Recent Progress in Autotuning
at Berkeley

Jim Demmel
UC Berkeley

bebop.cs.berkeley.edu
parlab.eecs.berkeley.edu

Outline

Introduction to ParLab

Summary of autotuning activities
— Also Shoaib Kamil’s talk on Thursday @ 10:15

Dense Linear Algebra

Sparse Linear Algebra (summary)
Communication collectives

Responses to questions from the organizers

Overview of the Parallel Laboratory

Krste Asanovic, Ras Bodik, Jim Demmel,
Tom Keaveny, Kurt Keutzer, John Kubiatowicz, Edward Lee,
Nelson Morgan, George Necula, Dave Patterson,

Koushik Sen, John Wawrzynek, David Wessel, Kathy Yelick

parlab.eecs.berkeley.edu

“Motif" Popularity

HPC

Structured Grid
Dense Matrix
Sparse Matrix
Spectral (FFT)

N-Body
MapReduce

Unstructured Grid]

“Motif" Popularity

_ (Red Hot — E
0 How do compelling apps relate to 13 motifs?

1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix
6 Sparse Matrix
7 Spectral (FFT)
8 Dynamic Prog
9 N-Body
10 MapReduce
11 Backtrack/ B&B
12 Graphical Models
13 Unstructured Grid

“Motif" Popularity

_ (Red Hot — %
0 How do compelling apps relate to 13 motifs?

T, 8 =
L w E o | 1.7 Ih A
E om o 4 Ao i
w oo o 0O = Image Speech Music Browser

1 Finite State Mach.

2 Combinational

3 Graph Traversal]

4 Structured Grid B e

5 Dense Matrix]]

6 Sparse Matrix]

7 Spectral (FFT)

8 Dynamic Prog - B |

9 N-Body

10 MapReduce - -

11 Backtrack/ B&B
12 Graphical Models
13 Unstructured Grid

Par Lab Research Overview

Easy to write correct programs that run efficiently on manycore

Personal| Image |Hearing, Spe Parallel
Health [Retrieval]| Music Browser
Motifs

Composition & Coordination Language (C&CL) Static
Verification

C&CL Compiler/interpreter

Parallel Parallel Type
Libraries Frameworks Systems

Efficiency
Languages

Directed
Testing

Power/Performance

Sketching

Autotuners

Legacy Schedulers Communication & Dynarr_lic
Code Synch. Primitives | Checking

Efficiency Lanquage Compilers

0S lerarles & Services] P°Pud9ing
Legacy OS | Hypervisor | W|th Replay

Multicore/GPGPU RAMP Manycore

nosinge

Dia

Correctness

Par Lab Research Overview

Easy to write correct programs that run efficiently on manycore

Parallel
Browser

Personal
Health

Image
Retrieval

Hearing,
Music

Motifs

Composition & Coordination Language (C&CL) Static
Verification

C&CL Compiler/Interpreter

Parallel Parallel Type Systems
Libraries Frameworks

Efficiency) Directed
Languages SketCh'ng Testing

Autotuners

Communication & Dynamic
cheduler C o Checking

Efficiency Language Compilers Debugging

OS Libraries & Services :
with Repla
EEEEy O Hypervisor P
Multicore/GPGPU RAMP Manycore

Correctness

Summary of Autotuning (1/2)

* Dense linear algebra

— New algorithms that attain lower bounds on
communication (parallel and sequential)

— New algorithms for GPUs
e Sparse linear algebra (summary)
— New algorithms that attain lower bounds on comm.

* Collective communications
— Choosing right tree for reductions/broadcasts/etc

Summary of Autotuning (2/2)
To be presented by Shoaib Kamil on Thursday

Recent work autotuning three parallel kernels
— Sparse Matrix Vector Multiply (SpMV)

— Lattice Boltzmann MHD

— Stencils (Heat Equation)

Lessons learned/commonalities between the
autotuners

Towards a framework for building autotuners

— What is the role of the compiler?

