EAVL

Dave Pugmire, Jeremy Meredith,
Sean Ahern, Rob Sisneros

ORNL, NCSA

CScADS
July/August 2012

Overview

Funded under FY2011, FY2012 exascale-focused
ORNL LDRD call for proposals

— Jeremy Meredith (PI), Sean Ahern, David Pugmire,
and Robert Sisneros (postdoc, now at NCSA)

Exploring exascale vis/analysis issues

— concurrency, scalability, computational and memory
efficiency, data model, heterogeneous architectures

“Extreme-scale Analysis and Visualization
Library”

— Note: originally “Exascale”

What are the exascale problems?

Concurrency will rise 40,000x to 400,000x
Memory will rise by only 100x
/0 subsystem will be slower and smaller

Simulation codes are evolving with new mesh
and data models

In situ analysis and visualization

Yes, these are a broad set of issues.....

How are we trying to solve them?

* New data model
— Support for wider range of data

* Increased efficiency
— Computational and memory efficiency

* New avenues for scalability for next generation
architectures
— MPI, GPU, OpenMP, MIC

DATA MODELING CHALLENGES

A Traditional Data Set Model

Data Set

AR N

Structured Unstructured

Dimensions

3D Axis Coordinates
Cell Fields

Point Fields

Dimensions
3D Point Coordinates

Cell Fields

Point Fields

Connectivity

3D Point Coordinates
Cell Fields

Point Fields

Challenge: Non-Physical Data Analysis

 Graph Data
— topologically OD vertices, 1D edges

— non-spatial; storing X/Y/Z values is wasted space

e Pure Parameter Studies

— e.g. reaction rate of combustion
* FOUR “spatial” dimensions

— e.g. methane concentration vs
oxygen concentration vs
temperature vs pressure

o

&
S S
9 /&

. Q
* more complex reaction 2 ey
higher dimensionality

methane

Challenge: Molecular Data
(e.g., LAMMPS, VASP)

G G BondStr AtomicNum
1 6
1

* To represent using vtkPolyData or vtkUnstructuredGrid:
— VTK_VERTEX cells for the atoms
— VTK_LINE cells for the bonds

* Any field data must exist on both element types

— Not only inefficient:
 dummy bond strengths on the atoms?
* dummy atomic numbers on the bonds?
— But also incorrect:
* e.g. average(BondStrength) uses dummy values from atoms?

N R R R
===

Challenge: Side Sets

(e.g. Exodus, flux surfaces)

_—---—--——-—--------
_- --
- A,
‘g -

flux surface lives inside
the volumetric mesh

e The flow from A to B is defined on a set of faces

* The flux variable is defined only on those faces

— do you combine them into a single mesh?
* waste space on dummy values, potentially introducing errors

— or create a separate mesh and lose the mapping info?
* horribly expensive and error-prone to recalculate mapping

- ”
- e L
-----__. ___--——-

Challenge: High Dimensionality
(e.g. GenASiS)

e Seven (or eight) dimensional mesh
— f(x,v,2,6,9,A,F)=E, plus time

Challenge: Unique Mesh Topologies
(e.g. MADNESS)

' root

1 i Q00 @ 1
2 3 Q00C 000¢ 2
0000 0000 3

2000 ©0O00Q 4

........ 5

spatial structure internal tree representation

e MADNESS does not have a traditional mesh
— Just a quad-tree with polynomial coefficients
— Up to 30 refinement levels / tree depth

Challenge: Very High Order Fields
(e.g. MADNESS)

(example with K=3, dim=2)

"~ 0.834 0.592 0.003
0.592 0.003 0.010
| 0.003 0.010 0.007

* Legendre polynomial series at each tree node
— Each tree node has K™ coefficients

— K can be up to approx. 20
* i.e. 400 coeffs per tree node in 2D, 8000 in 3D

THE EAVL DATA MODEL

The EAVL Data Set Model

CellSet

el NN

Cells[] QuadTree
Points(] Connectlwty Dlmen5|ons Tree CeIILlst
Fields[]

Coords

FieldName

Name
Component

Association

Values

Example: An Unstructured Grid
(with interleaved coordinates)

eavlExplicitCellSet

eavlDataSet Connectivity: (a bunch of cells)

