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Stream Processors Offer Efficiency and 
Performance
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Hardware EfficiencyÆ
Greater Software Responsibility

• Hardware matches VLSI strengths
– Throughput-oriented design
– Parallelism, locality, and partitioning
– Hierarchical control to simplify instruction sequencing
– Minimalistic HW scheduling and allocation

• Software given more explicit control
– Explicit hierarchical scheduling and latency hiding 

(schedule) 
– Explicit parallelism (parallelize)
– Explicit locality management (localize)

Must reduce HW “waste” but no free lunch
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Outline
• Hardware strengths and the stream 

execution model
• Stream Processor hardware

– Parallelism 
– Locality
– Hierarchical control and scheduling
– Throughput oriented I/O

• Implications on the software system
– Current status

• HW and SW tradeoffs and tuning options
– Locality, parallelism, and scheduling

• Petascale implications



Effective Performance on Modern VLSI
• Parallelism

– 10s of FPUs per chip
– Efficient control

• Locality
– Reuse reduces 

global BW
– Locality lowers power

• Bandwidth 
management
– Maximize pin utilization 
– Throughput oriented I/O (latency tolerant)

90nm Chip
$200
1GHz

64-bit FPU
(to scale)

12mm

0.5mm

Increasing 
power

Decreasing
BW

Parallelism, locality, bandwidth, 
and efficient control (and latency hiding)



Bandwidth Dominates Energy 
Consumption

Operation Energy
(0.13um) (0.05um)

32b ALU Operation 5pJ 0.3pJ
Read 32b from 8KB RAM 50pJ 3pJ
Transfer 32b across chip (10mm) 100pJ 17pJ
Transfer 32b off chip (2.5G CML) 1.3nJ 400pJ

1:20:260 local to global to off-chip ratio yesterday
1:56:1300 tomorrow

Off-chip >> global >> local >> compute



Stream Execution Model Accounts for 
Infinite Data
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Stream Execution Model Accounts for 
Infinite Data

DSMS

Scratch Store

I nput str eams

Register
Quer y

Streamed
Result

Stored
Result

Archive

Stored
Relations

input output

Process streams of “bite-sized” data 
(predetermined sequence)



Generalizing the Stream Model
• Data access determinable well in advance 

of data use
– Latency hiding
– Blocking

• Reformulate to gather – compute – scatter
– Block phases into bulk operations

• “Well in advance”: enough to hide latency 
between blocks and SWP

• Assume data parallelism within compute 
phase



Blocking is application specific 
Increases parallelism and reuse

Stream memory operations – bulk transfers of entire 
data blocks following predetermined sequence
Kernel operations – apply computation to entire 
blocks exposing locality and simplifying control

Producer-consumer locality – intermediate results 
reused on chip reducing off-chip BW demand

Latency hiding – streaming sequence of blocks 
enables overlapping of  I/O and computation

Generalizing the Stream Model

n-body simulation

input output

tim
e

load0

K10

store0

load1

K11

store1

load2

K12

load3

I/O computation

store2 K13

K20

K21

K22

positions K1 K2tmp 
forces forces

load1

K11

store1

K21



Generalizing the Stream Model
• Medium granularity bulk operations

– Kernels and stream-LD/ST
• Predictable sequence (of bulk operations)

– Latency hiding, explicit communication
• Hierarchical control

– Inter- and intra-bulk
• Throughput-oriented design
• Locality and parallelism

– kernel locality + producer-consumer reuse
– Parallelism within kernels
Generalized stream model matches VLSI 

requirements



Outline
• Hardware strengths and the stream 

execution model
• Stream Processor hardware

– Parallelism 
– Locality
– Hierarchical control and scheduling
– Throughput oriented I/O

• Implications on the software system
– Current status

• HW and SW tradeoffs and tuning options
– Locality, parallelism, and scheduling

• Petascale implications



Parallelism and Locality in Streaming 
Scientific Applications

90nm Chip
$200
1GHz

64-bit FPU
(to scale)