Motivation

e Running time of an algorithm is sum of 3 terms:
 Hflops * time_per_flop
 # words moved / bandwidth

} communication
* H# messages * latency

e Exponentially growing gaps between
* Time_per_flop << 1/Network BW << Network Latency
* Improving 59%/year vs 26%/year vs 15%/year
* Time_per_flop << 1/Memory BW << Memory Latency
* Improving 59%/year vs 23%/year vs 5.5%/year

Motivation

e Running time of an algorithm is sum of 3 terms:
 Hflops * time_per_flop
 # words moved / bandwidth

} communication
* H# messages * latency

e Exponentially growing gaps between
* Time_per_flop << 1/Network BW << Network Latency
* Improving 59%/year vs 26%/year vs 15%/year
* Time_per_flop << 1/Memory BW << Memory Latency
* Improving 59%/year vs 23%/year vs 5.5%/year

* Goal : reorganize/tune motifs to avoid communication
e Not just hiding communication (speedup < 2x)
e Arbitrary speedups possible for linear algebra
e Success metric — attain lower bounds on communication

Linear Algebra Collaborators (so far)

 UC Berkeley
— Kathy Yelick, Ming Gu

— Mark Hoemmen, Marghoob Mohiyuddin, Kaushik Datta, George Petropoulos,
Sam Williams, BeBOp group

— Lenny Oliker, John Shalf

— ParLab/UPCRC — new parallel computing research center funded by Intel and
Microsoft

* CU Denver

— Julien Langou
* |INRIA

— Laura Grigori, Hua Xiang
 Georgia Tech

— Rich Vuduc

* Dense work € ongoing development of Sca/LAPACK
— Joint with UTK

Communication Lower Bounds
for Dense Linear Algebra (1/2)

Hong-Kung (1981), Irony/Tishkin/Toledo (2004)
Usual matmul using 2n3 flops

Sequential case, with fast memory of size W < 3n2
— Thm: #words moved = Q (n3 / wl/2)

Parallel case, P procs, O(n? / P) memory/proc

— Thm: #words moved = Q (n2 / pl/2)

Bandwidth lower bound = latency lower bound
— #fmessages = # words moved / (fast,local)memory size
— Sequential: # messages = Q (n3 /W?’/2)

— Parallel: # messages = Q (Pl/2)

Communication Lower Bounds
for Dense Linear Algebra (2/2)

 Same lower bounds apply to LU and QR
— Assumption: O(n3) algorithms; LU is easy but QR is subtle
 LAPACK and ScalAPACK do not attain these bounds
— ScalLAPACK attains bandwidth bound

— But sends O((mn/P)l/z) times more messages
— LAPACK attains neither; O((mz/W)l/z) X more words moved

* But new algorithms do attain them, mod polylog factors
— Parallel QR: requires new representation of Q, redundant flops
— Sequential QR: can use new one, or recursive
— Parallel LU: new pivoting strategy needed, stable in practice
— Sequential LU: can use new one or recursive, but higher latency

Minimizing Communication in Parallel QR

* QR decomposition of m x n matrix W, m >>n
* TSQR = “Tall Skinny QR”
* P processors, block row layout
e Usual Parallel Algorithm
* Compute Householder vector for each column
* Number of messages o« n log P
* Communication Avoiding Algorithm
* Reduction operation, with QR as operator
* Number of messages o« log P - optimal

\

Roo o Rp1 \

RlO

R02

L W3 _ —R30—/

=
b

TSQR in more detail

LAWY \(Roo
LA I Y | R

w, Oro Ry,
UEVAR Oso J\ Kso)

/Ry,]

Ry (Q)(R) 01)=Q02R02

RZO Qll Rll Rll

\ Ko

Q is represented implicitly as a product
(tree of factors)

Minimizing Communication in TSQR

Wo | = R 3R
_— Roz
Parallel: w=| W; | ™ Rio > Roz
W | ™ Rapn ——np
11
LW,] Ry T
i Wo |- Roo —
. R
Sequential: w=| W; T &, ;
W, _ 5 Np3
W,
i Wo | = Roo R
Dual Core: w=| Wi | ™ R —> "% =3 p
W, —> Ry >RO3
L W3 > Ry

