
New optimal complexity algorithms
for linear algebra

Jim Demmel
CScADS

11 July 2007

Collaborators

• Sparse: Kathy Yelick, Mark Hoemmen,
Marghoob Mohiyuddin, BEBOP group

• Dense: Ioana Dumitriu, Laura Grigori,
Olga Holtz, Robert Kleinberg, Julien Langou,
Jessica Schoen, LAPACK group

Outline
• Tuning (x,A,k) → [x,Ax,A2x,…Akx]
• Optimal communication complexity algorithms for

sparse linear algebra

• Optimal communication complexity algorithms for
dense linear algebra

• Optimal arithmetic complexity algorithms for
dense linear algebra

Outline
• Tuning (x,A,k) → [x,Ax,A2x,…Akx]
• Optimal communication complexity algorithms for

sparse linear algebra

• Optimal communication complexity algorithms for
dense linear algebra

• Optimal arithmetic complexity algorithms for
dense linear algebra

• So what if they’re optimal, are they fast?

Outline
• Tuning (x,A,k) → [x,Ax,A2x,…Akx]
• Optimal communication complexity algorithms for

sparse linear algebra

• Optimal communication complexity algorithms for
dense linear algebra

• Optimal arithmetic complexity algorithms for
dense linear algebra

• So what if they’re optimal, are they fast?

• Tuning opportunities in Sca/LAPACK

5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

Local Dependencies for k=8

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Locally Dependent Entries for [x,Ax,…,A8x], A tridiagonal

Can be computed without communication
k=8 fold reuse of A

5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

Type (1) Remote Dependencies for k=8

Remotely Dependent Entries for [x,Ax,…,A8x], A tridiagonal

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

One message to get data needed to compute remotely dependent entries, not k=8
Price: redundant work

5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

Type (2) Remote Dependencies for k=8

Fewer Remotely Dependent Entries for [x,Ax,…,A8x], A tridiagonal

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Reduce redundant work by half

Latency Avoiding Parallel Kernel for
[x, Ax, A2x, … , Akx]

• Compute locally dependent entries
needed by nghbrs

• Send data to nghbrs, receive from nghbrs
• Compute remaining locally dependent

entries
• Wait for receive
• Compute remotely dependent entries

−5

0

5

10

15

−5

0

5

10

15

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Remote dependencies for Approach (2) to 2D mesh with 5 pt stencil, 3D view

Parallel Complexity
• Example matrix – “2D mesh”

– x lives on n-by-n mesh
– Partitioned on p½ -by- p½ processor grid
– A has “5 point stencil” (Laplacian)
– Ex: 18-by-18 mesh on 3-by-3 grid

• Cost = (flops, #words, #messages)
• Cost(conventional algorithm for [x,Ax,…,Akx])

= (9kn2 /p, 4kn / p½ , 4k)
= (O(k·volume), O(k·surface), O(k))

• Cost(new algorithm for [x,Ax,…,Akx])
= (9kn2 /p + 9k2n / p½, 4kn / p½ + 2k2, 8)
= (O(k·volume + k2·surface), O(k·surface), O(1))

• Latency cost of new algorithm is O(1), optimal

n/p½

n/p½

Optimal Communication Complexity
Algorithms for Sparse Linear Algebra

• Consider Sparse Iterative Methods for Ax=b
– Use Krylov Subspace Methods like GMRES, CG
– Can we lower the communication costs?

• Latency of communication, for a parallel machine
• Latency and bandwidth, for a memory hierarchy

• Example: GMRES for Ax=b on “2D Mesh”

Minimizing Communication
• What is the cost = (#flops, #words, #mess)

of k steps of standard GMRES?
GMRES, v1:
for i=1 to k

w = A * v(i-1)
MGS(w, v(0),…,v(i-1))
update v(i), H

endfor
solve LSQ problem with H n/p½

n/p½

• Cost(A * v) = k * (9n2 /p, 4n / p½ , 4)
• Cost(MGS) = k2/2 * (4n2 /p , log p , log p)
• Total cost ~ Cost(A * v) + Cost (MGS)
• Can we reduce the latency?

Minimizing Communication
• Cost(GMRES, v1) = Cost(A*v) + Cost(MGS)

• Cost(W) = (~ same, ~ same , 8)
• Latency cost independent of k – optimal

• Cost (MGS) unchanged
• Can we reduce the latency more?

