
Adaptive Threading Using Counter-Based

Performance Introspection

Robert Fowler
Allan Porterfield
Anirban Mandal
Stephen Olivier

Paul Horst
David O’Brien
August 2, 2011

Renaissance Computing Institute (RENCI)
University of North Carolina at Chapel Hill

From Using Performance

Reflection in System Software,

Fowler, Cox, Elnikety, and

Zwanepoel, HOTOS 2003

TPC-W workload driving

MySQL on an Athlon 1.3

GHz Server backend.

Detect and throttle

request admissions on

DTLB and L2 cache miss

Rates.

History: Performance Reflection on a
Commercial Transaction Workload

Moore's law: A 1-slide review

Empirical observation and self-fulfilling prophesy:

Circuit element count doubles every N months. (N ~18)
• Technological explanation: Features shrink, semiconductor dies grow.
• Corollaries: Gate delays decrease. Wires are relatively longer/slower.
• In the past, the focus has been making "conventional" processors faster.

— Faster clocks
— Clever architecture and implementation  instruction-level parallelism.
— Clever architecture (speculation, predication, etc), HW/SW Prefetching, and massive

caches ease the “memory wall” problem.

• Problems:
— Faster clocks --> more power.
— Power scaling law for CMOS: P = α V2F, but Fmax~ V so P ~ F3

– Where α is proportional to the avg. number of gates active per clock cycle.
— Smaller transistors + long wires  either slow clock, or pipelined communication.
— More power goes to overhead: cache, predictors, “Tomasulo”, clock, …
— Big dies --> fewer dies/wafer, lower yields, higher costs
— Aggregate effect --> Expensive, power-hog processors on which some signals take 6

cycles (or more) to cross.

• The multi-core response
— Parallelism becomes explicit at the instruction stream level.
— Power-aware designs, limited clock rates.
— Try desperately to improve off-chip bandwidth.
— Rely on really big (shared) caches.

3

Intel MIC-2 (Aubrey Isle)

Moore’s Law Revisited for DRAM.

• As more transistors were added to processor chips, they
got a lot faster.
—Clever architectures and on-chip concurrency.
—Technology: Smaller transistors are faster.

• As more transistors were added to memory chips, they got a
lot bigger.
—Cleverness went into reliability, yield, …
—Small transistors are fast, but weak.
—Little increase in on chip concurrency.
—Very low Rent’s law (surface/volume ratio) exponent!

Introduction Size Pins Cycle Time Bandwidth

DDR 2000 2 GB 168 5 ns 3.2 MB/sec

DDR2 2003 4 GB 184 3.75 ns 8.5 MB/sec

DDR3 2007(2009) 16 GB 240 5 ns 12.8 MB/sec

DDR4 2012(?) 25.6(?) MB/sec

1-slide over-simplified DRAM tutorial

• SDR/DDR/DDR2/DDR3 are similar

—Differences: level of prefetching (1,2,4,8) and pipelining,
number and size of “banks” (aka buffers) (4 or 8) per “rank”.

—32 or 64 bytes/transfer, ~256 transfers per bank.

• Memory transfer can take up to 3 operations:

– Close open page on a miss (PRECHARGE)

– Open new target page (ACTIVE)

– Read data from the page (ACCESS), pipeline-able.

• Operation timing (DDR2/800)

—Precharge time ~60ns.

—Transfer burst ~5ns.

— If no bank locality  at least 12 banks to fill bus/memory
controller pipe.

It’s not just about cache misses!

compute_rhs:

Total Operations

DRAM Accesses DRAM Misses DRAM Page Hits DRAM Page Conflicts

one copy running 4.59e09 7.06e08 3.27e09 6.27e08

two concurrent

copies.

8.12e09 1.74e09 4.62e09 1.48e09

Experiment: Measure memory controller events with one and two

copies of BT running.

Less than 2X memory

accesses

2.5X DRAM page

misses!

1.4X hits

2.4X conflicts

(~ page replacements)

Little’s Law.

• Fundamental formula for queuing theory (conservation of waiting)

— (mean # in system/queue) = (arrival rate) (mean residence time)

• Communication (memory) restatement

— (concurrency) = (bandwidth) (latency)

 To increase bandwidth without decreasing latency, you have to
increase the concurrency of the system

— Wider channels to send more bits per operation.