Cells[1]
Points[1]
Fields[1]

eavlCoordinates

FieldName: “c” “c” “c”

Component:0 1 2

eavlField

Name: “c”

Association: Points

Values[3*npts]

Example: An Unstructured Grid
(with separated coordinates)

eavlExplicitCellSet

eavlDataSet Connectivity: (a bunch of cells)

Cells[1]
Points[1]
Fields[3]

eavlCoordinates

o .0 0)

FieldName: “x” “y” “z

Component:0 0 O

eavlField #1 eavlField #2

eavlField #0

Name: “x” Name: “y” Name: “z”
Association: Association: Association:
Points Points Points

Values[npts]

Values[npts]

Values[npts]

Example: A Curvilinear Grid

eaviStructuredCellSet

eavlDataSet

RegularStructure: 3040 30

Cells[1]
Points[1]
Fields[3]

eavlCoordinates

o .0 0)

FieldName: “x” “y” “z

Component:0 0 O

eavlField #1 eavlField #2

eavlField #0

Name: “x” Name: “y” Name: “z”
Association: Association: Association:
Points Points Points

Values[npts]

Values[npts]

Values[npts]

Example: A Rectilinear Grid

eaviStructuredCellSet

eavlDataSet RegularStructure: 3040 30

Cells[1]
Points[1]
Fields[3]

eavlCoordinates

o .0 0)

FieldName: “x” “y” “z

Component:0 0 O

eavlField #0 eavlField #1 eavlField #2
Name: “x” Name: “y” Name: “z”
Association: * Association: Association:

LogicalDimO LogicalDim1 LogicalDim2

Values|ni] Values[nj] Values[nk]

Example: High-Dimensional Grid

eaviStructuredCellSet

eavlDataSet RegularStructure: 30 40 304 360
Cells[1]
Points[1] eavlCoordinates
F|e|d5[5] FieldName: uxn uy” “Z" uu” uen *

Component:0 0 O O O

eavlField #0 | eavliField #1 | eavliField #2 | eavlField #3 | eavlField #4

Name: “x” Name: “y” Name: “z” Name: “p” Name: “©”

Association: || Association: || Association: || Association: || Association:
LogicalDimO || LogicalDim1 || LogicalDim2 || LogicalDim3 || LogicalDim4

Values|ni] Values[nj] Values[nk] Values[np] Values[nB]

Example: Molecular Data

eavlExplicitCellSet #0

eavlExplicitCellSet #1

eavlDataSet Connectivity: the atoms Connectivity: the bonds

Cells[2]
Points[1] eavlCoordinates

Fields[3]

o 0 o

FieldName: “c” “c” “c

Component:0 1 2

eavlField #1 eavlField #2

Name: “c Name:”atomic number” || Name: “bond strength”

eavlField #0

Association: Points || Association: Cell Set #0 Association: Cell Set #1

Values[3*npts] Values[ncells #0] Values[ncells #1]

Example: Face-centered Data

eavlExplicitCellSet eavlAllIFacesOfExplicit

eavlDataSet Connectivity: volumetric

A

Parent:y)
——

Cells[2]
Points[1] eavlCoordinates
Fields[2] FieldName: “c” “c” “c”

Component:0 1 2

eavlField #0 eavlField #1

o_

Name: “c Name: “facevariable”

Association: Points Association: Cell Set #2

Values[3*npts] Values[nfaces]

FILTERING IN EAVL

Data flow networks in EAVL (or not)

* A “Filter” is a stage in a data flow network
— Creates a new data set from an old one

* Many operations do not change a mesh structure
(assuming data model is sufficiently descriptive)

— Arithmetic expressions: only modifies fields
— External facelist: points and structure remain
— Feature edges: just a new cell set with old points

— Smooth, displace, elevate: only modify coordinates

e So: eavlMutator is an alternative to eavlFilter

— Modifies a data set in-place

eaviMutator

In-place data set modification
Support for destructive in-place operation
— free memory as you go

Execute multiple mutators simultaneously on the
same data set (barring conflicts)

— e.g. displace (coords) + threshold (cells) concurrently

How about data flow network support?