Multicore / Multisocket / Multirack / Multisite / Out-of-core: ?
Choose reduction tree dynamically

Performance of TSQR vs Sca/LAPACK

Parallel
— Pentium llI cluster, Dolphin Interconnect, MPICH
* Up to 6.7x speedup (16 procs, 100K x 200)
— BlueGene/L
e Up to 4x speedup (32 procs, 1M x 50)
— Both use Elmroth-Gustavson locally — enabled by TSQR
Sequential

— OOC on PowerPC laptop
* As little as 2x slowdown vs (predicted) infinite DRAM

See UC Berkeley EECS Tech Report 2008-74
* Being revised to add optimality results!

General rectangular QR
* TSQR for panel factorization, then right-looking
* Implementation under way (Julien Langou)

Modeled Speedups of CAQR vs ScaLAPACK

Peta:Time PDGEQRF/Time CAQR max=22 8444 n=10000, P=£182

8
22
oE Petascale
20
, o L up to 22.9x
18
6.5 A
; ; , IBM Power 5
B L d
- , : : " up to 9.7x
_:‘3- 5.5 - 412
g 0 0 0 0 0 g 4 ‘ ‘
5 ' ” “Grid”
45 : — # up to 11x
| I J 1 6
4
0 0 0 4
3.5
2
3
0 2 4 B 8 10 12 14
log, (P}

Petascale machine with 8192 procs, each at 500 GFlops/s, a bandwidth of 4 GB/s.
y=2-10"s,a=10"s,8=2-10"s/word.

TSLU: LU factorization of a tall skinny matrix

First try the obvious generalization of TSQR:

Mo (Lo \(Loo \ (Y
W = K _ [Li . Ly, . Uy,
E [L Ly, &
\W3 \\ H30 /\ Ly, \U30/
I,

Growth factor for TSLU based factorization

average growth factor (partial pivoting;b=1,2,4,8,16,32)

10 3 7
C 7

7 parallel pivoting

growth factor

matirx size

Unstable for large P and large matrices.
When P = # rows, TSLU is equivalent to parallel pivoting.

Courtesy of H. Xiang

Making TSLU Stable

At each node in tree, TSLU selects b pivot rows from 2b
candidates from its 2 child nodes

At each node, do LU on 2b original rows selected by child
nodes, not U factors from child nodes

When TSLU done, permute b selected rows to top of original
matrix, redo b steps of LU without pivoting

CALU — Communication Avoiding LU for general A

— Use TSLU for panel factorizations

— Apply to rest of matrix

— Cost: redundant panel factorizations

Benefit:

— Stable in practice, but not same pivot choice as GEPP

— b times fewer messages overall - faster

Growth factor for better CALU approach

Average growth factor(Wilkinson's definition, randn, 2D layout, New pivoting)

600
—v—P=256,b=32 -
—_——D_ - -
500! P=256,b=16 PR
—a-P=128,b=64 - /
——-P=128,b=32 /,,«’ -~ 1
400[| —&--P=128b=16 P
.
— = P=B4b=128 AL,
a5
P=64,b=64 i T
3001 P=64,=32 -
P=64b=16 "
....... / B
y=n2/3 7
//
-~
-
-
-~
200 -4
100 [| | |
1024 2048 4096 8192

Like threshold pivoting with worst case threshold =.33, so |L| <=3
Testing shows about same residual as GEPP

Performance vs ScaLAPACK

TSLU
— IBM Power 5
e Up to 4.37x faster (16 procs, 1M x 150)
— Cray XT4
e Up to 5.52x faster (8 procs, 1M x 150)
CALU
— IBM Power 5
e Up to 2.29x faster (64 procs, 1000 x 1000)
— Cray XT4
e Up to 1.81x faster (64 procs, 1000 x 1000)

Optimality analysis analogous to QR
See INRIA Tech Report 6523 (2008)

Speedup prediction for a Petascale machine - up to 81x faster

Time LU ScalAPACK/Time new LU max=80,8832, n=10000, P=4036

B e e L L 80
75
70
7
160
6.5
6 {50
=
S 55
= 40
o
5
36| 51.2| | s
45
427 50.3
20
4
349 | 618| 355| 39.0
35 10

26.8| 50.8| 266 | 28.7

0 2 4 6 8 10 12 14
log2(P)

Petascale machine with 8192 procs, each at 500 GFlops/s, a bandwidth of 4 GB/s.
y=2-10"s,a=10"s,8=2-10"s/word.

