
CScADS Petascale Performance Tools Workshop, July 2007 1

Understanding Executables
Working Group

Center for Scalable Application Development Software

CScADS Petascale Performance Tools Workshop, July 2007 2

Working Group Members

• Drew Bernat
• Robert Cohn
• Mike Fagan
• Jeff Hollingsworth
• Mark Krentel
• Matt Legendre
• John Mellor-Crummey
• Nathan Tallent
• Bill Williams

CScADS Petascale Performance Tools Workshop, July 2007 3

Instruction Decoding/Encoding

• Discussion topics
– Intel’s Xed
– Wisconsin’s emerging Instruction API

CScADS Petascale Performance Tools Workshop, July 2007 4

Xed

• Versions
– version 1 information available at

http://rogue.colorado.edu/Pin/docs/13211/Doc/Xed/html
– version 2 to be released soon

• Robert Cohn to provide early access to manual for Xed-2 to the Rice and
Wisconsin teams

• Capabilities
– instruction decoding

• point it at a memory location and ask it to try decoding an instruction at that location
• Xed fills out a data structures based on the data at the specified memory location,

length
– instruction re-encoding

• abstract representation simplifies instruction synthesis
• Xed finds smallest encoding of the desired instruction

• Abstract representation
• abstract opcode

– FP, ALU, Branch, …
• [base, index, displacement, scale]
• not generic enough to descibe Itanium

CScADS Petascale Performance Tools Workshop, July 2007 5

Xed Properties

• Appropriate for first-party and 3rd party use
• No global state: it is reentrant, can be used in MT environment
• Using Xed

– works one instruction at a time
– the client then is responsible for managing the decoding of sequences Xed

• Itanium decoder/encoder is completely different

CScADS Petascale Performance Tools Workshop, July 2007 6

Instruction API

• Planned to be more general than Xed in several respects
– cross platform support
– client-focused interface
– abstraction facilities

• register read/write set
• frame relevant?
• etc.

– aim: extensible representation
• annotations framework that applies to instructions?

• A plan forward
– Xed is a promising implementation technology for the x86* flavor of

the Instruction API
– Pin uses a similar abstraction on top of Xed to simplify its work

CScADS Petascale Performance Tools Workshop, July 2007 7

Analyzing Control Flow in Binaries

• Candidate shared infrastructure: OpenAnalysis
– Rice/Colorado collaboration on representation-independent program analysis

tools
– currently used for analysis of loops in binaries by HPCToolkit project
– available at http://developer.berlios.de/projects/openanalysis

• Interests from Intel and Wisconsin
– iterative refinement of CFGs

• support use of flow analysis to iteratively refine the CFG representation
• requirements:

– CFG representation must support “unknown” targets
• e.g. destination of edge is node “HELL”

• Potential inputs to switch statement analysis
– Cristina Cifuentes - de-compiler, binary translation work

• she has been working switch statement decoding
• worked on static analysis to support binary translation

– Gabriel Marin
• worked on understanding switch statements in EEL

CScADS Petascale Performance Tools Workshop, July 2007 8

Symtab API
• Capabilities

– supports incremental addition of information
– plan to support fast load of precomputed information from files
– reads out of dwarf to understand

• where local variables are in frame
• variables in registers

• UW has draft for symbol table API
• Action items

– UW will supply draft of the API to Nathan Tallent
– Rice will provide feedback

• Rice will look at Alpha ABI procedure descriptors
• define candidate interface for run-time access to procedure descriptors for stack unwinding

– possible interest from Pin to use API; Robert will review API spec
• Requirements for unwinding support procedure descriptors

– for microkernel OS, if this info is computed ahead of time, it needs to be provided in the
binary

• link it in as static data
– design the API that is agnostic to whether the implementation is eager or lazy

• on disk, or computed on the fly