— Concurrent, i.e., pipelined, operations.

Bottlenecks  bandwidth plateaus, effective latency includes
queuing times.

pChase benchmark

•Developed by Pase and Eckl @IBM
•Multi-threaded benchmark used to test memory throughput under
carefully controlled degrees of concurrent accesses
•Each thread executes a controllable number of ‘pointer-chasing’
operations – a memory-reference chain

— Pointer to the next memory location is stored in the current
location. Grow and randomize chain to defeat cache,
prefetch.
— Dereference pointers in k independent chains concurrently,
then use them.

•Large-k bandwidths are comparable to STREAM measurements at
“common” optimization levels.
•Our Modifications

— Added wrapper scripts around pChase to iterate over
different numbers of memory reference chains and threads
— Added affinity code to control thread placement

•Available at http://pchase.org

pChase resultsDual-socket AMD Opteron (WS1)

2 AMD Barcelona 2.1 GHz processors

8 cores total

16GB of dual-rank DDR2/667 memory

• per-core limit of 7 outstanding references

• linear speedup for small number of concurrent misses

• chip-wide bottleneck (1.62 – 1.81 peak speedup with 4 cores)

• performance nearly doubles with second socket

Quad-socket AMD Barcelona (QB2)

• same behavior as WS1 for 1, 2 sockets

• system-wise coherence limit with 3 and 4 active sockets

• no bandwidth increase after 50 concurrent misses active (HT bottleneck)

4 AMD (Barcelona) 2.3 GHz processors

16 cores total

32GB of dual-rank DDR2/667 memory

AMD Magnycours (6168)

4

1 4 x AMD 6168, 12 core, 1.9 GHz

32 x 4 Gig DDR3-1333 MHz,

 Reg ECC 4-rank

Nehalem EX: 4 x 2.0 GHz

1 2

3 4

64 x 2GB DDR3 1066Mhz

MAESTRO runtime layer

 Concept: MTA-like runtime for commodity microprocessors

• Support flexible parallel programming model

— Software threads exceeding available hardware cores/threads

— Allow parallel software threads to create more threads (nesting)

— Allow frequent inter-thread synchronization

— Scalable synchronization: like a cache hierarchy for locks

— Support lock-free methods

• Run on commodity hardware like x86
— Hardware does not have specialized features to facilitate programming

model

– No hardware thread creation

– Limited hardware support for synchronization

— Memory Locality is a concern
– Separate address spaces

– NUMA main memory and locally-shared caches.

Why MAESTRO?

Computation is now cheap (free?)

Memory Bandwidth is expensive

• Strategy: use the excess computational power to
understand and improve application performance.
—Understand interactions between hardware threads sharing

various limited physical resources (e.g., memory controllers,
DIMMs, cache, network access)

—Study dynamic mechanisms for detecting resource contention

—Interact with thread and application scheduling to limit contention
and improve performance

MAESTRO/Qthreads

• Qthreads is a cross-platform general purpose parallel
runtime
— Developed at Sandia National Laboratory

— Supports light-weight threads

— Supports a variety of synchronization methods

— Intended to match future hardware threading environments

• By integrating MAESTRO with Qthreads
— Increased stability of both projects

— Shortened development time on infrastructure

— Increased the number of applications that can use both
projects

MAESTRO/Qthreads OpenMP Extensions

• Implemented an OpenMP (3.0) interface
— Use the Rose source-to-source translator (LLNL)

— Implemented and suggested modifications to XOMP interface

— Implemented the XOMP interface inside the Qthreads library

• Can compile OpenMP applications producing a valid
executable with a single (long) command line

MAESTRO Scheduling

• Nodes have multiple memory levels

— Qthreads has concept of locality – “shepherds”

— Scheduler takes advantage of shared L3 cache by
changing default shepherd from single core to group
of cores that share a cache

• Node performance bottlenecks on shared resources
(memory, IO or network bandwidth)

— Use RCRTool to dynamically detect contention

— Implement “work throttling” to prevent thrashing or
increase a single thread’s allocation

Hierarchical Load Balancing

• Parallel Programming models are often agnostic to
memory location --- but performance isn’t

— OpenMP lacks affinity support
– But vendors have non-portable extensions for thread layout

and binding

– First touch used to spread memory across the system on
many systems

— Chapel and X10 have locality domains (usually a node)
in the language but we aim to exploit locality
transparently within the node where possible
– Locality requires programmer effort

• Hierarchical Load Balancing (HLB) addresses load
balance and locality together

Hierarchical Load Balancing

• Load Balancing between threads is often done by work
stealing
— Studied and implemented in Cilk by Blumofe et al.

