Stream Processing: a New HW/SW Contract for
High-Performance Efficient Computation

Mattan Erez

[SEE==ECE

The University of Texas at Austin
CScADS Autotuning Workshop
July 11, 2007
Snowbird, Utah

Stream Processors Offer Efficiency and
¢ Performance

® Peak GFLOPS @ Peak DP
B m”2/GFLOPS B W/GFLOPS

.90nm 65nm
° 25

W or mm~2/GFLOP

Huge potential impact on petaflop system design

rHardware Efficiency >
& Greater Software Responsibility

e Hardware matches VLSI strengths
— Throughput-oriented design
— Parallelism, locality, and partitioning
— Hierarchical control to simplify instruction sequencing
— Minimalistic HW scheduling and allocation

e Software given more explicit control

— Explicit hierarchical scheduling and latency hiding
(schedule)

— Explicit parallelism (parallelize)
— Explicit locality management (localize

Must reduce HW “waste” but no free lunch

Outline

e Hardware strengths and the stream
execution model

e Stream Processor hardware
— Parallelism
— Locality
— Hierarchical control and scheduling
— Throughput oriented I/0O

e Implications on the software system
— Current status

« HW and SW tradeoffs and tuning options
— Locality, parallelism, and scheduling

e Petascale implications

04/05/2007

Effective Performance on Modern VLSI

= Parallelism —+] |- 0.5mm
. _64-bit FPU
— 10s of FPUs per chip ;s aie) PL sonm o
— Efficient control $200
] 1GHz
e Locality

— Reuse reduces Decrea
global BW BYg
— Locality lowers power asing
er
e Bandwidth
management

12mm

— Maximize pin utilization)
— Throughput oriented I/O (latency tolerant)

Parallelism, locality, bandwidth,

and efficient control (and latency hiding)

Bandwidth Dominates Energy
¢ Consumption

Operation Energy

(0.123um) (0.05um)
32b ALU Operation 5pJ 0.3pJ
Read 32b from 8KB RAM 50pJ 3pJ

Transfer 32b across chip (10mm) 100pJ 17pJ

Transfer 32b off chip (2.5G CML) 1.3nJ 400pJ

1:20:260 local to global to off-chip ratio yesterday
1:56:1300 tomorrow

Off-chip >> global >> local >> compute

Stream Execution Model Accounts for

! -.":‘f"
A2
s
o

«&PStream Execution Model Accounts for

Stream Execution Model Accounts for

i 7
L
rﬁf}-‘f
F
o

Process streams of “bite-sized” data
(predetermined sequence)

Generalizing the Stream Model

e Data access determinable well in advance
of data use

— Latency hiding
— Blocking

e Reformulate to gather — compute — scatter
— Block phases into bulk operations

e “Well in advance”: enough to hide latency
between blocks and SWP

e Assume data parallelism within compute
phase

/70 computation

awi

tmp
forces
v

Latency hiding — streaming sequence of blocks

enables overlapping of I/O and computation

Generalizing the Stream Model

e Medium granularity bulk operations
— Kernels and stream-LD/ST

e Predictable sequence (of bulk operations)
— Latency hiding, explicit communication

e Hierarchical control
— Inter- and intra-bulk

e Throughput-oriented design

e Locality and parallelism

— kernel locality + producer-consumer reuse
— Parallelism within kernels

Generalized stream model matches VLSI

reguirements

e Stream Processor hardware
— Parallelism
— Locality
— Hierarchical control and scheduling
— Throughput oriented I/0O

Parallelism and Locality in Streaming
Scientific Applications

VLSI

e Parallelism
— 10s of FPUs per chip
— Efficient control

e Locality

— Reuse reduces
global BW

— Locality lowers
power

< Bandwidth management
— Maximize pin utilization
— Throughput oriented I/O (latency tolerant) |-— 12mm

—-I In— 0.5mm

64-bit FPU | 90rm Chip
(to scale) $200

1GHz

Streaming model

< medium granularity bulk operations
— Kkernels and stream-LD/ST

= Predictable sequence input output

e Locality and parallelism

— kernel locality + producer-consumer
reuse

Stream Processor Architecture Overview

e Parallelism
— Lots of FPUs
— Latency hiding
e Locality
— Partitioning and hierarchy

e Bandwidth management

— Exposed communication (at multiple levels)
— Throughput-oriented design

e Explicit support of stream execution model
— Bulk kernels and stream load/stores

Maximize efficiency:

FLOPs / BW, FLOPs / power, and FLOPs/ area

Stream Processor Architecture (Merrimac)

64
64-bit
MADDs

Vo YYYYY

Multiple FPUs for high-performance

Stream Processor Architecture (Merrimac)

Aueq NVYHd

>
>
>
s

= 64
] .
<64 B/s 8 64-bit
=1 MADDs

-

3,840 GB/s

Aueq NVHd

¥

Need to bridge 100X bandwidth gap

Reuse data on chip and build locality hierarchy

’ O 64-bit
S MADDSs

3.840 GB/s

.