= (9kn2 /p, 4kn / p½ , 4k) + (2k2n2 /p , k2 log p / 2 , k2 log p / 2)

• How much latency cost from A*v can you avoid? Almost all

GMRES, v2:
W = [v, Av, A2v, … , Akv]
[Q,R] = MGS(W)
Build H from R, solve LSQ problem

s = 3

Minimizing Communication
• Cost(GMRES, v2) = Cost(W) + Cost(MGS)

= (9kn2 /p, 4kn / p½ , 8) + (2k2n2 /p , k2 log p / 2 , k2 log p / 2)

• How much latency cost from MGS can you avoid? Almost all

• Cost(TSQR) = (~ same, ~ same , log p)
• Latency cost independent of k - optimal

GMRES, v3:
W = [v, Av, A2v, … , Akv]
[Q,R] = TSQR(W) … “Tall Skinny QR”
Build H from R, solve LSQ problem

W =
W1
W2
W3
W4

R1
R2
R3
R4

R12

R34

R1234

Minimizing Communication
• Cost(GMRES, v2) = Cost(W) + Cost(MGS)

= (9kn2 /p, 4kn / p½ , 8) + (2k2n2 /p , k2 log p / 2 , k2 log p / 2)

• How much latency cost from MGS can you avoid? Almost all

• Cost(TSQR) = (~ same, ~ same , log p)
• Oops

GMRES, v3:
W = [v, Av, A2v, … , Akv]
[Q,R] = TSQR(W) … “Tall Skinny QR”
Build H from R, solve LSQ problem

W =
W1
W2
W3
W4

R1
R2
R3
R4

R12

R34

R1234

Minimizing Communication
• Cost(GMRES, v2) = Cost(W) + Cost(MGS)

= (9kn2 /p, 4kn / p½ , 8) + (2k2n2 /p , k2 log p / 2 , k2 log p / 2)

• How much latency cost from MGS can you avoid? Almost all

• Cost(TSQR) = (~ same, ~ same , log p)
• Oops – W from power method, precision lost!

GMRES, v3:
W = [v, Av, A2v, … , Akv]
[Q,R] = TSQR(W) … “Tall Skinny QR”
Build H from R, solve LSQ problem

W =
W1
W2
W3
W4

R1
R2
R3
R4

R12

R34

R1234

Minimizing Communication
• Cost(GMRES, v3) = Cost(W) + Cost(TSQR)

= (9kn2 /p, 4kn / p½ , 8) + (2k2n2 /p , k2 log p / 2 , log p)

• Latency cost independent of k, just log p – optimal
• Oops – W from power method, so precision lost – What to do?

• Use a different polynomial basis
• Not Monomial basis W = [v, Av, A2v, …], instead …
• Newton Basis WN = [v, (A – θ1 I)v , (A – θ2 I)(A – θ1 I)v, …] or
• Chebyshev Basis WC = [v, T1(v), T2(v), …]

Performance Modeling
• Petascale

– Max # processor =8100
– Memory/processor = 6.25 ·109 words
– Flop time = 2 ·10-12 secs (.5 TFlops/s)
– Latency = 10-5 secs
– 1/Bandwidth = 1.5 ·10-12 secs (.67 TWords/s)

• Should be 4GB/s = .5 GW/s = 2 e-9 secs
• Grid

– Max # processor = 125
– Memory/processor = 1.2 ·1012 words
– Flop time = 10-13 secs (10 TFlops/s)
– Latency = .1 secs
– 1/Bandwidth = 3 ·10-9 secs (.33 GWords/s)

• Should be (40GB/s / 125 / 8) = 40MWords/s = 25 e-9 secs
• Could be as high as 100 e-9 secs

Speedup of 2D Mesh, 9pt stencil, on Petascale, with overlap

Speedup of 2D Mesh, 9pt stencil, on Petascale, with overlap

Speedup Optimal p (≤8100)

Speedup of 2D Mesh, 9pt stencil, on Petascale, with overlap

Speedup Time(flops) / Total Time

Speedup of 2D Mesh, 9pt stencil, on Petascale, with overlap

Speedup #flops in new alg / #flops in old alg

Speedup of 2D mesh, (2b+1)2 pt stencil, on Petascale

With overlap Without overlap

n = 211

Speedup of 2D Mesh, 9pt stencil, on Grid, with overlap

Speedup on 3D mesh, (2b+1)3 pt stencil

Petascale, without overlap
n=512

(no speedup with overlap!)