Related Work and Contributions for

Dense Linear Algebra

* Related work
— Pothen & Raghavan (1989)
— Toledo (1997), Rabani & Toledo (2001)
— Dunha, Becker & Patterson (2002)
— Gunter & van de Geijn (2005)

* Qur contributions
— QR: 2D parallel, efficient 1D parallel QR
— Unified approach to sequential, parallel, ...
— Parallel LU

— Communication lower bounds, proving optimality

Heterogeneous (CPU+GPU) Performance
Libraries

Vasily Volkov

28

Challenges in programming GPUs

Relatively little tuning information for GPU hardware
- Hardware exposed via abstract programming model
- Hard to develop accurate performance models
- Hardware changing rapidly

We get ~2x speedups vs. best other work on variety of libraries
- Matrix-matrix multiply (1.6x speedup)
- FFT (2x speedup)
- LU/Cholesky factorization (3x/2x speedups)
- Tridiagonal eigenvalue solver (2x speedup)

Example: partial pivoting in LU factorization on NVIDIA GPU
- Ad: “GPU supports gather/scatter with arbitrary access patterns”
- LAPACK code (sgetrf) spends 50% of time doing pivoting
- Gets worse with larger matrices
- Only 1% of time is spent in pivoting if matrix is transposed
- 2X speedup!

Matrix-matrix multiply (SGEMM)

210
GeForce 8800 GTX
180 Stk
150 = A:NxN, B:-NxN |
————— A:Nx64, B:64xN
9120
@)
i /
® 90 a
60 / : S
4 \\\ Core2 Quad
30 //,// —
0
64 128 256 512 1024 2048 4096 8192

N

- Uses software prefetching, strip-mining, register blocking
- Resembles algorithms used for Cray X1 and IBM 3090 VF
- 60% of peak, bound by access to on-chip shared memory

FFT, complex-to-complex, batched

250

200

-
wn
o

100

CUFFT 1.1 S~
0

1 8 64 512 4096 32768
N

Results as on NVIDIA GeForce 8800GTX
Resembles algorithms used for vector processors
Radix-8 in registers, transposes using shared memory

registerl storage

benchFFT Gflop/s

Ul
o

Heterogeneous Computing

Question: should you port entire applications to GPU? —
Maybe not

Example: Eigenvalue solver (bisection, LAPACK’s sstebz)
- Most work (O(n?)) in vectorized, embarrassingly parallel code

- Do it on GPU and finely tune

- May do many redundant flops on GPU to go faster

- multisection

- Run on CPU when problem too small for GPU

- Use performance model to choose CPU or GPU version
- Little work (O(n)) in nearly serial code

- Do it on CPU: time-consuming and non-trivial to port

Independent project:
- Did everything on the GPU
- Used advanced parallel algorithms for O(n) work
- Up to 2x slower running on faster GPU (compared to us)

Breakdown of Runtime (sstebz)

100%

90%
80%
70%
60%
50%
40%

30%

the rest
20% Count(x) on CPU
10% B Count(x) on GPU

. > A D Ay A D o S
N \ B N / \,” >‘ N A A
Dimension of Matrix

“Count(x)” is the O(n?) work, use either SSE or GPU
“the rest” is the O(n) work, isn’t worth optimizing

LU Factorization

LU factorization:

- O(n3) work in bulky BLAS3 operations

- O(n?) work in fine-grain BLAS1 / BLAS2 (panel factorization)
Panel factorization is usually faster on the CPU