LRF provides the bandwidth through locality

Low energy by traversing short wires

Stream Processor Architecture (Merrimac)

0
&
9
:
g
- - 64
® .
C o ® 3,840 GB/s 64-bit
5 MADDs

(16 clusters)

Q
c
2
@
wn
=3
—+
@)
>

AN D

Clustering exploits kernel locality (short term reuse)

UD1IMS 131SN|D

. - = 64
C o ® 3,840 GB/s 64-bit
2 MADDs

(16 clusters)

Q
c
2
@
(72]
2
—~+
0
=

AN D

Clustering exploits kernel locality (short term reuse)
Enables efficient instruction-supply

Stream Processor Architecture (Merrimac)

— i —-

o}
% &
5 e
o) >
- E
0
>
S 64
® [] .
C S 512 GB/s @ 3,840 GB/s 64-bit
2 MADDs

(16 clusters)

oue| 44S
UDUMS 131SN|0

1 MB ~61 KB
SRF reduces off-chip BW requirements (producer-

consumer locality); enables latency-tolerance

Stream Processor Architecture (Merrimac)

(16 clusters)

su®e| 44S

= o

= w S

18 EXE

Q) »

: 2

@ 0

- -
e, |3 e : 64
C 5 3 512GB/s ® 3,840 GB/s 64-bit

> L MADDs

o

<2

(92]

3

o

=2

@

w

UDUMS 131SN|0

1 MB ~61 KB
Inter-cluster switch adds flexibility:

breaks strict SIMD and assists memory alignment

Stream Processor Architecture (Merrimac)

(16 clusters)

— o
2 X 5 " c
> 9 (—2 0 6
<)] é QEJ =
U LA w
D 5 7 3 s
> x @ o
< : 64
e O C o o 64-bi
<64 GB/s 64 GB/s 512 GB/s ® 3,840 GB/s It
® T. ° S °
S G MADDs
(@)
<
3
o
-y
®

Jueqd INVHd
ueq ayoed

aue| 44S
UDUMS 131SN|D

Cache is a BW amplifier for select accesses

Cell Broadband Engine Processor [SOUI’CG: |BM]

DRAM Interface

93
23
=]
D3

N

......

=Procetsor. 1
T Elementh

90kBLlalu| YI0M]a

10SS920.d Jejeds

12.0mm [cor:

« And
— ClearSpeed CSX600, MorphoSys, ...

— GPUs?
Somewhat specialized processors

but over a range of applications

—

Outline

— Hierarchical control and scheduling
— Throughput oriented I/0O

'K B lueq INVHd
Y >jueqg ayoed

suid O/

SaUD1MS Alowaw pue 181sn|o-1alu|

Q
)
>
<
o
Q

5

=2

UDUMS 131SN|D

Decoupling enables efficient static architecture

Separate address spaces (MEM/SRF/LRF)

Hierarchical Control

“Scalar” Bulk memory Bulk kernel
operations operations operations

queq AvVdd gy lueq Nvyd
SoUo)IMS Alowaw pue Ja)sn|o-Ialu|

Myueq ayoeod

Staging area for bulk operations enables software
latency hiding and high-throughput 170

Hierarchical Control

Instruction
Sequencers

Decoupling allows efficient and effective instruction
schedulers

Streaming Memory Systems

B [norder B Row E Row+Col

%peak BW
CO0000000O0
OFRLNWP,APIUIONOO -

DRAM systems are very sensitive to access pattern,
Throughput-oriented memory system helps

Streaming Memory Systems Help

B [norder B Row E Row+Col

%peak BW
CO0000000O0
OFRLNWP,APIUIONOO -

L '] '] '] '] '] '] '] '] '] []

i |

DEPTH MPEG RTSL FEM MD QRD

Capable memory system even more important for

applications

Streaming Memory Systems

e Bulk stream loads and stores
— Hierarchical control

e Expressive and effective addressing modes
— Can’t afford to waste memory bandwidth
— Use hardware when performance is non-deterministic

Strided access Gather Scatter

e TR
MEM %‘E’\
o, | o, | o,| H| Hy | H1,| H2| H2 | H2,

e Automatic SIMD alignment
— Makes SIMD trivial (SIMD # short-vector)