12mm

0.5mm

1 clock

Increasing 
power

Decreasing
BW

input output

Streaming model

VLSI
• Parallelism

– 10s of FPUs per chip
– Efficient control

• Locality
– Reuse reduces 

global BW
– Locality lowers 

power

• Bandwidth management
– Maximize pin utilization 
– Throughput oriented I/O (latency tolerant)

• medium granularity bulk operations
– kernels and stream-LD/ST

• Predictable sequence
• Locality and parallelism

– kernel locality + producer-consumer 
reuse



Stream Processor Architecture Overview
• Parallelism

– Lots of FPUs
– Latency hiding

• Locality
– Partitioning and hierarchy

• Bandwidth management
– Exposed communication (at multiple levels)
– Throughput-oriented design

• Explicit support of stream execution model
– Bulk kernels and stream load/stores

Maximize efficiency: 
FLOPs / BW, FLOPs / power, and FLOPs/ area



Stream Processor Architecture (Merrimac)

64 
64-bit 

MADDs

Multiple FPUs for high-performance

positions K1 K2 forces



Stream Processor Architecture (Merrimac)

64 
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 bank
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 pins

8 GB

<64 GB/s

3,840 GB/s

Need to bridge 100X bandwidth gap 
Reuse data on chip and build locality hierarchy

positions K1 K2 forces



Stream Processor Architecture (Merrimac)

64 
64-bit 

MADDs

3,840 GB/s

DRA
M

 bank
DRA

M
 bank

I/O
 pins

8 GB

<64 GB/s

LRF provides the bandwidth through locality 
Low energy by traversing short wires

positions K1 K2 forces



Stream Processor Architecture (Merrimac)

~61 KB
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Stream Processor Architecture (Merrimac)

~61 KB

cluster sw
itch
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itch
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64 

64-bit 
MADDs

(16 clusters)

DRA
M

 bank
DRA

M
 bank

I/O
 pins

8 GB

<64 GB/s

Clustering exploits kernel locality (short term reuse) 
Enables efficient instruction-supply

positions K1 K2 forces



Stream Processor Architecture (Merrimac)

~61 KB

cluster sw
itch

cluster sw
itch

SRF lane
SRF lane

1 MB

3,840 GB/s512 GB/s

DRA
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 bank
DRA

M
 bank

I/O
 pins

8 GB

<64 GB/s

SRF reduces off-chip BW requirements (producer- 
consumer locality); enables latency-tolerance

positions K1 K2 forces

64 
64-bit 

MADDs 
(16 clusters)



Stream Processor Architecture (Merrimac)

~61 KB

cluster sw
itch

cluster sw
itch

SRF lane
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1 MB
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Inter-cluster and
 m
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DRA

M
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8 GB

<64 GB/s

Inter-cluster switch adds flexibility: 
breaks strict SIMD and assists memory alignment

positions K1 K2 forces
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Stream Processor Architecture (Merrimac)

~61 KB

64 
64-bit 

MADDs 
(16 clusters)

cluster sw
itch

cluster sw
itch

SRF lane
SRF lane

1 MB

3,840 GB/s512 GB/s

Inter-cluster and
 m

em
ory sw

itches

cache bank
cache bank
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M

 bank
DRA

M
 bank

I/O
 pins

128 KB8 GB

64 GB/s<64 GB/s

Cache is a BW amplifier for select accesses

positions K1 K2 forces



Stream Processors

• And
– ClearSpeed CSX600, MorphoSys, …
– GPUs?

