Rudi Eigenmann

Purdue University

Example of an important switch: parallelism threshold

o My goals:
» Looking for tuning parameters and evidence of performance difference
s Go beyond the “usual”: unrolling, blocking, reordering

s Show performance on real programs

R. Eigenmann, Autotuning 2

-> Roles for the compiler ?

R. Eigenmann, Autotuning 3

)
S
£100
&
® .,/ You are here
1
0 100%

knowledge

R. Eigenmann, Autotuning

‘Amdahl’s law
of dynamic
optimization”

Run in parallel, track data accesses

IF there was a conflict, backtrack, run serially

R. Eigenmann, Autotuning 5

. Allowed standard compilers and all options to be used

» Triage & shelter
. tune the most deserving program sections first
. reduce tuning on un-deserving sections

e Issues:
» Scalability to large number of optimizations
» Runtime overheads

R. Eigenmann, Autotuning 6

,. Comparing performance

Fair Rating methods - SC 2004
» Comparing two (differently optimized) subroutine invocations

. Choosing procedures as tuning candidates
Tuning section selection - PACT 2006

» Program partitioning into tuning sections

Two goals : increase program performance and reduce
tuning time

R. Eigenmann, Autotuning 7

. Does not consider interaction => not effective

o IE: iterative elimination
. Eliminates one “bad” optimization at a time => slow
. Considers interaction => effective
o CE: combined elimination (final algorithm)
. Eliminates a few “"bad” optimizations at a time
o Other algorithms
. optimization space exploration, statistical selection,
genetic algorithm, random search

R. Eigenmann, Autotuning

Search

Algorithm
Final
Version
Version
Generation

i

Performance Evaluation
(Program Execution)

Empirical search

[] Whole-program tuning train data set

[] Subroutine-level tuning train data set
[l Whole-program tuning ref data set
[[] Subroutine-level tuning ref data set

1N
o

w
o

N
o

Relative performance improve

a ¥ () .
- = = g § 'g) S § g geometric
= =) 3 = = < 7 2 mean

© = -}

Tuning Goal: determine the best combinatién of GCC options

R. Eigenmann, Autotuning 9

(1) Tuning Section Selection (TSS)

(2) Rating Method Analysis (RMA)

(3)

Code Instrumentation (Cl)

v

(4) Driver Generation (DG)
v

(5) Performance Tuning (PT) } During Tuning
v

(6) Final Version Generation (FVG) } Post-Tuning

R. Eigenmann, Autotuning 10

O Whole-program tuning
B Subroutine-level tuning

Normalized tu

0.00 - T

ammp
applu
apsi
mesa

R. Eigenmann, Autotuning

mgrid
sixtrack
swim
wupwise
GeoMean

11

Tuning library selection - (ScalaPack, ...)
OpenMP to MPI translator
Tuning SPMUL on clusters

R. Eigenmann, Autotuning 12

Speed Up (%)

-10

-15

TCP Buffer Size Effect

Default (16K)

32K

256K

512K

5 CG.B.4
nFT.A.16
m S.A.16
niS.A4

m IS.B.16

TCP Buffer Size

Target system: Dell IA-32 P4 nodes cluster
Used MPI: MPICH1

R. Eigenmann, Autotuning

Speed Up (%)

alltoall performance

10 default basic linear

i o FTA4

-20 g FTA8

-30 o FTA16
o ISC4

-40 mISC8

50 @ ISB.16

-60

-70

-80

alltoall algorithms

Target system: Dell IA-32 P4 nodes cluster
Used MPI: Open MPI 1.2.2

R. Eigenmann, Autotuning

14

alltoll performance (basic linear algorithm)

S o FTA4
g. m FT.A.8
° 6 |
7 0 FT.A.16
»

4 L

2 L

0 - -1

¥4 & P Qo
é&& v (f/’g)) AN ‘]& bgﬁ’g) q}'\c{’)/ \"83? ({){/\‘g)
)
&
Segmentation (bytes)

Target system: Dell IA-32 P4 nodes cluster
Used MPI: Open MPI 1.2.2

R. Eigenmann, Autotuning 15

o Run-time Communication Selection

» Packed data vs. Block data communication

» Broadcasting vs. Point-to-point exchange

R. Eigenmann, Autotuning 16

PO

WIN|— O

arget Exe. Time
60 per process

R. Eigenmann, Autotuning 17

DIOCK DU =LO-D0C E'X adl 1(JE = o0 4 . Proce -
exchange bounding blocks containing needed elements through
point-to-point communication.

o Packed point-to-point exchange method (CM3): processes
exchange exactly needed element through point-to-point
communication.

o Optimal method is re-selected at runtime whenever the
adaptive mapping system changes the distribution.

