
Stream Processing: a New HW/SW Contract for
High-Performance Efficient Computation

Mattan Erez

The University of Texas at Austin
CScADS Autotuning Workshop

July 11, 2007
Snowbird, Utah

Stream Processors Offer Efficiency and
Performance

0

100

200

300

400

500

600

Int
el

Pen
tiu

m4

AMD O
pte

ron
Dua

l

Int
el

Core
 2

Qua
d

AMD Barc
elo

na
Peak GFLOPS Peak DP

NVID
IA G

80
AMD R

60
0

IB
M C

ell
Merr

im
ac

0

5

10

15

20

25

30
mm^2/GFLOPS W/GFLOPS

13.2 11.5 0.3 0.2 0.4 0.5 3.1 2.8

90nm 65nm

G
FL

O
PS

W
 o

r m
m

^2
/G

FL
O

P

Huge potential impact on petaflop system design

Hardware EfficiencyÆ
Greater Software Responsibility

• Hardware matches VLSI strengths
– Throughput-oriented design
– Parallelism, locality, and partitioning
– Hierarchical control to simplify instruction sequencing
– Minimalistic HW scheduling and allocation

• Software given more explicit control
– Explicit hierarchical scheduling and latency hiding

(schedule)
– Explicit parallelism (parallelize)
– Explicit locality management (localize)

Must reduce HW “waste” but no free lunch

04/05/2007 4

Outline
• Hardware strengths and the stream

execution model
• Stream Processor hardware

– Parallelism
– Locality
– Hierarchical control and scheduling
– Throughput oriented I/O

• Implications on the software system
– Current status

• HW and SW tradeoffs and tuning options
– Locality, parallelism, and scheduling

• Petascale implications

Effective Performance on Modern VLSI
• Parallelism

– 10s of FPUs per chip
– Efficient control

• Locality
– Reuse reduces

global BW
– Locality lowers power

• Bandwidth
management
– Maximize pin utilization
– Throughput oriented I/O (latency tolerant)

90nm Chip
$200
1GHz

64-bit FPU
(to scale)

12mm

0.5mm

Increasing
power

Decreasing
BW

Parallelism, locality, bandwidth,
and efficient control (and latency hiding)

Bandwidth Dominates Energy
Consumption

Operation Energy
(0.13um) (0.05um)

32b ALU Operation 5pJ 0.3pJ
Read 32b from 8KB RAM 50pJ 3pJ
Transfer 32b across chip (10mm) 100pJ 17pJ
Transfer 32b off chip (2.5G CML) 1.3nJ 400pJ

1:20:260 local to global to off-chip ratio yesterday
1:56:1300 tomorrow

Off-chip >> global >> local >> compute

Stream Execution Model Accounts for
Infinite Data

DSMS

Scratch Store

I nput str eams

Register
Quer y

Streamed
Result

Stored
Result

Archive

Stored
Relations

input output

Stream Execution Model Accounts for
Infinite Data

DSMS

Scratch Store

I nput str eams

Register
Quer y

Streamed
Result

Stored
Result

Archive

Stored
Relations

input output

Stream Execution Model Accounts for
Infinite Data

DSMS

Scratch Store

I nput str eams

Register
Quer y

Streamed
Result

Stored
Result

Archive

Stored
Relations

input output

Process streams of “bite-sized” data
(predetermined sequence)

Generalizing the Stream Model
• Data access determinable well in advance

of data use
– Latency hiding
– Blocking

• Reformulate to gather – compute – scatter
– Block phases into bulk operations

• “Well in advance”: enough to hide latency
between blocks and SWP

• Assume data parallelism within compute
phase

Blocking is application specific
Increases parallelism and reuse

Stream memory operations – bulk transfers of entire
data blocks following predetermined sequence
Kernel operations – apply computation to entire
blocks exposing locality and simplifying control

Producer-consumer locality – intermediate results
reused on chip reducing off-chip BW demand

Latency hiding – streaming sequence of blocks
enables overlapping of I/O and computation