DRAM Interface

N
etw

ork Interface

M
em

ory 
C

hannel
Scalar Processor

AG μctrl

cluster cluster cluster cluster

cluster cluster cluster cluster

cluster cluster cluster cluster

cluster cluster cluster cluster

12.0mm

12.1m
m

[source: IBM]

[courtesy: SPI]

Somewhat specialized processors 
but over a range of applications
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SRF Decouples Execution from Memory

cluster sw
itch

cluster sw
itch

SRF lane
SRF lane

Inter-cluster and
 m

em
ory sw

itches

cache bank
cache bank

DRA
M

 bank
DRA

M
 bank

I/O
 pins

Unpredictable I/O Latencies Static latencies

Decoupling enables efficient static architecture 
Separate address spaces (MEM/SRF/LRF)



Hierarchical Control
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Bulk memory 
operations

Bulk kernel 
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GPP 
Core

“Scalar” 
operations

Staging area for bulk operations enables software 
latency hiding and high-throughput I/O



Hierarchical Control
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Decoupling allows efficient and effective instruction 
schedulers



Streaming Memory Systems
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Streaming Memory Systems Help 
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Capable memory system even more important for 
applications



Streaming Memory Systems
• Bulk stream loads and stores

– Hierarchical control

• Expressive and effective addressing modes
– Can’t afford to waste memory bandwidth
– Use hardware when performance is non-deterministic

• Automatic SIMD alignment 
– Makes SIMD trivial (SIMD ≠

 

short-vector)

ScatterGatherStrided access

Ox Oy Oz H1x H1y H1z H2x H2y H2z

SRF
MEM

Stream memory system helps the programmer and 
maximizes I/O throughput
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Stream Architecture Features
• Exposed deep locality hierarchy 

– explicit software control over data allocation 
and data movement

– flexible on-chip storage for capturing locality
– staging area for long-latency bulk memory transfers

• Exposed parallelism
– large number of functional units
– latency hiding



Stream Architecture Features
• Exposed deep locality hierarchy 

– software managed data movement (communication
• Exposed parallelism

– large number of functional units and latency hiding

• Predictable instruction latencies
• Optimized static scheduling
• High sustained performance



Stream Architecture Features
• Exposed locality hierarchy 

– software managed data movement
• Exposed parallelism

– high sustained performance
• Most instructions manipulate data
• Minimal hardware control structures

– no branch prediction
– no out-of-order execution
– no trace-cache/decoded cache
– simple bypass networks
– …

Efficient hardware Æ greater software responsibility



Streaming Software Responsible for 
Parallelism, Locality, and Latency Hiding

• Software explicitly manages locality hierarchy
– identify bulk transfers and sequence blocks
– allocate SRF and LRF

• Software explicitly manages parallelism
• Software explicitly manages communication

– Including pipeline communication

• Schedule for latency hiding (medium-granularity)
• Recode algorithms to stream model

– expose parallelism          
– expose locality
– expose structure

Challenges in user/compiler and 
compiler/hardware interfaces
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• Hardware strengths and the stream 
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Current State of the Art in Stream 
Software Systems

• Kernel/Stream 2-level programming model
– Good kernel scheduling 



Compiler Optimizes VLIW Kernel 
Scheduling

Optimized schedule

Merrimac decouples memory and execution 
enables static optimization and reduces hardware



Current State of the Art in Stream* 
Software Systems       * Stream model as defined earlier

• Kernel/Stream 2-level programming model
– Good kernel scheduling 
– Decent SRF allocation and stream operation 

scheduling IF SIZES KNOWN
• Minor success otherwise

• Sequoia
– Extends to more than 2 levels

• Great auto-tuning opportunities
– Perfect knowledge of execution pipeline timing
– Explicit communication
– Experiments in Sequoia and StreamC

Stream processing simplifies tuning but demands 
more from the software system and programmer



Results (Simulation)
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What Streams Well?
• Data parallel in general?
• Data – control decoupled algorithms

– No dataÆcontrolÆdata dependence
• Work in progress

– Traversing data structures in general
– Dynamic block sizes (data-dependent output rates)

• Later on
– Building data structures
– Dynamic data structures

Dynamic mutable data structures will require more 
tuning over a larger search space
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Locality Tradeoffs 
and Tuning Opportunities