Stream memory system helps the programmer and

maximizes 1/0 throughput

e Implications on the software system
— Current status

Stream Architecture Features

e Exposed deep locality hierarchy

— explicit software control over data allocation
and data movement

— flexible on-chip storage for capturing locality
— staging area for long-latency bulk memory transfers

e Exposed parallelism
— large number of functional units
— latency hiding

Stream Architecture Features

e Exposed deep locality hierarchy
— software managed data movement (Ccommunication

e Exposed parallelism
— large number of functional units and latency hiding

e Predictable instruction latencies
e Optimized static scheduling
« High sustained performance

Stream Architecture Features

e Exposed locality hierarchy
e Exposed parallelism

e Most instructions manipulate data

 Minimal hardware control structures
— no branch prediction
— no out-of-order execution
— no trace-cache/decoded cache
— simple bypass networks

Efficient hardware = greater software responsibility

_PStreaming Software Responsible for
7 Parallelism, Locality, and Latency Hiding

= Software explicitly manages locality hierarchy
— identify bulk transfers and sequence blocks
— allocate SRF and LRF

= Software explicitly manages parallelism

e Software explicitly manages communication
— Including pipeline communication

e Schedule for latency hiding (medium-granularity)

e Recode algorithms to stream model
— expose parallelism
— expose locality
— expose structure

Challenges in user/compiler and

compiler/hardware interfaces

Outline

— Current status

e Kernel/Stream 2-level programming model
— Good kernel scheduling

«»Compiler Optimizes VLIW Kernel
Scheduling

ized schedule

XN
P
S,
(X

PR T, . " -

|

IN0N0NNININ I =
10000000000V g
s 5 4 L] 1 Ill I-' . N)

mmmmwmmu 3
LTI

LU |
fiesissis I
OCLCCLL LTI |

- SRF Lane (64KB) .- %F-

enables static optimization and reduces hardware

Current State of the Art in Stream*
& Software SySte Ims * Stream model as defined earlier

« Kernel/Stream 2-level programming model
— Good kernel scheduling

— Decent SRF allocation and stream operation
scheduling IF SIZES KNOWN

< Minor success otherwise
e Sequoia
— Extends to more than 2 levels
e Great auto-tuning opportunities
— Perfect knowledge of execution pipeline timing

— Explicit communication
— Experiments in Sequoia and StreamC

Stream processing simplifies tuning but demands

more from the software system and programmer

Results (Simulation)

B GFLOP/s B GB/s

Explicit stream architecture enables effective
resource utilization

What Streams Well?

e Data parallel in general?

e Data — control decoupled algorithms

— No data—->control->data dependence
e Work in progress

— Traversing data structures in general

— Dynamic block sizes (data-dependent output rates)
e Later on

— Building data structures
— Dynamic data structures

Dynamic mutable data structures will require more

tuning over a larger search space

« HW and SW tradeoffs and tuning options
— Locality, parallelism, and scheduling

/é& Locality Tradeoffs
¢ and Tuning Opportunities

e Register organization
— Number of registers
— Connectivity (recall cluster organization)
— Inter-PE communication
— Blocking for registers

e Stream register file (local memory)
— Hardware optimized addressing modes
— Cross-PE accesses
— Blocking

e Reactive caching
— Hardware?
— Software only?
— Prefetch and wasted bandwidth issues

So far very ad-hoc decisions

IN both hardware and software

/é” Parallelism Tradeoffs
£ and Tuning Opportunities

e 3 types of parallelism
— Data Level Parallelism
— Instruction Level Parallelism
— Thread (Task) Level Parallelism

Data-Level Parallelism in Stream

Processors

Instruction Sequencer

« SIMD

e Independent
indexing per FPU

e Full crossbar
between FPUs

e No sub-word
operation

Data- and Instruction-Level Parallelism
IN Stream Processors

5

\{5’?/

e A group of FPUs =

Instruction Sequencer A Processing
Element (PE) =
EPU FPYL | Y A Cluster
—- e \VLIW
— e Hierarchical

switch provides
area efficiency

Epu

FPU

Data-, Instruction- and Thread-Level
Parallelism In Stream Processors

e Seguencer group

— Each instruction
sequencer runs
different kernels

Instruction Sequencer

rParallelism Tradeoffs
¢ _and Tuning Opportunities

e Applications
— Throughput onentedl vs. reaHime comsirzami
— Strong vs. weak scaling