Generalizing the Stream Model

n-body simulation

input output

tim
e

load0

K10

store0

load1

K11

store1

load2

K12

load3

I/O computation

store2 K13

K20

K21

K22

positions K1 K2tmp
forces forces

load1

K11

store1

K21

Generalizing the Stream Model
• Medium granularity bulk operations

– Kernels and stream-LD/ST
• Predictable sequence (of bulk operations)

– Latency hiding, explicit communication
• Hierarchical control

– Inter- and intra-bulk
• Throughput-oriented design
• Locality and parallelism

– kernel locality + producer-consumer reuse
– Parallelism within kernels
Generalized stream model matches VLSI

requirements

Outline
• Hardware strengths and the stream

execution model
• Stream Processor hardware

– Parallelism
– Locality
– Hierarchical control and scheduling
– Throughput oriented I/O

• Implications on the software system
– Current status

• HW and SW tradeoffs and tuning options
– Locality, parallelism, and scheduling

• Petascale implications

Parallelism and Locality in Streaming
Scientific Applications

90nm Chip
$200
1GHz

64-bit FPU
(to scale)

12mm

0.5mm

1 clock

Increasing
power

Decreasing
BW

input output

Streaming model

VLSI
• Parallelism

– 10s of FPUs per chip
– Efficient control

• Locality
– Reuse reduces

global BW
– Locality lowers

power

• Bandwidth management
– Maximize pin utilization
– Throughput oriented I/O (latency tolerant)

• medium granularity bulk operations
– kernels and stream-LD/ST

• Predictable sequence
• Locality and parallelism

– kernel locality + producer-consumer
reuse

Stream Processor Architecture Overview
• Parallelism

– Lots of FPUs
– Latency hiding

• Locality
– Partitioning and hierarchy

• Bandwidth management
– Exposed communication (at multiple levels)
– Throughput-oriented design

• Explicit support of stream execution model
– Bulk kernels and stream load/stores

Maximize efficiency:
FLOPs / BW, FLOPs / power, and FLOPs/ area

Stream Processor Architecture (Merrimac)

64
64-bit

MADDs

Multiple FPUs for high-performance

positions K1 K2 forces

Stream Processor Architecture (Merrimac)

64
64-bit

MADDs

DRA
M

 bank
DRA

M
 bank

I/O
 pins

8 GB

<64 GB/s

3,840 GB/s

Need to bridge 100X bandwidth gap
Reuse data on chip and build locality hierarchy

positions K1 K2 forces

Stream Processor Architecture (Merrimac)

64
64-bit

MADDs

3,840 GB/s

DRA
M

 bank
DRA

M
 bank

I/O
 pins

8 GB

<64 GB/s

LRF provides the bandwidth through locality
Low energy by traversing short wires

positions K1 K2 forces

Stream Processor Architecture (Merrimac)

~61 KB

cluster sw
itch

cluster sw
itch

3,840 GB/s
64

64-bit
MADDs

(16 clusters)

DRA
M

 bank
DRA

M
 bank

I/O
 pins

8 GB

<64 GB/s

Clustering exploits kernel locality (short term reuse)

positions K1 K2 forces

Stream Processor Architecture (Merrimac)

~61 KB

cluster sw
itch

cluster sw
itch

3,840 GB/s
64

64-bit
MADDs

(16 clusters)

DRA
M

 bank
DRA

M
 bank

I/O
 pins

8 GB

<64 GB/s

Clustering exploits kernel locality (short term reuse)
Enables efficient instruction-supply

positions K1 K2 forces

Stream Processor Architecture (Merrimac)

~61 KB

cluster sw
itch

cluster sw
itch

SRF lane
SRF lane

1 MB

3,840 GB/s512 GB/s

DRA
M

 bank
DRA

M
 bank

I/O
 pins

8 GB

<64 GB/s

SRF reduces off-chip BW requirements (producer-
consumer locality); enables latency-tolerance

positions K1 K2 forces

64
64-bit

MADDs
(16 clusters)

Stream Processor Architecture (Merrimac)