- Peak sustained bandwidth of 8800GTX is 75GB/s

- Kernel launch overhead is 5us

- BLAS1 and BLAS2 are bandwidth bound, so run at

bandwidth required
75GB/s

- compare vs. CPU handicapped by CPU-GPU transfers
- Faster on CPU up to n ~ 16K on NVIDIA 8800GTX

Time=35us +

GFLOPS

210

1

1

N
N
o

80

50

(o]
o

(&)}
o

W
o

o

Overall Performance

—_— U e
—— Cholesky P =
---- QR 0O ////
QQ / /
(1’1’//
o,’/
Q7
&/
N,
& 4
@
&
QQ/ Core2 Quad __—
<y /____-_- — | ___
64 128 256 512 1024 2048 4096 8192 16384

Order of Matrix

35

Time

Overlap in LU factorization

100%
90, I
80% -

70%

CPU/GPU
overlap

60%
50%

40% look-ahead

30% transpose

20%

CPU-GPU transfer
10%

0%

448 704 1088 1664 2496 3648 5312 7744 11264
Order of Matrix

Overlap panel factorization on CPU with sgemm on GPU

LU slowdowns from omitting optimizations

2.4 | |

row-major on GPU

2:2 overlap CPU and GPU

---- TRSM via GEMM

2.0

J
[\
/
/

1.6

Slowdown factor

1.4

1.2 — ==
M/—/ s--\§ \
/ R - \
— T=-=ea
1.0
128 256 512 1024 2048 4096 8192 16384

Order of Matrix

Summary of GPU Experience

 Heterogeneity expands tuning space
— Dividing work between CPU and GPU
* Depends a lot on flop-rate/bandwidth/latency/startup

— Different data layouts may be best for CPU and GPU

e Rowwise vs columnwise for LU

— May want to do (many) extra flops on GPU
* Multisection vs Bisection in eigensolver
* TRINV + TRMM vs TRSM in LU

* Rapid evolution of GPU architectures motivates
autotuning

Why all our problems are solved for dense linear algebra—
in theory

Thm (D., Dumitriu, Holtz, Kleinberg) (Numer.Math. 2007)

— Given any matmul running in O(n®) ops for some w>2, it can be
made stable and still run in O(n®*%) ops, for any >0.

e Currentrecord: 0w = 2.38

Thm (D., Dumitriu, Holtz) (Numer. Math. 2008)

— Given any stable matmul running in O(n®*%) ops,
can do backward stable dense linear algebra in O(n®*%) ops:

« GEPP, QR (recursive)
* rank revealing QR (randomized)
* (Generalized) Schur decomposition, SVD (randomized)

Also reduces communication to O(n“’+8)

But constants?

Avoiding Communication in Sparse Linear Algebra -
Summary

* Take k steps of Krylov subspace method
— GMRES, CG, Lanczos, Arnoldi

— Assume matrix “well-partitioned,” with modest surface-
to-volume ratio

— Parallel implementation
e Conventional: O(k log p) messages
* “New”: O(log p) messages - optimal
— Serial implementation
e Conventional: O(k) moves of data from slow to fast memory
 “New”: O(1) moves of data — optimal

* Can incorporate some preconditioners
— Hierarchical, semiseparable matrices ...

e Lots of speed up possible (modeled and measured)
— Price: some redundant computation

Tuning Collectives
Rajesh Nishtala

Collectives called by all threads to perform globally
communication

— Broadcase, reduction, all-to-all

Need to tune because best algorithm depends on
— #Hprocs,

— Network latency

— Network bandwidth,

— Transfer size, etc.

