oerfmon?2: a standaro
oerformance monitoring interface
for Linux

Stéphane Eranian

© 2006 Hewlett-Packard Development Company, L.P.
The information contained herein is subject to change without notice

I Agendo

PMU-based pertormance monitoring
Overview of the interface
Current status

Challenges ahead

2 July 17, 2007

nnnnnn

I What is performance monitoring?

The action of collecting information related to how an
application or system performs
Information obtained by instrumenting the code
extract program-level or system-level information
statically: compilers (-pg option), explicit code (LTTng, Xenmon)
dynamically (code rewrite): HP Caliper, Intel PIN tool, Kprobes
example: count basic-block execution, number of ctxsw/s

Information obtained from CPU/chipset
extract micro-architectural level information
exploit hardware performance counters

example: count TLB misses, stall cycles, memory access latency

3 July 17,2007 iavent

I Pertormance Monitoring Unit (PMU)

Piece of CPU HW collecting micro-architectural events:

from pipeline, system bus, caches, ...

All modern CPU have a PMU
architected for IA-64, AMD64
now finally for Intel 1A-32 (starting with Core Duo/Solo)

PMU is highly specific to a CPU implementation

4 July 17, 2007 invent

I Diversity of PMU HW
Dual-core ltanium 2: PMC, PMD, 12 counters (47bits)

atomic freeze, opcode filters, range restrictions,

where cache/TLB misses occur, Branch Trace Buffer

AMD64:MSR registers, 4 counters (40 bits)

no atomic freeze

Pentium 4: MSR registers, 18 counters (40 bits)

no atomic freeze

Precise Event Based Sampling (PEBS)
Intel Core: MSR registers, 5 counters (31 bits)

possible atomic freeze

fixed counters, PEBS 0|

5 July 17, 2007 invent

I Diversity of usage models

Type of measurement:
counting or sampling
Scope of measurement:
system-wide: across all threads running on a CPU
perthread: a designated thread (self-monitoring or unmoditied)
Scope of control:
from user level programs: monitoring tools, compilers, MRE
trom the kernel: SystemTap or VMM
Scope of processing:

offline: profile-guided optimization (PGO), manual tuning
line: d ic optimization (DPGO @
online: dynamic optimization () 'O

6 July 17, 2007

nnnnnn

I Existing monitoring interfaces
OProfile (John Levon):

included in mainline kernel and most distributions
system-wide profiling only, support all major platforms

Pertctr (Mikael Pettersson)
separate kernel patch
provides per-thread, system-wide monitoring
designed for self-monitoring, basic sampling support
supports all IA-32, PowerPC

VTUNE driver (Intel)

open-source driver specitic to VIUNE

7 July 17, 2007 invent

I Why a standard interface?

Currrent HW trend makes monitoring capabilities crucial
SW must evolve to exploit HW (multi-core, multithread, NUMA)
Strong need tor tools to understand SW pertormance

requires portable, flexible kernel-level intrastructure

Users need portable tools

Single interface is attractive for tool developers
improve code reuse

broader market for monitoring products
Easier to get accepted in mainline kernel

no kernel patching, improved support

et into commercial distributions :
: O

8 July 17, 2007 invent

I Goals of the pertmon?2 intertace

9

Provides a interface to access the PMU

designed using a bottom-up approach, no tool in mind
Be portable across all PMU models/architectures
Supports monitoring

self-monitoring, unmodified binaries, attach/detach
multi-threaded and multi-process workloads

Supports system-wide monitoring

Supports counting and sampling
No special recompilation
. efficient, robust, secure, documented

July 17, 2007 invent

Perfmon?2 inter

ace (1)

Core interface al
Uses the
Perfmon?2

ows read/write of PMU registers
approach (rather than driver)

encapsulates all PMU state

each context uniquely identitied by tfile descriptor

tile sharing semantic applies for context access

Leverages existing mechanisms wherever possible

e.g., file descriptors, signals, mmap (), ptrace ()

int pfm_create_context(pfarg_ctx_t *ctx, char *s, void *q, size_t sz)int pfm_stopl(int fd);
int pfm_write_pmcs(int fd, pfarg_pmc_t *pmcs, int n); int pfm_restari(int fd);
int pfm_write_pmds(int fd, pfarg_pmd_t *pmecs, int n); int pfm_create_evisets(int fd, pfarg_setdesc_t *st, int n);
int pfm_read_pmds(int td, ptarg_pmd_t *pmcs, int n); int pfm_delete_evisets(int fd, pfarg_setdesc_t *st, int n);
int pfm_load_context(int fd, pfarg_load_t *Id); int pfm_getinfo_evisets(int fd, pfarg_setinfo_t *it, int n);
int pfm_start{int fd, pfarg_start_t *st); int pfm_unload_context(int fd);
int close(int fd); llzaé]lm