~61 KB

cluster sw
itch

cluster sw
itch

SRF lane
SRF lane

1 MB

3,840 GB/s512 GB/s

Inter-cluster and
 m

em
ory sw

itches

DRA
M

 bank
DRA

M
 bank

I/O
 pins

8 GB

<64 GB/s

Inter-cluster switch adds flexibility:
breaks strict SIMD and assists memory alignment

positions K1 K2 forces

64
64-bit

MADDs
(16 clusters)

Stream Processor Architecture (Merrimac)

~61 KB

64
64-bit

MADDs
(16 clusters)

cluster sw
itch

cluster sw
itch

SRF lane
SRF lane

1 MB

3,840 GB/s512 GB/s

Inter-cluster and
 m

em
ory sw

itches

cache bank
cache bank

DRA
M

 bank
DRA

M
 bank

I/O
 pins

128 KB8 GB

64 GB/s<64 GB/s

Cache is a BW amplifier for select accesses

positions K1 K2 forces

Stream Processors

• And
– ClearSpeed CSX600, MorphoSys, …
– GPUs?

DRAM Interface

N
etw

ork Interface

M
em

ory
C

hannel
Scalar Processor

AG μctrl

cluster cluster cluster cluster

cluster cluster cluster cluster

cluster cluster cluster cluster

cluster cluster cluster cluster

12.0mm

12.1m
m

[source: IBM]

[courtesy: SPI]

Somewhat specialized processors
but over a range of applications

Outline
• Hardware strengths and the stream

execution model
• Stream Processor hardware

– Parallelism
– Locality
– Hierarchical control and scheduling
– Throughput oriented I/O

• Implications on the software system
– Current status

• HW and SW tradeoffs and tuning options
– Locality, parallelism, and scheduling

• Petascale implications

SRF Decouples Execution from Memory

cluster sw
itch

cluster sw
itch

SRF lane
SRF lane

Inter-cluster and
 m

em
ory sw

itches

cache bank
cache bank

DRA
M

 bank
DRA

M
 bank

I/O
 pins

Unpredictable I/O Latencies Static latencies

Decoupling enables efficient static architecture
Separate address spaces (MEM/SRF/LRF)

Hierarchical Control

cluster sw
itch

cluster sw
itch

SRF lane
SRF lane

Inter-cluster and m
em

ory sw
itches

cache bank
cache bank

DRA
M

 bank
DRA

M
 bank

I/O
 pins

Bulk memory
operations

Bulk kernel
operations

GPP
Core

“Scalar”
operations

Staging area for bulk operations enables software
latency hiding and high-throughput I/O

Hierarchical Control

cluster sw
itch

cluster sw
itch

SRF lane
SRF lane

Inter-cluster and m
em

ory sw
itches

cache bank
cache bank

DRA
M

 bank
DRA

M
 bank

I/O
 pins

Bulk memory
operations

Bulk kernel
operations

GPP
Core

“Scalar”
operations

cluster sw
itch

cluster sw
itch

SRF lane
SRF lane

GPP
Core

FPU
Instruction

Sequencers

Decoupling allows efficient and effective instruction
schedulers

Streaming Memory Systems

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

1x
1rd

1x
1rd

cf
1x

1rw
1x

1rw
cf

1x
40

rd
48

x4
8rw cr1

rd
cr1

rw r1r
d

r1r
w

r4r
d

r4r
w

Inorder Row Row+Col

%
pe

ak
 B

W

DRAM systems are very sensitive to access pattern,
Throughput-oriented memory system helps

Streaming Memory Systems Help

DEPTH MPEG RTSL FEM MD QRD
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Inorder Row Row+Col

%
pe

ak
 B

W

Capable memory system even more important for
applications

Streaming Memory Systems
• Bulk stream loads and stores

– Hierarchical control

• Expressive and effective addressing modes
– Can’t afford to waste memory bandwidth
– Use hardware when performance is non-deterministic

• Automatic SIMD alignment
– Makes SIMD trivial (SIMD ≠

short-vector)