Focus on PGAS languages and one-sided communication
models

— E.g. UPC, Titanium, Co-Array Fortran

Emple Tree Topologies

Radix 4 k-nomial tree

Radix 2 k-nomial tree ,
(quadnomial)

(binomial)

Binary Tree Fork Tree

Distributed Memory Broadcast

1000 16 Byte broadcasts

Best implementation is
platform specific

Low cost to inject
message =>want flat tree
(6-ary)

High cost = want deep
tree to parallelize the
overhead (binomial)

Normalized Time

=1)

(Best Time

16 Byte Broadcast Latency Comparison

HItanium2/GM/16 ‘

mG5/VAP1/256

Algorithm

Distributed Memory All-to-All

Optimal algorithm varies
based on transfer size
— O(P log P) algorithm
doubles message size after
every round

— Expensive as the processor
count grows

Cross-over point is
platform specific

1400

1200

1000

800

600

400

200

Exchange Performance
(Alpha/Elan3/64)

O(P log P)
== (P"2)

kkﬂ

16 32 64 128
Transfer Size (bytes)

256

512

Collective Synchronization

Performance Advantages of Looser Synchronization

(16 Byte Broadcast)
180
B UPC Loose Synch
B MPI
140 M UPC Strict Synch

160

120
100

80

Time (us)

60
40

20 ~

Itanium2/GM/16 G5/VAPI/256 Opteron/VAPI/64 CrayXT3/128 CrayXT4/128 SGI Altix/16
Processor Type/Network/Processor Count

UPC presents new semantics for collective synchronization

* Loose synchronization lets collective begin after any
thread arrives (looser than MPI semantics)

e Strict synchronization requires all threads to arrive
before communication can start (stricter than MPI)

Synchronization semantics affects algorithm choice

Multicore Barrier Performance Results

Time many back-to-back barriers on Dual
Socket Sun Niagra2 (128 hardware threads)

Flat tree is just one level with all threads
reporting to thread O

— Leverages shared memory but non
-scalable

Architecture Independent Tree (radix=2)

— Pick a generic “good” radix that is
suitable for many platforms

— Mismatched to architecture
Architecture Dependent Tree

— Search overall radices to pick the tree
that best matches the architecture

— Search revealed radix 8 to be the best

Execution Time (us)

18

16

14

12

10

=&—Flat Tree

=8 Architecture Independent
(radix=2)

== Architecture Dependent
(radix=Dbest)

2 4 8 16 32 64
Thread Count

128

Niagara2 (Maramba) Barrier Performance

Summary and Conclusions (1/2)

Possible to minimize communication complexity of
much dense and sparse linear algebra

— Practical speedups
— Approaching theoretical lower bounds

Hardware trends mean the time has come to do this

Optimal asymptotic complexity algorithms for dense
linear algebra — also lower communication

Important to optimize communication collectives
themselves

Summary and Conclusions (2/2)

* Many open problems

— How to add these to automatic tuning design space
 PLASMA (Jakub Kurzak)

— Extend optimality proofs, algorithms to more general
architectures
* Heterogeneity, including multiple bandwidths and latencies

— Dense eigenvalue problems — SBR or spectral D&C?
— Sparse direct solvers — CALU or SuperLU?

— Which preconditioners work?

— Other motifs

Answers to Questions from Organizers (1/5)

 What about tuning on petascale?
— Communication avoiding algorithms help address it
— Can leverage multicore tuning, if we can mirror hierarchy of
machines in hierarchy of algorithms/tuners
* How do we measure success for tuning?
— Performance gains attained
— Ease of use by end-user
— Ease of development/evolution/maintenance of tuners

 What architectures should we target?
— Multicore and Petascale as above,
— Emerging architectures like GPUs

Answers to Questions from Organizers (2/5)

* T/F: “Parameter Tuning” is not enough

— Many of us have been changing data structures and
algorithms for a while, which goes beyond “parameters”

* T/F: Self-tuned libraries will beat compilers

— What is the starting point for the compiler? The most naive
possible code? Then yes (but may work for some motifs)

— But autotuners use compilers to compile tuned source code

* Will compilers change data structures/algorithms?

— Would they still be called compilers or something else?

— How much wisdom about algorithms, numerical analysis and
applied math can we expect compilers to incorporate?

