
Autotuning for Petascale:
An Architect’s Perspective

Mattan Erez

The University of Texas at Austin
CScADS Autotuning Workshop

July 8, 2008
Snowbird, Utah

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

Outline

• What should we be tuning for?
– Performance isn’t everything
– Tune anything that’s important

• How should the programmer/user interact with the
auto-tuner and software system?
– Libraries aren’t enough

• Some programmers are always trying to be clever

– Language should express what’s important – including
tuning

• Too many choices and too many platforms

• Recent architecture research trend: fairness
– Heterogeneous Multicore

Tune for Utility/Cost – not Performance

Building systems is all about the bottom line

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

Machine Cost Factors

• Acquisition ~$50M
– Peak Processing
– Peak Bandwidth
– Peak Memory/Storage
– Reliability
– Usability
– Facilities (power)

• Operation ~$5M/yr
– Power
– Maintenance/Administration

• Optimize total work for total cost
– Maximizing task performance doesn’t always do that

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

Fault Tolerance == Opportunity Cost

• Reliability is an increasing concern
– Not just memory any more
– Logic increasingly susceptible to soft errors
– Smaller dimension more sensitive to radiation
– Process variation is on the rise

• Reliability requires redundancy
• “Non-stop” hardware is too costly

– We are using unreliable systems!
• What reliability options do we apply and when?

– Algorithmic based fault tolerance
– Assertions
– Computation duplication
– Hardware features occasionally
– Checkpoint granularity and footprint

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

Power is the Dominant Architectural Problem

• Bad news: power scaling is slowing down
– Can’t scale Vt much in order to control leakage

• New technology helps
– Æ can’t scale Vdd as much
– Æ power doesn’t go down as it used to

• Energy/device decreases slower than
devices/chip

• Power goes up if performance scaling continues
– For same processor architecture

• Roadrunner: 1PFLOP/2MW, BG/L 0.5PFLOP/2MW
– How much for many PFLOPS?

• More bad news: energy prices going up ☺

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

How Can We Reduce Power?

• Compute less
– Use better algorithms

• Waste less
– Don’t build/use unnecessary hardware
– No unnecessary operations
– No unnecessary data movement
– Tuning can help – minimize power per acceptable

performance goal
• Specialize more

– Specialized circuits are more efficient
– Tuning can help decide when

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

Wasting Less – Effective Performance in VLSI

• Parallelism
– 10s of FPUs per chip
– Efficient control

• Locality
– Locality lowers power
– Reuse reduces

global BW
• Throughput Design

– Throughput oriented I/O
– Tolerate Increasing

on-/off-chip latencies
• Minimum control overhead

65nm Chip
$200
1GHz

64-bit FPU
(to scale)

12mm

0.3mm

Increasing
power

Decreasing
BW

Parallelism, locality, latency tolerance,
bandwidth, and efficient control

1 clock

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

The Streaming Concept:
Match Software with VLSI Strengths

Scientific

Graphics

Image processing /
recognition

Signal processing /
embedded

65nm Chip
$200
1GHz

12mm

Increasing
power

Decreasing
BW

1 clock

• Hardware matches VLSI
strengths
– Throughput-oriented design
– Parallelism, locality, and

partitioning
– Hierarchical control
– Minimalistic HW scheduling

and allocation

• Software given more explicit
control
– Explicit hierarchical

scheduling and latency
hiding

– Explicit parallelism
– Explicit locality

management

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

Take Advantage of Software:
Hierarchical Bulk Operations

• Data access determinable well in advance of
data use
– Latency hiding
– Blocking

• Reformulate to gather – compute – scatter
– Block phases into bulk operations

ld in_a0
ld in_b0

comp res0
st res0

ld in_a1
ld in_b1

comp res1
st res1

ld in_a0
ld in_b0
ld in_a1
ld in_b1

comp res0
comp res1

st res0
st res1

bulk_gather in_a

kernel_comp res

bulk_scatter res

bulk_gather in_bkernel
comp

in
_bin_a

res

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

Bulk Operations Increase Performance

90nm | ~200 mm2 |~100 W
~20 GFLOPS

90nm | ~220 mm2 |~100 W
~200 GFLOPS

AMD dual-core Opteron STI CELL processor

FPUs

Much more significant resources devoted to FPUs

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

Bulk Operations Achieve
Efficiency and Performance

0

100

200

300

400

500

600

Int
el

Pen
tiu

m4

AMD O
pte

ron
Dua

l

Int
el

Core
 2

Qua
d

AMD Barc
elo

na
Peak GFLOPS Peak DP

NVID
IA G

80
AMD R

60
0

IB
M C

ell
Merr

im
ac

0
5

10
15

20
25

30
mm^2/GFLOPS W/GFLOPS

13.2 11.5 0.3 0.2 0.4 0.5 3.1 2.8

90nm 65nm

G
FL

O
PS

W
 o

r m
m

^2
/G

FL
O

P

Even partial adoption of bulk operations has huge
impact on performance and efficiency