ScatterGatherStrided access

Ox Oy Oz H1x H1y H1z H2x H2y H2z

SRF
MEM

Stream memory system helps the programmer and
maximizes I/O throughput

Outline
• Hardware strengths and the stream

execution model
• Stream Processor hardware

– Parallelism
– Locality
– Hierarchical control and scheduling
– Throughput oriented I/O

• Implications on the software system
– Current status

• HW and SW tradeoffs and tuning options
– Locality, parallelism, and scheduling

• Petascale implications

Stream Architecture Features
• Exposed deep locality hierarchy

– explicit software control over data allocation
and data movement

– flexible on-chip storage for capturing locality
– staging area for long-latency bulk memory transfers

• Exposed parallelism
– large number of functional units
– latency hiding

Stream Architecture Features
• Exposed deep locality hierarchy

– software managed data movement (communication
• Exposed parallelism

– large number of functional units and latency hiding

• Predictable instruction latencies
• Optimized static scheduling
• High sustained performance

Stream Architecture Features
• Exposed locality hierarchy

– software managed data movement
• Exposed parallelism

– high sustained performance
• Most instructions manipulate data
• Minimal hardware control structures

– no branch prediction
– no out-of-order execution
– no trace-cache/decoded cache
– simple bypass networks
– …

Efficient hardware Æ greater software responsibility

Streaming Software Responsible for
Parallelism, Locality, and Latency Hiding

• Software explicitly manages locality hierarchy
– identify bulk transfers and sequence blocks
– allocate SRF and LRF

• Software explicitly manages parallelism
• Software explicitly manages communication

– Including pipeline communication

• Schedule for latency hiding (medium-granularity)
• Recode algorithms to stream model

– expose parallelism
– expose locality
– expose structure

Challenges in user/compiler and
compiler/hardware interfaces

Outline
• Hardware strengths and the stream

execution model
• Stream Processor hardware

– Parallelism
– Locality
– Hierarchical control and scheduling
– Throughput oriented I/O

• Implications on the software system
– Current status

• HW and SW tradeoffs and tuning options
– Locality, parallelism, and scheduling

• Petascale implications

Current State of the Art in Stream
Software Systems

• Kernel/Stream 2-level programming model
– Good kernel scheduling

Compiler Optimizes VLIW Kernel
Scheduling

Optimized schedule

Merrimac decouples memory and execution
enables static optimization and reduces hardware

Current State of the Art in Stream*
Software Systems * Stream model as defined earlier

• Kernel/Stream 2-level programming model
– Good kernel scheduling
– Decent SRF allocation and stream operation

scheduling IF SIZES KNOWN
• Minor success otherwise

• Sequoia
– Extends to more than 2 levels

• Great auto-tuning opportunities
– Perfect knowledge of execution pipeline timing
– Explicit communication
– Experiments in Sequoia and StreamC

Stream processing simplifies tuning but demands
more from the software system and programmer

Results (Simulation)

0
16
32
48
64
80
96

112
128

DGEMM
CONV2D FEM MD

FFT3D

CDP

SpM
V

(C
SR)

0
8
16
24
32
40
48
56
64

GFLOP/s GB/s

Explicit stream architecture enables effective
resource utilization

What Streams Well?
• Data parallel in general?
• Data – control decoupled algorithms

– No dataÆcontrolÆdata dependence
• Work in progress

– Traversing data structures in general
– Dynamic block sizes (data-dependent output rates)

• Later on
– Building data structures
– Dynamic data structures

Dynamic mutable data structures will require more
tuning over a larger search space

Outline
• Hardware strengths and the stream

execution model
• Stream Processor hardware

– Parallelism
– Locality
– Hierarchical control and scheduling
– Throughput oriented I/O

• Implications on the software system
– Current status

• HW and SW tradeoffs and tuning options
– Locality, parallelism, and scheduling

• Petascale implications

Locality Tradeoffs
and Tuning Opportunities

• Register organization
– Number of registers
– Connectivity (recall cluster organization)
– Inter-PE communication
– Blocking for registers

• Stream register file (local memory)
– Hardware optimized addressing modes
– Cross-PE accesses
– Blocking

• Reactive caching
– Hardware?
– Software only?
– Prefetch and wasted bandwidth issues