10 July 17, 2007

nnnnnn

I Perfmon?2 interface (2)

Unitormity makes it easier to write portable tools

Counters are always exported as 64-bit wide
emulate via counter overtlow interrupt capability if needed
Exports logical view of PMU regjisters

PMC: configuration registers, write only
PMD: data registers (counters, butfers), read-write

Mapping to actual registers depends on PMU model

defined by PMU description kernel module
visible in / sys/ ker nel / per f non/ pnu_desc

11 July 17, 2007 invent

Perfmon?2 interface (3)
Same ABI between ILP32 and LP64 models

all exported structures use fixed-size data types

x86_64, ppcbd4: 32bit too
Vector arguments for reac

s run unmodified on 64-bit kernel

/write of PMU regjisters

portable: decoupled PMC/

"MD = no dependency knowledge

extensible: no knowledge of # registers of PMU

efficient and flexible: can write one or multiple regs per call

AMD64 Pentium 4 Intel Core, ltanium 2

PMC PMD PMC

4>

PMD PMC PMD

PMC

>
PMD

12 July 17, 2007

nnnnnn

I Perthread session
Thread = kernel visible thread (task)

PMU state is saved/restored on context switch

multiple perthread sessions can run concurrently
Support one context per thread
Thread must be stopped to access PMU state

except self-monitoring
No inheritance across fork/pthread_create

ptrace () options (PTRACE O TRACE*)
aggregation done by the tool, it needed

13 July 17, 2007

nnnnnn

I System-wide session

Monitors across all threads running on CPU
same programming sequence as per-thread
type selected when context is created
monitored CPU is current CPU in pfm load context ()
System-wide SMP built as union of CPU-wide sessions
tlexibility: measure ditferent metrics on ditferent CPUs

scalability: strong affinity (processor, cache)
ready for HW butter: Intel PEBS

Mutual exclusion with perthread session

14 July 17, 2007

I Support tor sampling
Supports Event-Based Sampling (EBS)

period p expressed as 2°*-p occurrences of an event

number of sampling periods = number of counters

Can request notitication when 64-bit counter overtlows
notification = message, extracted via read ()

support for select/poll,SIA O
Optional support for kernel level sampling butter

amortize cost by notitying only when buffer full

butter remapped read-only to user with nmap() : zero copy

periods can be to avoid biased samples
er-counter list of PMDs to record/reset on overflow @

" @

15 July 17, 2007 invent

No

I Sampling butter formats

single format can satisty all needs

must keep complexity low and extensibility high
Export kernel interface for plug-in formats

port existing tools/infrastructure: OProfile
support HW features: Intel PEBS, BTS butfers

Eac

h format provides at least:

string for identification (passed on context creation)
counter overflow handler

EFac
\"."4
\"."4

W

16 July 1

n format controls:
nere and how samples are stored

nat gets recorded, how the samples are exported

hen a user notification must be sent to user ('9,”]

7, 2007

nnnnnn

I Existing sampling formats

Default format (builtin):
linear butter, tixed header followed by optional PMDs values
OProfile format (I1A-64,)

10 lines of C, reuse all generic code, smadll user level changes

N-way sampling format (released separately):

implements split buffer (up to 8-way)

parsing in one part while storing in another: fewer blind spots
Kernel call stack tormat (experimental, 1A-64):

records kernel call stacks (unwinder) on counter overflow
Precise Event Based Sampling (P4, Intel Core 2 Duo)

100 lines of C, first interface to provide access to feature! g/
P D

17 July 17, 2007 invent

Event sets and multiplexing (1)
What is the problem?

number of counters is often limited (4 on ltanium®2 PMU)
some events cannot be measured together

Solution:
create sets of up fo mevents when PMU has mcounters
multiplex sets on actual PMU HW

global counts by simple scaling calculation
higher switch rate = smaller blind spots = higher overhead

Kernel support needed to minimize overhead

switching always occur in context of the monitored thread

D]
18 July 17, 2007

nnnnnn

I Event sets and multiplexing (2)

Each set encapsulates the full PMU state
unique identifier: 0-65535
sets placed in ordered list

Switching mode determined per set

Timeout-based switching
granularity depends on kernel timer tick (HZ)
actual vs. requested timeout is reported to user
Overtlow-based switching
after threshold of n overflows of a counter

threshold specitied per counter and per set

Works with counting sampling

19 July 17, 2007

nnnnnn

PMU description module

Llogical = actual PMU register mappings
PMC and PMD mapping description tables

type, logical name, default value, reserved bit fields

Implemented by kernel module:
auto-loading on first context creation

easier for: support of new HW, maintenance

$ cd /sys/kernel/perfmon/pmu desc/pmcO; ls; cat *
addr dfl val name rsvd msk

0x186

0x100000

PERFEVTSELO

Oxfff£££££00300000

20 July 17, 2007

nnnnnn

I Security

Cannot assume tools/users are well-behaved

Vector arguments, sampling buffers have max. size
tuneable via /svys
Perthread and system-wide contexts

can only attach to thread owned by caller

each type can be limited to a users group (via /sys)