Grid, with overlap
n=1024

Latency and Bandwidth Avoiding
Sequential Kernel for [x, Ax, … , Akx]
• Mimic parallel algorithm:

– For i = 1 to #blocks of x
• Load rows of A needed to compute block i of [Ax,…,Akx]

(including remotely dependent entries)
• Load block i of x and parts of x from neighboring blocks

needed to compute remotely dependent entries of [Ax,…,Akx]
• Compute block i of [Ax,…,Akx]

• #Blocks chosen to fit as much of A and
[x,Ax,…,Akx] in fast memory as possible
– Double buffering, other optimizations possible

• Optimal in sense that all data moved between
fast and slow memory ≈once
– 1 + (k·surface/volume) times
– Increase computational intensity k-fold

Measured and Modeled Performance
5.2 GFlop Itanium2, 4GB memory, Disk

1/f= 300MFlops/s, BWread = 140 MB/s, BWwrite = 30 MB/s, disk latency irrelevant

3D mesh, 27-pt stencil, n = 368, p = 64 blocks,

Measured Speedup up to 3.2x (flop time ≈ ½ bandwidth time)

Summary of Optimal Sparse Algorithms
• Tuning and algorithmic design interact
• Can eliminate latency from GMRES, CG, …

maintaining stability
– Ideas go back to Van Rosendale (1983),

Chronopoulos & Gear (1989), many others, but
without simultaneous stability & optimality

• Extends to preconditioned methods
– Kernel becomes [x,Ax,MAx,AMAx,MAMAx,…,(MA)kx]
– But only some preconditioners let us eliminate

latency, not raise flop count a lot (work in progress)
• Lots of tuning opportunities

– All SpMV techniques, plus choosing k, polynomial in
kernel, partitioning, overlapping communication and
computation, …

Minimizing Communication in
Dense Linear Algebra

• Communication costs of current ScaLAPACK
– LU & QR: O(n log p) messages
– Cholesky: O(n/b log p) messages

• New “LU” and “QR” algorithms
– As few messages as Cholesky
– “QR” returns QR but represented differently
– “LU” “equivalent” to LU in complexity, stability TBD

• “Optimal” communication complexity, but fast?

Minimizing Arithmetic in
Dense Linear Algebra

• Long known (Strassen) how to invert
matrices as fast as matmul, but unstably:

T11 T12 = T11
-1 -T11

-1 T12T22
-1

T22 T22
-1

• New results
– Can make solving Ax=b, least squares,

eigenvalue problems as fast as fastest
matmul, and stable (even if matmul unstable!)

• “Optimal” arithmetic complexity, but fast?

-1

What could go into a
dense linear algebra library?

For all linear algebra problems

For all matrix structures

For all data types

For all programming interfaces

Produce best algorithm(s) w.r.t.
performance and accuracy
(including condition estimates, etc)

For all architectures and networks

Need to prioritize, automate!

How do we best explore this large tuning space?
• Algorithm tuning space includes

– Numerous block sizes, not just in underlying BLAS
– Many possible layers of parallelism, many mappings to HW
– Different traversals of underlying DAGs

• Left and right looking two of many; asynchronous algorithms
– “Redundant” algorithms for GPUs
– Recursive, parallel layouts and algorithms
– New “optimal” algorithms for variations on standard factorizations
– New and old eigenvalue algorithms
– Mixed precision (for speed or accuracy)

• Is there a concise set of abstractions to describe, generate tuning space?
– Block matrices, factorizations (partial, tree, …), DAGs, …
– FLAME, CSS, Spiral, Sequoia, Telescoping languages, Bernoulli, Rose, …

• Question: What fraction of dense linear algebra can be generated/tuned?
– Lots more than when we started

• Sequential BLAS -> Parallel BLAS -> LU -> other factorizations -> …
– Most of dense linear algebra?

• Not eigenvalue algorithms (on compact forms)
• What fraction of LAPACK can be done?
• Rest of loop “for all linear algebra problems…”

– For all interesting architectures…?

Exploiting GPUs
• Numerous emerging co-processors

– Cell, SSE, Grape, GPU, “physics coprocessor,” …
• When can we exploit them?