Answers to Questions from Organizers (3/5)

 Simple performance models will make search
unnecessary, eg “cache-oblivious”

— If search is easy compared to figuring out a “simple”
performance model, it is more productive

— “Cache oblivious” would not have found new communication
avoiding algorithms

— Simple models help decide when to stop tuning
* Boundaries between SW layer too rigid

— Yes! See ParlLab structure for one take on breaking usual
layering of the HW/SW stack, eg schedulers

Answers to Questions from Organizers (4/5)
 What issues/technologies are we ignoring?

— Need more compiler-based expertise to build autotuners,
so they are easier to design/develop/maintain, and not
just big PERL scrips that need to be written from scratch
for each new architecture or slightly different function

* What common tools should we build?

— See answer to last question; see Pluto, talk by Chen

 Tuning systems are too narrow, invest in compilers
instead

— If compilers do not change data structures or algorithmes,
they will miss a lot of performance gains

— ParlLab hypothesis is that 13 motifs/tuners is enough
— Invest in compiler tools to help build autotuners

Answers to Questions from Organizers (5/5)

* Runtime optimization is needed

— Yes! A number of autotuners do this now, eg JIT, OSKI

* If all layers of the SW stack are autotuned, how will
they be composed?

— A big question for ParLab too! One answer for multicore is
in having schedulers for each library that can accept or
give up resources (cores) on the fly so that higher level
schedulers can balance work at a higher level

EXTRA SLIDES

Avoiding Communication in Sparse Linear Algebra -
Summary

* Take k steps of Krylov subspace method
— GMRES, CG, Lanczos, Arnoldi

— Assume matrix “well-partitioned,” with modest surface-
to-volume ratio

— Parallel implementation
e Conventional: O(k log p) messages
* “New”: O(log p) messages - optimal
— Serial implementation
e Conventional: O(k) moves of data from slow to fast memory
 “New”: O(1) moves of data — optimal

* Can incorporate some preconditioners
— Hierarchical, semiseparable matrices ...

e Lots of speed up possible (modeled and measured)
— Price: some redundant computation

Locally Dependent Entries for
[x,AXx], A tridiagonal, 2 processors

P P O H P OO O O O OO O OO OO OO O Of

Can be computed without communication

Locally Dependent Entries for
[x,Ax,A2x], A tridiagonal, 2 processors

Can be computed without communication

Locally Dependent Entries for
[x,AX,...,A3x], A tridiagonal, 2 processors

Can be computed without communication

> > P > >
¢ N w fS
X X X

Locally Dependent Entries for
[x,AX,...,A%X], A tridiagonal, 2 processors

Can be computed without communication

Locally Dependent Entries for
[x,AX,...,A%X], A tridiagonal, 2 processors

) O O O O

°) O O O O

P ¢ 9 9

Qv
o)
o)
0
Q

Can be computed without communication
k=8 fold reuse of A

Remotely Dependent Entries for
[x,AX,...,A%X], A tridiagonal, 2 processors

. Proc2_-_ 2
7 O O O O O DD R BB BB R DD O OO OO OO OO0 O O
PX P 002200 AN hoooo
5l © © ©o © o © o B B XK X XK X B F H » o 0o o © o O o o o o O o
A7 P el eBe el = lhNe e <> T R - . - BN « BN » J s s « BN« s R s =R el el e e e e e e s 07) O O O O_
X
3lo © © O © O © © o o B X XK X B XK XK XK b m» o o o o0 o o o o O o
Z2lo © © O ©O O O O O O O & B XK HB BB W B Lo OO O o o o O o
A6x 1 O O O O O O O OO O o O & & DR OR OO oo o o O &) O O O O_
o o o o o o o of
25 30
A>X 5 0000O0O0O0 O
A% 4

A3x 3F0 0O OO OO 0O 0 0O O ® D H H P O O O O O O O O O Of

I

m,
01

21O O O O O OO0 O O OO

" OO
v deosconeonos 4}4»‘1’5‘1&‘1&‘4}4\

5 10 15 20 25 30
One message to get data needed to compute remotely dependent entries, not k=8

Minimizes number of messages = latency cost
Price: redundant work « “surface/volume ratio”