Reading of PMU registers
direct access (some arch):limited to self-monitoring
interface access: can only read registers declared used
PMU interrupt flooding
need to add interrupt throttling mechanism

21 July 17, 2007 invent

Pertmon2 architecture summary

user level

kernel level sysfs syscalls file
default
perfmon

core _ hway

smpl

me : :
fmt kernel-call-stack
res sets
PMU OProfile
description :
ctxsw | Intr PEBRS

PMU Hardware @

22 July 17, 2007 invent

Supported Processors
Intel ltanium: all processors (HP)

Intel X86:
Plll, Pentium M, Core Duo/Solo, Core 2 Duo (HP)
Pentium 4, Xeon (incl. HT) (Intel)
AMD:
tamily 0x0£ (HP)
tamily 0x10 (AMD), incl. Instruction-Based-Sampling (IBS)
IBM:
Power 5 (IBM),
Cell (IBM, Sony, Toshiba)
MIPS: various models (Phil Mucci, Broadcom)

Cray: BlackWidow (Cray) (]

July 1

nnnnnn

I Kernel integration status

Won support tfrom top Linux kernel people

with help from performance monitoring community

Code reviewed 2006 & now by top-level maintainers
about 700KB reviewed line by line
dozens of changes, improvements

Why is it taking so long?
kernel is a moving target
update/tix general kernel infrastructure (ctxsw, NMI, Oprotile)
new hardware support, bug fixing, X86 Oprotike co-existence

target: 26.24 in -mm

once in mainline, will appear in distros O]

24 July 17, 2007 invent

Current Challenges

Challenges tor pertmon?2

Sharing the PMU resource
between ditferent subsystems: watchdog, Oprofile, perfmon?2
between conlflicting users: perthread and system-wide
mutual-exclusion is oo restrictive, especially on large systems

workaround via aftinity restriction is invalid

PMU access in virtualized environments

PMU usage is never for correctness but for performance
usage model evolving: from development to always on

used by monitoring, tools, managed runtimes, OS kernels

26 July 17, 2007 invent

I PMU sharing: what?

PMU state to share:

data/conftig registers (dependencies)
interrupt vector (unique)

possibly start/stop controls

Sharing consequences:

AMD64

symmetrical register functionalities
independent start/stop, freeze
tools must be prepared o use partial PMU

27 July 17, 2007

PPC
ltanium?2
Core 2

nnnnnn

PMU sharing: example

thread

00

user

kernel

contig
data

perfmon?2, CPUs=0,
perfmon2, CPUs=all-=

28 July 17, 2007

NMI, CPUs=all
perfmon2, CPUs=all

nnnnnn

I Usage models in virtual environments

Ensure continuity of service: PMU virtualization
OS, applications using PMU must continue to work
Performance must be maintained: JVM with DPGO
must provide PMU access to guest
no visibility into VMM execution

Assessment global performance: system-wide

measure aaoss hypervisor (VMM) and guest environments

Must deal with multiple virtual machines
work with VT-*/AMD-V and para-virtualization
Xen (para): XenOprofile

KVM, |gUGSf (19'0]

29 July 17, 2007 invent

Pertmon & petatlops computing

How do you know effective FLOPS?

guess by looking at the code?
instrumentation does now work: must use HW counters

PMU Metrics for scientific code:
Flops
Cache behavior
Bus bandwidth utilization

profiles to identity key loops

Some metrics unavailable or unreliable
e.g.: no FLOPS on AMD64

Need to identity key metrics to influence future H

Wm

30 July 17,2007 iavent

I Summary

Monitoring key to achieve world-class performance

current HW trend makes this critical

Pertmon2 is a very advanced monitoring interface
supports all major processor architecture

Pertmon?2 to become the Linux monitoring interface
strong community of users/developers

Need to solve sharing/virtualization challenges

Call to action: try it out!

start porting/developing performance tools

visit http://perfmon?2..sf.net

31 July 17, 2007 invent

Basic selt-monitoring perthread session

pfarg ctx t ctx; int f4d;
pfarg load t load;
pfarg pmd t pd[l]; pfarg pmc t pc[l];

fd = pfm create context(&ctx, NULL, 0, 0);

pfm write pmecs(fd, pc, 1);

pfm write pmds(fd, pd, 1);

load.load pid = getpid() ;

pfm load context(fd, &load);

pfm start (fd, NULL);

/* run code to measure */

pfm stop (£d) ;

pfm read pmds(fd, pd, 1);

printf (“total cycles %”PRIu64”\n”, pd[0].reg value);

close (f4d) ;
33 July 17, 2007