– LIttle help if memory is bottleneck
– Various attempts to use GPUs for dense linear algebra

• Bisection on GPUs for symmetric tridiagonal
eigenproblem
– Evaluate Count(x) = #(evals < x) for many x
– Very little memory traffic, but much redundant work
– Speedups up to 100x (Volkov)

• 43 Gflops on ATI Radeon X1900 vs running on 2.8 GHz Pentium 4
• Overall eigenvalue solver 6.8x faster

• Port of CLAPACK to NVIDIA underway

Iterative Refinement: For Accuracy
Conventional Gaussian Elimination With extra precise

iterative refinement

ε

1/ε

ε = n1/2 2−24

Iterative Refinement: For Speed
• What if double precision much slower than

single?
– Cell processor in Playstation 3

• 256 GFlops single, 25 GFlops double

– Pentium SSE2: single twice as fast as double
• Given Ax=b in double precision

– Factor in single, do refinement in double
– If κ(A) < 1/εsingle, runs at speed of single

• 8x speedup on Cell, 1.9x on Intel-based laptop
• Applies to many algorithms, if difference large

New algorithm for roots(p)

• To find roots of polynomial p
– Roots(p) calls eig(C(p))
– Costs O(n3), stable, reliable

• O(n2) Alternatives
– Newton, Jenkins-Traub, Laguerre, …
– Stable? Reliable?

• New: Exploit “semiseparable” structure of C(p)
– Low rank of any submatrix of upper triangle of C(p)

preserved under QR iteration
– Complexity drops from O(n3) to O(n2), stable in practice

• Related work: Gemignani, Bini, Pan, et al
• Ming Gu, Shiv Chandrasekaran, Jiang Zhu, Jianlin Xia, David

Bindel, David Garmire, Jim Demmel

-p1 -p2 … -pd
1 0 … 0
0 1 … 0
… … … …
0 … 1 0

C(p)=

ScaLAPACK Data Layouts

1D Block

1D Block
Cyclic

1D Cyclic

2D Block
Cyclic

0

10

20

30

40

50

60

70

80

90

100

seconds

10002000300040005000600070008000900010000

1x60
2x30

3x20
4x15

5x12
6x10

problem size

grid shape

Execution time of PDGESV for various grid shape

90-100
80-90
70-80
60-70
50-60
40-50
30-40
20-30
10-20
0-10

Times obtained on:

60 processors, Dual AMD Opteron 1.4GHz Cluster w/Myrinet Interconnect

2GB Memory

Speedups for using 2D processor grid range from 2x to 8x
Cost of redistributing from 1D to best 2D layout 1% - 10%

Extra Slides

New optimal algorithms (1)

• Long known (Strassen) how to invert
matrices as fast as matmul, but unstably:

T11 T12 = T11
-1 -T11

-1 T12T22
-1

T22 T22
-1

• New results
– Can make solving Ax=b, least squares,

eigenvalue problems as fast as fastest
matmul, and stable

• “Optimal” arithmetic complexity, but fast?

-1

New optimal algorithms (2)

• Communication costs of current ScaLAPACK
– LU & QR: O(n log p) messages
– Cholesky: O(n/b log p) messages

• New “LU” and “QR” algorithms
– As few messages as Cholesky
– “QR” returns QR but represented differently
– “LU” “equivalent” to LU in complexity, stability TBD

• “Optimal” communication complexity, but fast?

Goal 2 – Automate Performance Tuning

• 1300 calls to ILAENV() to get block sizes, etc.
– Never been systematically tuned

• Extend automatic tuning techniques of ATLAS, etc.
to these other parameters
– Automation important as architectures evolve

• Convert ScaLAPACK data layouts on the fly
– Important for ease-of-use too

Grid_wo_3d_bw_perf

Foo_woo_2d_bw_perf

speedup_368_4

5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

Local Dependencies for k=8

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Locally Dependent Entries for [x,Ax,…,A8x], A tridiagonal

5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

Type (1) Remote Dependencies for k=8

Remotely Dependent Entries for [x,Ax,…,A8x], A tridiagonal

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

5 10 15 20 25 30

0

1

2

3

4

5

6

7

8

Type (2) Remote Dependencies for k=8

Fewest Remotely Dependent Entries for [x,Ax,…,A8x], A tridiagonal

x

Ax

A2x

A3x

A4x

A5x

A6x

A7x

A8x

Latency Avoiding Parallel Kernel for
[x, Ax, A2x, … , Akx]

• Compute locally dependent entries
needed by nghbrs

• Send data to nghbrs, receive from nghbrs
• Compute remaining locally dependent

entries
• Wait for receive
• Compute remotely dependent entries

−5

0

5

10

15

−5

0

5

10

15

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Remote dependencies for Approach (2) to 2D mesh with 5 pt stencil, 3D view

Future Work in
Automatic Performance Tuning
for Sparse Matrix Algorithms

• Include more important kernels
– Better code generators / special purpose compilers

• Emerging architectures
– Multicore, GPU, Petascale, …

• Change the interface to the machine
– Put hardware into tuning loop (with RAMP)

• Change the interface to the application
– If using SpMV as abstraction limits optimizations,

change it
– So we need new numerical algorithms too!

