requires downloading
and installing PAPI

— PAPI needs a kernel patch (perfmon2 or perfctr) to access hardware
performance counters

— hwc support not yet standard in Linux; this will soon change
37

Available Guides

http://hpctoolkit.org/documentation.html

e Using HPCToolkit with statically linked programs [pdf]
— a guide for using hpctoolkit on BG/P and Cray XT

e Quick start guide [pdf]
— essential overview that almost fits on one page

e The hpcviewer user interface [pdf]

o Effective strategies for analyzing program performance with
HPCToolkit [pdf]

— analyzing scalability, waste, multicore performance ...
e HPCToolkit and MPI [pdf]

e HPCToolkit Troubleshooting [pdf]

— why don’t | have any source code in the viewer?
— hpcviewer isn’t working well over the network ... what can | do?

38

Setup

 Add hpctoolkit’s bin directory to your path
— see earlier slide for HPCToolkit’'s HOME directory on your system

e Adjust your compiler flags (if you want attribution to source)
— add -g flag after any optimization flags

e Add hpclink as a prefix to your Makefile’s link line
— e.g. hpclink CC -o myapp foo.o ... lib.a -1lm ...

e Decide what hardware counters to monitor
— Cray XT and Linux only; no counter support on BG/P yet
— papi_avail
— find out what hardware counter events are available
— you can sample any event listed as “profilable”

39

Launching your Job

e Modify your run script to enable monitoring

— Cray XT: set environment variable in your PBS script

— e.g. setenv HPCRUN_EVENT_LIST “PAPI_TOT_CYC@3000000
PAPI_L2_MISS@400000 PAPI_TLB_MISS@400000
PAPI_FP_OPS@400000”

— Blue Gene/P: pass environment settings to gqsub

— qsub -A YourAllocation -q prod -t 30 -n 2048 --proccount 8192 --
mode vn --env(BG STACKGUARDENABLE=0:\
HPCRUN_EVENT_LIST=WALLCLOCK@1000:\
HPCRUN_MEMSIZE=16000000 flash3.hpc

until efix 38 is installed,
need this to compensate
for a kernel bug

40

Analysis and Visualization

 Use hpcstruct to reconstruct program structure

— e.g. hpcstruct myapp
— creates myapp.hpcstruct

* Use hpcsummary script to summarize measurement data
— e.g. hpcsummary hpctoolkit-myapp-measurements-5912

e Use hpcprof to correlate measurements to source code
— select one or a few files from your measurements to analyze
— e.g. hpcprof -S myapp.hpcstruct -l “path_to_src/*” hpctoolkit-

myapp-measurements-5912/myapp-0000-000-983409-764.hpcrun

— produces hpctoolkit-myapp-database-5912

 Use hpcviewer to open resulting database

— if using hpcviewer on a the leadership computing platform, add

recent Java implementation to your path (for hpcviewer)
— Cray XT: module load java
— Blue Gene/P: add /opt/soft/.../javal/bin to your path

41

Outline

e QOverview of Rice’s HPCToolkit

e Accurate measurement
o Effective performance analysis

 Pinpointing scalability bottlenecks
— scalability bottlenecks on large-scale parallel systems
— scaling on multicore processors

e Using HPCToolkit

e Coming attractions

42

Coming Attractions

 Performance analysis of multithreaded code
— pinpoint & quantify insufficient parallelism and parallel overhead
— pinpoint & quantify idleness due to serialization at locks

e Kernel upgrade on Blue Gene/P (eFix 38)
— will remove the need for BG_STACKGUARDENABLE=0

e Limited hardware counter measurement on Blue Gene/P

Statistical analysis of all profiles from a parallel run
— enable one to pinpoint load imbalance issues

Understand how executions unfold over time
— space-time diagrams based on call stack sampling

43