• Task Locality tailored to shared caches with PDFS
(Parallel Depth First Schedule)
— Studied by Blelloch

— Schedule close to serial order – if serial order has locality so
will PDFS

— Challenges: contention for shared queues and long access time
to access a remote queue

• HLB uses a two level hierarchy for scheduling and
stealing to get the best of both mechanisms

Hierarchical Load Balancing

• Inter-chip shared LIFO queue to exploit shared cache
and provide load balance among local cores

• FIFO work stealing between chips for further low
overhead load balancing while maintaining locality

— Only one thread per chip performs work stealing
when the queue is empty

— Thief steals enough work, if available, for all of the
threads that share its queue

Hierarchical Load Balancing

• Implemented a number of versions of work stealing and
tested on many of the BOTS benchmarks

• Hardware – Dell M910 with four 8-core Intel x7550 chips 2.0GHz,
128GB fully QPI connected

• Test Schedulers – ICC, GCC and 5 Qthreads implementations

• Q – per core lock-free FIFO queues with round robin task
placement

• L – per core LIFO queues with round robin task placement

• CQ – centralized queue

• WS – per core LIFO queues with FIFO work stealing

• MTS – per-chip LIFO queues with FIFO work stealing

Health Simulation Performance

Health Simulation Performance

Stock Qthreads scheduler

(per-core FIFO queues)

Health Simulation Performance

Per-core LIFO queues

Health Simulation Performance

Per-core LIFO queues with

FIFO work stealing

Health Simulation Performance

Per-chip LIFO queues with

FIFO work stealing

Work Throttling Idea

• In some situations performance improved by reducing
load

—Good old fashioned working set scheduling applied at
the thread level.

• Implementation

— RCRDaemon – stores current performance meters
into a globally-accessible shared memory region
– The important measures are node- or socket-wide and are in

the “uncore”.

– These are shared resources, so a 3rd-person view is needed.

— MAESTRO Scheduler – adjusts the number of
hardware threads depending on the level of shared
resource contention

RCRDaemon

• Create a set of user-visible “meter”s that characterize
overall system state
— Calculates a user-defined set of performance meters

– Core or socket level

– Uses hardware performance counters (core and uncore or
nest counters)

– Computes adjustable short term average/min/max

– Meters updated several thousand times a second

– Each meter defines 2 trigger levels
 high/low contention detected

— Runs at as root. (First version was a kernel module.)

— Implemented for Intel and AMD systems

RCRdaemon Blackboard

• Communication to/from Daemon
— Use a shared memory region

– Build DAG using /proc of system hardware

— Alternate implementation uses /debugfs

• Daemon writes:
– Meters

• Application code optionally writes:
– Summary of application state (procedures, loops, …)

– Thread scheduling state (task, parallel loop, barrier, etc.)

RCRTool Strategy on AMD processors:

FPU

L2

L1

CTRS

Core 0

FPU

L2

L1

CTRS

Core 1

Nest
L3

DDR-A DDR-B DDR-C

Mem-CTL

HT-1 HT-1 HT-1
NIC

= Sensor = Counter

FPU

L2

L1

CTRS

Core 2

FPU

L2

L1

CTRS

Core 3

One core (0) measures nest events. The others monitor core events.

Core 0 processes the event logs of all cores.

Intel 7500 has many Un-core PMUs

of
boxes

Counters/
box

C-Box 8 6

S-Box 2 4

B-Box 2 4

M-Box 2 6

R-Box 1 16

U-Box 1 1

W-Box 1 4

RCRDaemon and HPM drivers

The RCRDaemon on a node is actually a set of per-socket threads
with optional per-core monitors.