— encapsulate an eavlMutator through a
eavlFilterFromMutator facade

Of course, some operations are natively eavlFilters

Example: Thresholding an RGrid (a)

* Explicit cells can be combined with structured coordinates.

eavlStructuredCellSet eavlExplicitCellSet

RegularStructure: 3040 30 Connectivity: (a bunch of cells)

eavlCoordinates

o .0 0)

Fiel[dName: “x” “y” “z

Component:0 0 O

eaVvlField#0 | eavlField#1] eavlField#2

au . n au..”n u_n

Name: “x Name: “y Name: “z

Association: Association: Association:
LogicalDimO || LogicalDim1 || LogicalDim2

Values|[ni] Values|nj] Values[nk]

Example: Thresholding an RGrid (b)

e A second Cell Set can be added which refers to the first one

eaviSubset

eaviStructuredCellSet

eavIStructuredCellSet

RegularStructure: Cells: {...)

304030 ,
| | Parent: (})

RegularStructure: 3040 30

eavlCoordinates

o .0 0)

Fiel[dName: “x” “y” “z

Component:0 0 O

eaVvlField#0 | eavlField#1] eavlField#2

au . n au..”n u_n

Name: “x Name: “y Name: “z

Association: Association: Association:
LogicalDimO || LogicalDim1 || LogicalDim2

Values|[ni] Values|nj] Values[nk]

Example: Elevating a Structured Grid

* No problem-sized data modifications.
— Interleaved and separated coordinates can be used simultaneously.

eavIStructuredCellSet

RegularStructure: 30 40

eavlCoordinates eavlCoordinates

o 0 o)

FieldName: “c” “c” “val”

(PN PN/}

FieldName: “c” “c

Component:0 1 Component:0 1 O
Name: “c” Name: “val”

Association: Association:

Points Points

Value[2*npts] Values[npts]

Example: Elevating a Regular Grid

* No problem-sized data modifications.
— Some axes on logical dims, with others on the points.

eavIStructuredCellSet

RegularStructure: 30 40

eavlCoordinates eavlCoordinates

o 0)

FieldName: “x” “y

o 0 L) il I”

FieldName: “x” “y” “va

Component:0 O Component:0 0O O

eaVvlField#0 | eavlField#1] eavlField#2

Name: “x” Name: “y” Name: “val”

Association: Association: Association:
LogicalDimO || LogicalDim1 || Points

Values|[ni] Values|nj] Values[npts]

DEALING WITH CONCURRENCY

Data Parallelism for Developers

* Functor + iterator paradigm
* |teration patterns for mesh topologies

* CUDA + OpenMP execution back-ends

Functor + lterator Approach

template <class T> void
CellToCel1Binaryop<T>(Field &a,

Field &b,
Field &c
T &F)
{
for_each(i)
fCalil,b[i],c[i]);
}

void CalculateDensity(...)

{
T

struct Divide

{
void operator() (float &a,
float &b,
float &c)
{
E=a /W
}
}s

CellToCellBinaryOop(mass, volume, density, Divide());

}

Example: Surface Normal

* For each 2D cell * Data-parallel:

(i.e. each polygon): — Repeat for all cells
— Get three adjacent points

— Pair-wise vector subtract
— Cross product

N | 4

NodeToCel10p3: :ExecuteCPU()
NodeToCel10p3: :ExecuteGPU()

Functor Efficiency on CPU and GPU

600 s

B Functor B Inline

500 ps

400 ps

300 ps

200 ps

100 ps

O us

unoptimized | optimized | unoptimized| optimized

Intel Xeon L5420 NVIDIA GeForce 8300GTS
e Data: noise.silo
e Surface normal

A FEW RESULTS

High-Order Quadtree

* MADNESS quadtree
e Can tesselate during pipeline

* Or let high-order fields make it to rendering
— don’t have to do explicit tesselation

1 value/cell (piecewise const) 1 value/node (bilinear) 9 values/cell (biquadratic)

Regular Grid Threshold

* More memory efficient
* More computationally efficient

15.0

-\/TK-@-EAVL | «=VTK -=EAVL
1000%
m p—
& - E
- 10.0 -
g' 100% _g
r=
g E
% k=
o
2 £
E 10% § 5.0 7]
2 = o
O
O
| -
1% I \ OO T \
0% 50% 100% 0% 50% 100%