R. Eigenmann, Autotuning 18

Totalspeedupson 16 nodes 0 Org
B CTuned
) Tuned

Speedup
O D W = W O\ —] OO

< -
Input matrices

Speedups of the base parallel version (Org), computation-tuning only
version (CTuned), and tuned version (Tuned) on 16 nodes.

Our adaptive mapping (CTuned) reduces execution time up to 37.8% (14% avq)

Overall tuning system (CTuned) reduces execution time up to 66.7% (33.3% avq)

R. Eigenmann, Autotuning 19

o Challenging Issues for Performance Tuning

Two major tuning targets:

. To minimize and align global memory accesses
. To minimize control flow divergence.

Several compiler techniques, such as tiling and loop unrolling, can be
applied.

However, optimizations may conflict with each other due to hardware
resource limits (ex: # of registers and shared memory size)

Runtime tuning is necessary to strike a balance among conflicting
optimizations.

R. Eigenmann, Autotuning 20

B CPU-only O GPU-only O Combined

>

Speedup
¢ - N
OO 20N OWw O s OO,
I

w

—

o

| 118 1S IS 0N

100 300 500 700

Size of matrix multiplication

In all cases, tuned work sharing on CPPU and GPU is fastest.

R. Eigenmann, Autotuning 21

SpeedUp (w/ global access optimization)

SpeedUp (w/o global access optimization)

1.6 12
(=
1.5 2 10
L
1.4 & 8
1.3 6
1.2 4
1.1 2
L L L 0 L L L

Base Loop Unrolling Array Caching LU+ AC Base Loop Unrolling Array Caching LU+ AC
(LU) (AC) (LU) (AC)

SpeedUp

Applied optimizatioins Applied optimizations

Performance of translated version of NPB OMP EP, executed on NVIDIA GeForce
8400 GS. The speedups are over serial version of EP, run on Intel Core™2 Duo
CPU @2.2GHz. The left graph shows speedups when global memory optimization
is not applied, and the right graph shows speedups when the global optimization is
applied. The results show that local array caching technique (AC) behaves
differently depending on other optimizations.

R. Eigenmann, Autotuning 22

performance of a program
o OpenMP to MPI translation

o Tuning NICA architectures
» Multicore + niche capabilities (accelerators and more)

=> Purdue jpuem / Project

R. Eigenmann, Autotuning 23

Compiler Infrastructure

Successor to Polaris

Source-to-source translator for C, C++, Java
Supported by the U.S. National Science Foundation
Written in Java

cetus.ecn.purdue.edu

R. Eigenmann, Autotuning

. B
g
(I

g -
""."i' -
i

24

variants (others are libraries and user code)

Compiler is used to analyze and instrument the code. But this is not
classical compilation.

The Engine finds the best through models and experiments
In our case: focus on experiments - empirical search

Empirical search is extremely powerful but can be slow. Pruning through
model is future

R. Eigenmann, Autotuning 25

fully dynamically

Offline training, runtime selection
Parameterized code variants

staged compilers

library variants

user-generated (autotuning language)

R. Eigenmann, Autotuning

26

ow to detect when to re-
environment changes)

» Shelter code (near-zero tuning overheads) as long as possible

une (recognize phase or

» retune when important changes happen
=> Combine the benefits of offline and adaptive tuning

o How to create an autotuning architecture?

what's a good architecture to integrate multiple contributions?
» this is a general issue in all research

» Agreeing on terminology may be a starting point
R. Eigenmann, Autotuning 27

» Long running benchmarks are especially important, as they show phase
behavior

o Use the same metrics: performance, productivity, power
o What architectures/platforms should we target?
» All. Heterogeneous architecture are especially interesting.

o What improvements should we expect from autotuning, at both the
compiler level and the library level?

» Up to orders of magnitude.

» So far, we achieved < 2x
R. Eigenmann, Autotuning 28

4

compilers, and operating systems is too rigid and needs to be
changed.

Yes. Compilation optinos, library variants, program parameters can all be
orchestrated by a smart tuning engine.

4

e What can we do to build common tool bases for compiler-based
autotuning and for construction of self-tuning or autotuning
libraries?

This is important and should be discussed further.

R. Eigenmann, Autotuning 29

more complex and languages get higher level
o Thereis room for 10s of PhD theses

o Perhaps the biggest issue: how to synergize the community

» Can we create an autotuning architecure, in which we can all plug in
our contributions?

R. Eigenmann, Autotuning 30