• AMD core meters: perf_events + libpfm
— standard meters - CPI, L2MissRatio, L2MissCycleRatio, L3MissCycleRatio

• AMD socket meters: perf_events + libpfm
— Standard meters - L3MissRatio, MemoryBandwidth, MemoryConcurrency, MemoryLatency

• Intel core meters: perf_events + libpfm
— standard meters - CPI, L2MissRatio, L2MissCycleRatio, L3MissCycleRatio

• Intel socket meters: Intel IPM driver for MSRs
— standard meters - IMTOccupancy0, IMTOccupancy1, IMTOccupancyMax OpenMP

On-line observation of memory bottlenecks

•On Nehalem Ex.

• B-box has an In Memory Table (IMT) that tracks all in-

flight memory block operations and ensures that they

are all unique.

• IMT average occupancy = (valid-count *32 / cycles)

•AMDs have these counters

— L3_CACHE_MISSES,
— CPU_READ_COMMAND_REQUESTS*
— CPU_READ_COMMAND_LATENCY*

RCR Tool

System memory models and Limits to Concurrency

 Observed memory concurrecncy for Applications

Resource Centric Reflection Calibration on AMD

Memory

concurrency load

generator using

pCHASE

Memory bound

Scientific Applications

(LBMHD, QCD etc.)

Multi-core System

Some Early RCR tool outputs.

Observed memory concurrency

Lattice Boltzmann MHD

with different optimization levels

gcc –O3 (left) vs. gcc –O2 (right)

Results

Observed memory concurrency

Lattice QCD

“MILC” and “chroma”

MAESTRO Load Throttling

• Dedicated thread
— Reads RCRdaemon information from blackboard

— Models shared resource contention

— Informs scheduler when contention changes

— Shares core with RCRdaemon

• Scheduling Decision
— Before acquiring more tasks check contention level

– If #workers higher than allowed, enter wait state

– Release core if contention level drops or termination
detected

— In loop that hands out parallel iterations

– If #workers higher than allowed, enter wait state

– Release core when last iteration assigned

Early Work-Throttling Results

• LDMAPPER1 – Genetics Linkage Disequilibrium map
— Hardware – Dell M910 with four 8-core Intel x7550 chips

2.0GHz, 128GB fully QPI connected

— 30 runs of each - noticeable variation
– Qthreads (32 threads) best 1:21.8 avg 1:32.7

– MAESTRO (31 + daemon) best 1:20.1 avg 1:31.7

— But a lot more is possible: Static experiments
– Qthreads (24 threads) best 1:07.2 avg 1:15.4

– Qthreads (16 threads) best 1:02.8 avg 1:19.7

— Throttling Intel OpenMP
– ICC (32 threads) best 1:15.6 avg 1:27.5

– ICC (24 threads) best 1:15.0 avg 1:20.4

– ICC (16 threads) best 1:27.1 avg 1:27.4

RCRTool: User interface

• The information gathered by RCRdaemon is useful for
application performance tuning

— Current performance tools focus on first-person
view of performance

— Bottlenecks now occur in shared resources
– L3 cache, memory controllers/DIMMS, network utilization,

IO bandwidth etc.

• RCRTool provides the user with a global (or third-
person) view of the interactions of multiple threads,
whether in your job or not, running on a single node

• Online monitoring of job or offline examination of a
trace file

Resource Centric Reflection(RCRTool)

Resource Centric Reflection(RCRTool)

Resource Centric Reflection(RCRTool)

Resource Centric Reflection(RCRTool)

Resource Centric Reflection(RCRTool)

Resource Centric Reflection(RCRTool)

Resource Centric Reflection(RCRTool)

Severe imbalance at memory controllers

(This is the predecessor of the code shown on previous slides.)

RCRTool without MAESTRO

RCRTool without MAESTRO

RCRDaemon and First Person Tools

• Connecting RCR and HPCToolkit
— Hotwire HPCToolkit so an monitored event is split into two: above,

and below threshold

—$ mpirun -np 16 hpcrun -e PAPI_L2_TCM@100000#8200^ chroma
{chroma_args}

• Future
— Can HPCToolkit deposit interpretable breadcrumbs in the

RCRDaemon blackboard?

• Tools that insert instrumentation and other libraries
—Just a small matter of programming to detect presence of

RCRDaemon and to read/write from the blackboard.

HPCToolkit and RCRTool

QCD `chroma’ code – clover (part of Fermi-QCD benchmark suite);
Running on 16 cores on a 4 socket, quad-core AMD Barcelona;
RCRTool observing socket-wide memory concurrency;
RCR-augmented metrics appear in hpcviewer

Questions?