Cells Remaining Cells Remaining

Elevating 2D - 3D
| rectlinear | structured | unstructured

before after before after before after
EAVL 11 kB 11 kB 21 kB 21 kB 17 kB 17 kB
VTK 11 kB 21 kB 26 kB 21 kB 19 kB 17 kB

 EAVL:

— any operation only changes mesh meta-data
— constant-time operation

e V/TK:
— linear-time operation
— rectilinear must become curvilinear

— curvilinear and unstructured: extra field copied over
wasted 3" coordinate array (and then deleted)

Face Data for a 100° Structured Grid

e Options for a data model without face data:
a) store as a 2.9M-polygon explicit data set
b) store as 300 regular grids
(but lose association as a single data set)
* |[n EAVL, can be both memory-efficient
and correct

Representation Memory for Grid + 1 Scalar Field

Single VTK polydata 74.8 MB
300 VTK rectilinear grids 12.3 MB
Single EAVL regular grid 11.8 MB

Data Parallelism: Surface Normal

160 ps

140 pus -

120 pus
100 ps
80 us
60 us
40 us

20 pus
Data:

noise.silo
Single-core
Multi-core
GPU

O s

135 s

Intel AMD OpenMP NVIDIA NVIDIA NVIDIA

Xeon Opteron 4xAMD GeForce Tesla Tesla
E5520 8356 8356 8800GTX C1060 C2050

Data Parallelism: Surface Normal

e Target Intel® MIC

Architecture SDP 100% -
90% -
* Used OpenMP, 209%
Intel compiler g 70%
5 60%
5 50%
= 40%
S 30% -
* Data: noise.silo 20% -
10% -
e Surface normal 0% S

2 4 8 16 32 64 128
Number of Threads

Experiment: Chunking and
Destructive In-Place Operations

Original algorithm
===Tiled in-place, block size=10k elements
====Tiled in-place, block size=1k elements

10MB - 300MB
9MB -

250MB -
8MB -
7MB -

200MB -
6 MB -
5MB - 150 MB -
4 MB -

100 MB -
3 MB
2MB -

50MB -
1MB -
0 MB 0 MB

External Facelist Isosurface

EAVL/VisMonster

* Fixed-pipeline demonstration GUI

- VisMonster BHEE
File

Color table: orange -

Slice normal: 1,0,0

Iso/Slice by: (none)

4

Show element set: | external_faces

4

Color by: CLOUD (points)

4

File information

eaviDataChunk: A
discreteCoordinates[0]:
eavlPoints:
npoints = 1437696
eavlLogicalStructureRegular:

logicalDimension = 3
logicalDims[3] = 288 192 26
coordinateSystems[1]:
eaviSeparatedCoordinates:
axisTypes[3] = < lon latlev >:
fieldNames[3] = 'lon" 'lat"‘lev’
elements[1]:
eavlAllStructuredElements:
name = RectilinearGridCells
dimensionality = 3
nElements = 1370425
zdims[3] =287 191 25
fields[43]:
interpolateable = true
association = LOGICALDIM
assoc_logicaldim = 2
array = double lev[26][1]=0 1 2..23 24 25

Plans and Status

Investigating deployment
— prototype GUI
— within Vislt
— in situ with simulation code via ADIOS
— (we also have a VTK translation layer)
Steps towards productization
— flesh out iterators, algorithms
— spend more time on optimization
— improve client-facing API
First release available at github
— https://github.com/jsmeredith/EAVL
— http://ft.ornl.gov/eavl/
Papers:

— J.S. Meredith, R. Sisneros, D. Pugmire, S. Ahern, “A Distributed Data-Parallel
Framework for Analysis and Visualization Algorithm Development”, Fifth
Workshop on General Purpose Processing on Graphics Processing Units (GPGPU5),
2012.

— J.S. Meredith, S. Ahern, D. Pugmire, R. Sisneros, “EAVL: The Extreme-scale
Analysis and Visualization Library”, Eurographics Symposium on Parallel Graphics
and Visualization (EGPGV) in association with Eurographics, 2012.

SC12 Panel on next generation vis/analysis frameworks