So far very ad-hoc decisions
in both hardware and software

Parallelism Tradeoffs
and Tuning Opportunities

• 3 types of parallelism
– Data Level Parallelism
– Instruction Level Parallelism
– Thread (Task) Level Parallelism

Data-Level Parallelism in Stream
Processors

Instruction Sequencer

FPUFPUFPUFPUFPUFPUFPU

FPUFPUFPUFPU

FPUFPUFPUFPU

FPUFPUFPUFPU

• SIMD
• Independent

indexing per FPU
• Full crossbar

between FPUs
• No sub-word

operation

Data- and Instruction-Level Parallelism
in Stream Processors

• A group of FPUs =
A Processing
Element (PE) =
A Cluster

• VLIW
• Hierarchical

switch provides
area efficiency

Instruction Sequencer

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

FPU

Instruction Sequencer

FPU

FPU FPU

FPU FPU

FPU FPU

FPU

FPU

FPU FPU

FPUFPU

FPU FPU

FPU

Data-, Instruction- and Thread-Level
Parallelism in Stream Processors

• Sequencer group
– Each instruction

sequencer runs
different kernels

Instruction Sequencer

FPU

FPU FPU

FPU FPU

FPU FPU

FPU

Instruction Sequencer

FPU

FPU FPU

FPU FPU

FPU FPU

FPU

• Applications
– Throughput oriented vs. real-time constraint
– Strong vs. weak scaling
– Regular vs. irregular
– Dynamic / (practically-)static datasets

• Applications
– Throughput oriented vs. real-time constraint
– Strong vs. weak scaling
– Regular vs. irregular
– Dynamic / (practically-)static datasets

• Hardware
– DLP: SIMD, short vectors
– ILP: VLIW / execution pipeline, OoO
– TLP: MIMD, SMT (style)
– Communication options

• Partial switches, direct sequencer-sequencer switch

Parallelism Tradeoffs
and Tuning Opportunities

Hardware models for some options, active research
on other options and performance models

Heat-map (Area per FPU) – 64 bit

Area overhead of an
instruction
sequencer

Area overhead of an
inter-cluster switch

Area overhead of
intra-cluster
switches

64

128

32

16

4

2

1

8

1 2 4 8 3216 64 128
Number of clusters (DLP)

N
um

be
r o

f F
P

U
s

pe
r c

lu
st

er
 (I

LP
)

1.05
1.1
1.2

1.4

2

4

Many reasonable hardware options for 64-bit

Application Performance

0
0.2
0.4
0.6
0.8

1
1.2

(1
, 1

6,
 4

)
(2

, 8
, 4

)
(1

6,
 1

, 4
)

(1
, 3

2,
 2

)
(2

, 1
6,

 2
)

(4
, 8

, 2
)

(1
, 1

6,
 4

)
(2

, 8
, 4

)
(1

6,
 1

, 4
)

(1
, 3

2,
 2

)
(2

, 1
6,

 2
)

(4
, 8

, 2
)

(1
, 1

6,
 4

)
(2

, 8
, 4

)
(1

6,
 1

, 4
)

(1
, 3

2,
 2

)
(2

, 1
6,

 2
)

(4
, 8

, 2
)

(1
, 1

6,
 4

)
(2

, 8
, 4

)
(1

6,
 1

, 4
)

(1
, 3

2,
 2

)
(2

, 1
6,

 2
)

(4
, 8

, 2
)

(1
, 1

6,
 4

)
(2

, 8
, 4

)
(1

6,
 1

, 4
)

(1
, 3

2,
 2

)
(2

, 1
6,

 2
)

(4
, 8

, 2
)

(1
, 1

6,
 4

)
(2

, 8
, 4

)
(1

6,
 1

, 4
)

(1
, 3

2,
 2

)
(2

, 1
6,

 2
)

(4
, 8

, 2
)