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

Major Success but Not Enough

• Cell is ~1.5X BlueGene (based on Top500)
– Merrimac estimates were ~6X better (in same tech node)
– Still not enough for true Petascale

• Use better algorithms – often irregular
• Truly dynamic and irregular algorithms are

challenging for bulk/streaming architectures
– Beg for some degree of threading and caching
– Hybrid bulk/thread architectures and models

• More work on memory systems
– Granularity is a problem

• On-chip interconnection networks – no clear
winner

Locality, Parallelism, and Hierarchy
throughout the system

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

Tuning for Power

• Need to co-search for power and performance
– Optimize cost, not performance
– Opportunity cost too (fault tolerance)

• Maximize locality / minimize data movement
– Power impacted significantly by interconnect and

memory
• Try to specialize

– Utilize control hierarchy
– Utilize specialized hardware

• Minimize waste
– Strong interactions with load balancing
– Processor/memory dynamic power management is key

Languages Need to Abstractly Expose
Important Factors and Tuning

• How should the programmer/user interact with
the auto-tuner and software system?
– Libraries aren’t enough

• Some programmers are always trying to be clever
– Language should express what’s important –

including tuning
• Too many choices and too many platforms

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

Sequoia: Abstract Streaming/Bulk
Programming

• Facilitate development of hierarchy-aware stream
programs …

• … that remain portable across machines
• Provide constructs that can be implemented

efficiently without requiring advanced compiler
technology
– Place computation and data in machine
– Explicit parallelism and communication
– Large bulk transfers

• Facilitate tuning
– Decouple algorithm and decomposition from setting

parameters
– Sequoia language only expresses strategy

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

Hierarchical memory

• Abstract machines as trees of memories

ALUs ALUs

Main memory

Dual-core PC

Similar to:
Parallel Memory Hierarchy Model
(Alpern et al.)

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

Hierarchical memory

L2 cache

ALUs ALUs

Main memory

L1 cache L1 cache

Dual-core PC

L2 cache

ALUs

Node
memory

Aggregate cluster memory
(virtual level)

L1 cache

L2 cache

ALUs

Node
memory

L1 cache

L2 cache

ALUs

Node
memory

L1 cache

L2 cache

ALUs

Node
memory

L1 cache

4 node cluster of PCs

• Abstract machines as trees of memories

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

Hierarchical memory

Main memory

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

ALUs

LS

Single Cell blade

Disk

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

Sequoia tasks

• Special functions called tasks are the building
blocks of Sequoia programs

• task interpolate(in float A[N],
• in float B[N],
• in float u,
• out float result[N])
• {
• for (int i=0; i<N; i++)
• result[i] = u * A[i] + (1-u) * B[i];
• }

• Task arguments can be arrays and scalars
• Tasks arguments located within a single level of

abstract memory hierarchy

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

Sequoia tasks

• Single abstraction for
– Isolation / parallelism
– Explicit communication / working sets
– Expressing locality

• Tasks operate on arrays, not array elements

• Tasks nest: they call subtasks

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

The Streaming Concept:
Match Software with VLSI Strengths

Scientific

Graphics

Image processing /
recognition

Signal processing /
embedded

65nm Chip
$200
1GHz

12mm

Increasing
power

Decreasing
BW

1 clock

• Hardware matches VLSI
strengths
– Throughput-oriented design
– Parallelism, locality, and

partitioning
– Hierarchical control
– Minimalistic HW scheduling

and allocation

• Software given more explicit
control
– Explicit hierarchical

scheduling and latency
hiding

– Explicit parallelism
– Explicit locality

management

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

Example: dense matrix multiplication

Task:
1024x1024

matrix multiplication

Task:
256x256

matrix mult

… 64 total
subtasks …

… 512 total
subtasks …

Main memory

L2 cache

L1 cache

Task:
256x256

matrix mult

Task:
256x256

matrix mult

Task:
32x32

matrix mult

Task:
32x32

matrix mult

Task:
32x32

matrix mult

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

Example - task isolation

• Task arguments + local
variables define working
set

task matmul::inner(in float A[M][T],
in float B[T][N],
inout float C[M][N])

{

}

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

Example - parameterization

• Tasks are written in
parameterized form for
portability

• Different “variants” of the
same task can be defined

task matmul::inner(in float A[M][T],
in float B[T][N],
inout float C[M][N])

{
tunable int P, Q, R;

}

task matmul::leaf(in float A[M][T],
in float B[T][N],
inout float C[M][N])

{
for (int i=0; i<M; i++)

for (int j=0; j<N; j++)
for (int k=0; k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}

Here is a “leaf version” of the
matmul task. It doesn’t call
subtasks.