— Regular vs. imegullar
— Dynamic / (practically-)stiatic dimtimeets

e Hardware
— DLP: SIMD, short vectors
— ILP: VLIW / execution pipeline, Oo0O
— TLP: MIMD, SMT (style)
- Communication options

Hardware models for some opt|ons active research

on other options and performance models

Heat-map (Area per FPU) — 64 bit

128

(@)]
Y

w
N

Area overhead of
intra-cluster
switches

=
(@]

0o

N

1.4

1.2

- 11
1.05

Number of FPUs per cluster (ILP)

N

1 2 4 8 16 32 64 128

Number of clusters (DLP)
Area overhead of an

Many reasonable hardware options for 64-bit

Relative runtime

CONV2D DGEMM FFT3D FEM MD

Il all_SEQ_busy [] some_SEQ_busy MEM_busy

[]no_SEQ _busy MEM_busy il some_SEQ_busy MEM idle

Small performance differences

for “good streaming” applications

Scheduling Tradeoffs
¢ and Tuning Opportunities

e Hierarchical scheduling
— Better suited for auto-tuning

e Hardware support for bulk scheduling?

— Any software control?

— Merrimac and Imagine use a hardware score-board
at stream instruction granularity (loads/stores or
kernels)

e Interaction between scheduling and
allocation in general
— Stream and local register allocation

Very little study on effect of hardware support for

bulk scheduling — active research direction

Outline

e Petascale implications

Petascale Implications

e Power / energy
— Closer Is better

e |[nterconnect
— Smaller diameter
— Shorter distances?
— Simpler network topology?
« Reliabllity
— Fewer components
— Interesting fault-tolerance opportunities

e Cost

— Fewer chips
— More efficient use of off-chip bandwidth

Hardware makes more sense, tuning makes more

sense, recoding Is a problem

Conclusions

= Stream Processors offer extreme performance and efficiency
— rely on software for more efficient hardware

< Empower software through new interfaces
— Exposed locality hierarchy
— Exposed communication
— Hierarchical control
— Decouple execution pipeline from unpredictable I/0O
« Help software when it makes sense
— Aggressive memory system with SIMD alignment
— Multiple parallelism mechanisms (can skip short-vectors ©)
— Hardware assist for bulk operation dispatch

e Software system heauvily utilizes auto-tuning/search

Stream Processors offer path to petascale;

rely on, and are better targets for, automatic tuning

	Stream Processing: a New HW/SW Contract for High-Performance Efficient Computation
	Stream Processors Offer Efficiency and Performance
	Hardware Efficiency  �Greater Software Responsibility
	Outline
	Effective Performance on Modern VLSI
	Bandwidth Dominates Energy Consumption
	Stream Execution Model Accounts for Infinite Data
	Stream Execution Model Accounts for Infinite Data
	Stream Execution Model Accounts for Infinite Data
	Generalizing the Stream Model
	Generalizing the Stream Model
	Generalizing the Stream Model
	Outline
	Parallelism and Locality in Streaming Scientific Applications
	Stream Processor Architecture Overview
	Stream Processor Architecture (Merrimac)
	Stream Processor Architecture (Merrimac)
	Stream Processor Architecture (Merrimac)
	Stream Processor Architecture (Merrimac)
	Stream Processor Architecture (Merrimac)
	Stream Processor Architecture (Merrimac)
	Stream Processor Architecture (Merrimac)
	Stream Processor Architecture (Merrimac)
	Stream Processors
	Outline
	SRF Decouples Execution from Memory
	Hierarchical Control
	Hierarchical Control
	Streaming Memory Systems
	Streaming Memory Systems Help
	Streaming Memory Systems
	Outline
	Stream Architecture Features
	Stream Architecture Features
	Stream Architecture Features
	Streaming Software Responsible for Parallelism, Locality, and Latency Hiding
	Outline
	Current State of the Art in Stream�Software Systems
	Compiler Optimizes VLIW Kernel Scheduling
	Current State of the Art in Stream*�Software Systems * Stream model as defined earlier
	Results (Simulation)
	What Streams Well?
	Outline
	Locality Tradeoffs �and Tuning Opportunities
	Parallelism Tradeoffs �and Tuning Opportunities
	Data-Level Parallelism in Stream Processors
	Data- and Instruction-Level Parallelism in Stream Processors
	Data-, Instruction- and Thread-Level Parallelism in Stream Processors
	Parallelism Tradeoffs �and Tuning Opportunities
	Heat-map (Area per FPU) – 64 bit
	Application Performance
	Scheduling Tradeoffs �and Tuning Opportunities
	Outline
	Petascale Implications
	Conclusions