CONV2D DGEMM FFT3D FEM MD CDP

R
el

at
iv

e
ru

nt
im

e

all_SEQ_busy some_SEQ_busy_MEM_busy

no_SEQ_busy_MEM_busy some_SEQ_busy_MEM_idle

Small performance differences
for “good streaming” applications

Scheduling Tradeoffs
and Tuning Opportunities

• Hierarchical scheduling
– Better suited for auto-tuning

• Hardware support for bulk scheduling?
– Any software control?
– Merrimac and Imagine use a hardware score-board

at stream instruction granularity (loads/stores or
kernels)

• Interaction between scheduling and
allocation in general
– Stream and local register allocation

Very little study on effect of hardware support for
bulk scheduling – active research direction

Outline
• Hardware strengths and the stream

execution model
• Stream Processor hardware

– Parallelism
– Locality
– Hierarchical control and scheduling
– Throughput oriented I/O

• Implications on the software system
– Current status

• HW and SW tradeoffs and tuning options
– Locality, parallelism, and scheduling

• Petascale implications

Petascale Implications
• Power / energy

– Closer is better
• Interconnect

– Smaller diameter
– Shorter distances?
– Simpler network topology?

• Reliability
– Fewer components
– Interesting fault-tolerance opportunities

• Cost
– Fewer chips
– More efficient use of off-chip bandwidth

Hardware makes more sense, tuning makes more
sense, recoding is a problem

Conclusions
• Stream Processors offer extreme performance and efficiency

– rely on software for more efficient hardware

• Empower software through new interfaces
– Exposed locality hierarchy
– Exposed communication
– Hierarchical control
– Decouple execution pipeline from unpredictable I/O

• Help software when it makes sense
– Aggressive memory system with SIMD alignment
– Multiple parallelism mechanisms (can skip short-vectors ☺)
– Hardware assist for bulk operation dispatch

• Software system heavily utilizes auto-tuning/search

Stream Processors offer path to petascale;
rely on, and are better targets for, automatic tuning

	Stream Processing: a New HW/SW Contract for High-Performance Efficient Computation
	Stream Processors Offer Efficiency and Performance
	Hardware Efficiency  �Greater Software Responsibility
	Outline
	Effective Performance on Modern VLSI
	Bandwidth Dominates Energy Consumption
	Stream Execution Model Accounts for Infinite Data
	Stream Execution Model Accounts for Infinite Data
	Stream Execution Model Accounts for Infinite Data
	Generalizing the Stream Model
	Generalizing the Stream Model
	Generalizing the Stream Model
	Outline
	Parallelism and Locality in Streaming Scientific Applications
	Stream Processor Architecture Overview
	Stream Processor Architecture (Merrimac)
	Stream Processor Architecture (Merrimac)
	Stream Processor Architecture (Merrimac)
	Stream Processor Architecture (Merrimac)
	Stream Processor Architecture (Merrimac)
	Stream Processor Architecture (Merrimac)
	Stream Processor Architecture (Merrimac)
	Stream Processor Architecture (Merrimac)
	Stream Processors
	Outline
	SRF Decouples Execution from Memory
	Hierarchical Control
	Hierarchical Control
	Streaming Memory Systems
	Streaming Memory Systems Help
	Streaming Memory Systems
	Outline
	Stream Architecture Features
	Stream Architecture Features
	Stream Architecture Features
	Streaming Software Responsible for Parallelism, Locality, and Latency Hiding
	Outline
	Current State of the Art in Stream�Software Systems
	Compiler Optimizes VLIW Kernel Scheduling
	Current State of the Art in Stream*�Software Systems * Stream model as defined earlier
	Results (Simulation)
	What Streams Well?
	Outline
	Locality Tradeoffs �and Tuning Opportunities
	Parallelism Tradeoffs �and Tuning Opportunities
	Data-Level Parallelism in Stream Processors
	Data- and Instruction-Level Parallelism in Stream Processors
	Data-, Instruction- and Thread-Level Parallelism in Stream Processors
	Parallelism Tradeoffs �and Tuning Opportunities
	Heat-map (Area per FPU) – 64 bit
	Application Performance
	Scheduling Tradeoffs �and Tuning Opportunities
	Outline
	Petascale Implications
	Conclusions