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

task matmul::inner(in float A[M][T],
in float B[T][N],
inout float C[M][N])

{
tunable int P, Q, R;

mappar(int i=0 to M/P,
int j=0 to N/R) {

mapseq(int k=0 to T/Q) {

matmul(A[P*i:P*(i+1);P][Q*k:Q*(k+1);Q],
B[Q*k:Q*(k+1);Q][R*j:R*(j+1);R],
C[P*i:P*(i+1);P][R*j:R*(j+1);R]);

}
}

}

task matmul::leaf(in float A[M][T],
in float B[T][N],
inout float C[M][N])

{
for (int i=0; i<M; i++)

for (int j=0; j<N; j++)
for (int k=0;k<T; k++)

C[i][j] += A[i][k] * B[k][j];
}

Example - locality & communication

• Working set resident
within single level of
hierarchy

• Passing arguments to
subtasks is only way to
specify communication
in Sequoia

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

Specializing matmul

matmul::inner
M=N=T=1024
P=Q=R=256

matmul::
inner

M=N=T=256
P=Q=R=32

… 64 total
subtasks …

… 512 total
subtasks …

Main memory

L2 cache

L1 cache

matmul::
inner

M=N=T=256
P=Q=R=32

matmul::
inner

M=N=T=256
P=Q=R=32

matmul::leaf
M=N=T=32

matmul::leaf
M=N=T=32

matmul::leaf
M=N=T=32

• Instances of tasks placed at each memory level
– Instances define a task variant and values for all parameters

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

Specialization with Autotuning

• Work by Manman Ren (Stanford), PACT 2008
• Use Sequoia to identify what needs tuning

– Explicit tunables and parameters in the language
• Tuning framework for SW-managed hierarchies
• Automatic profile guided search across tunables

– Aggressive pruning
– Illegal parameters (don’t fit in memory level)
– Tunable groups
– Programmer input on ranges
– Coarse Æ fine search

• Loop fusion across multiple loop levels
– Measure profitability from tunable search
– Adjust for “tunable mismatch”
– Realign reuse to reduce communication

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

Overview: mapping the program

Source Program

Generate Decomposition Hierarchy

Set Data/Control Level
Models Mapped Program

Set Tunables

Loop Fusion

IR Lowering

Low-level Optimizations

Code Generation
Search Engine

Profiling

Low-level IR
Vendor Compiler

Binary

• Mapped versions are generated
– Matching the decomposition hierarchy with the machine

hierarchy
– Choosing a variant for each call site
– Set level of data objects and control statements

Leaf
Implementation

Mapping File

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

Explicit SW Management Simplifies Tuning

• Smooth search space
• Performance models can also work

– For Cell, not cluster

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

Guided Search Converges Quickly

• Smoothness leads to quick convergence

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

Autotuning Out Performs Programmer

0.630.57
0.36

33.4
30

20.7
19

auto
hand

Cluster
of PS3s

2.25.5
5.5

92.4
90

26.7
24

auto
hand

Cluster
of PCs

12.157
54

137
119

99.6
85

auto
handCell

SUmbFFT3DSGEMMCONV2D

Architecture Trend: Fairness in
Multicore/Multi-threaded Processors

Hardware balances shared resources

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

Maintain Overall Performance through Fair
Partitioning of Shared Resources

• Motivating applications: multiprogramming
• Shared cache

– Allocate partitions of ways in a set-associative cache to
threads

– Prevent low-locality thread from evicting useful data

• Shared memory bandwidth
– Schedule memory operations from different threads fairly

• Definition of fairness?
– All threads suffer performance degradation relative to

running in isolation

NNN

CScADS 2008 Autotuning Workshop:
An Architect’s Perspective © Mattan Erez

Conclusions

• Autotuning should match architecture
optimizations – maximum utility/cost
– Maximize locality / minimize communication
– Take advantage of control hierarchy
– Specialized hardware units
– Reliability is another opportunity

• Languages should expose what’s important (in an
abstract portable way)
– Expose tuning – it’s an essential part of the software

system
– Sequoia is one early attempt