• Register organization
– Number of registers
– Connectivity (recall cluster organization)
– Inter-PE communication
– Blocking for registers

• Stream register file (local memory)
– Hardware optimized addressing modes
– Cross-PE accesses
– Blocking 

• Reactive caching
– Hardware?
– Software only?
– Prefetch and wasted bandwidth issues

So far very ad-hoc decisions 
in both hardware and software



Parallelism Tradeoffs 
and Tuning Opportunities

• 3 types of parallelism
– Data Level Parallelism
– Instruction Level Parallelism
– Thread (Task) Level Parallelism



Data-Level Parallelism in Stream 
Processors

Instruction Sequencer

FPUFPUFPUFPUFPUFPUFPU

FPUFPUFPUFPU

FPUFPUFPUFPU

FPUFPUFPUFPU

• SIMD
• Independent 

indexing per FPU
• Full crossbar 

between FPUs
• No sub-word 

operation



Data- and Instruction-Level Parallelism 
in Stream Processors

• A group of FPUs = 
A Processing 
Element (PE) =       
A Cluster

• VLIW
• Hierarchical 

switch provides 
area efficiency

Instruction Sequencer

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

Instruction Sequencer

FPU

FPU FPU

FPU FPU

FPU FPU

FPU

FPU

FPU FPU

FPUFPU

FPU FPU

FPU



Data-, Instruction- and Thread-Level 
Parallelism in Stream Processors

• Sequencer group
– Each instruction 

sequencer runs 
different kernels

Instruction Sequencer

FPU

FPU FPU

FPU FPU

FPU FPU

FPU

Instruction Sequencer

FPU

FPU FPU

FPU FPU

FPU FPU

FPU



• Applications
– Throughput oriented vs. real-time constraint
– Strong vs. weak scaling
– Regular vs. irregular
– Dynamic / (practically-)static datasets

• Applications
– Throughput oriented vs. real-time constraint
– Strong vs. weak scaling
– Regular vs. irregular
– Dynamic / (practically-)static datasets

• Hardware
– DLP: SIMD, short vectors
– ILP: VLIW / execution pipeline, OoO
– TLP: MIMD, SMT (style)
– Communication options 

• Partial switches, direct sequencer-sequencer switch

Parallelism Tradeoffs 
and Tuning Opportunities

Hardware models for some options, active research 
on other options and performance models



Heat-map (Area per FPU) – 64 bit
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Application Performance
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Scheduling Tradeoffs 
and Tuning Opportunities

• Hierarchical scheduling
– Better suited for auto-tuning

• Hardware support for bulk scheduling?
– Any software control?
– Merrimac and Imagine use a hardware score-board 

at stream instruction granularity (loads/stores or 
kernels)

• Interaction between scheduling and 
allocation in general
– Stream and local register allocation

Very little study on effect of hardware support for 
bulk scheduling – active research direction 
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Petascale Implications
• Power / energy

– Closer is better
• Interconnect

– Smaller diameter
– Shorter distances?
– Simpler network topology?

• Reliability
– Fewer components
– Interesting fault-tolerance opportunities

• Cost
– Fewer chips
– More efficient use of off-chip bandwidth

Hardware makes more sense, tuning makes more 
sense, recoding is a problem



Conclusions
• Stream Processors offer extreme performance and efficiency 

– rely on software for more efficient hardware

• Empower software through new interfaces
– Exposed locality hierarchy
– Exposed communication
– Hierarchical control
– Decouple execution pipeline from unpredictable I/O

• Help software when it makes sense
– Aggressive memory system with SIMD alignment
– Multiple parallelism mechanisms (can skip short-vectors ☺)
– Hardware assist for bulk operation dispatch

• Software system heavily utilizes auto-tuning/search

Stream Processors offer path to petascale; 
rely on, and are better targets for, automatic tuning
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