—

Fewer Remotely Dependent Entries for
[x,AX,...,A%x], A tridiagonal, 2 processors

XK B OO O OO OO0 O O

F MWW WL O O O O O o O O

R W WD OO OO0 00 0 0 O O

SHIDHNNN
I0S

4
20%0%0%0%0%

H B BSOS D O O O o o O

Procaf ——

R WP © © © © © © © O O O O O O

pou

o

-.“3 1‘0
lo ooooooo d &

i

i

O O OO0 OO0 OO0 O

000000000 éM

/

O O OO0 O0OO0OO0OO0OO0O0O0

O OO0 O0OO0OO0OO0OO0OO0OO0O0o

O OO0 O0OO0OO0OO0OO0OO0OO0OO0OOoOOo

Tr

)
3

i
i

O O O O O O O O OF

/

|

|

)

4

20 25 30
@ H® P O O O O O O O O O O O O

OOOOOOOOOO—
O O O OO O O O O

® O O O O O O O O

) O O O O

) O O O O

) O O O O

I I I
5 10 15

I
20

I
25

I
30

Reduce redundant work by half

gular, multiple processors

Airre

ooooooooooooooo

Performance Results

* Measured
— Sequential/O0C speedup up to 3x

* Modeled
— Sequential/multicore speedup up to 2.5x

— Paral
— Paral

e See be

el/Petascale speedup up to 6.9x
el/Grid speedup up to 22x

pop.cs.berkeley.edu/#pubs

Optimizing Communication Complexity of
Sparse Solvers

 Example: GMRES for Ax=b on “2D Mesh”
— x lives on n-by-n mesh
— Partitioned on p” -by- p”* grid
— A has “5 point stencil” (Laplacian)
* (Ax)(i,j) = linear_combination(x(i,j), x(i,jx1), x(ix1,j))

— Ex: 18-by-18 mesh on 3-by-3 grid

Minimizing Communication of GMRES

 What is the cost = (#flops, #words, #mess)
of k steps of standard GMRES?

GMRES, ver.1: e
for |=1 to k A ® R R EEEEL

w= A * v(i-1) iy | Eeemseeeccs

MGS(w, v(0),...,v(i-1)) | 1 eesseeseceas
update v(i), H]
endfor

solve LSQ problem with H

L L L L L L i L L L

-Cost(A*v)=k*(9n2/p, 4n/pyz; 4)

® Cost(MGS) =k?/2 * (4n? /p,logp,logp)
e Total cost ~ Cost(A * v) + Cost (MGS)
e Can we reduce the latency?

Minimizing Communication of GMRES

e Cost(GMRES, ver.1) = Cost(A*v) + Cost(MGS)
= (9kn? /p, 4kn / p”*, 4k)+ (2k*n? /p,k%logp/2,k*logp/2)

« How much latency cost from A*v can you avoid? Almost all

endancies for Approa mash with 5 ptstancil

GMRES, ver. 2:
W =[v, Av, Ay, ..., Akv]
[Q,R] = MGS(W)
Build H from R, solve LSQ problem

e Cost(W) = (~ same, ~ same, 8)

® [atency cost independent of k — optimal
e Cost (MGS) unchanged
e Can we reduce the latency more?

Minimizing Communication of GMRES

* Cost(GMRES, ver. 2) = Cost(W) + Cost(MGS)
= (9kn? /p, 4kn / p”*, 8)+ (2k®n? /p,k%logp/2,k?logp/2)

« How much latency cost from MGS can you avoid? Almost all

GMRES, ver. 3:
W =[v, Av, Ay, ..., Akv]
[Q,R] = TSQR(W) ... “Tall Skinny QR”
Build H from R, solve LSQ problem

W1 - | Ry | R
7 Ry
w=| W, | 7| R, T~ R1234
L W, _ L Ry

. Cost(TSQR) = (~ same, ~ same, logp)
® Latency cost independent of s - optimal

Minimizing Communication of GMRES

* Cost(GMRES, ver. 2) = Cost(W) + Cost(MGS)
= (9kn? /p, 4kn / p”*, 8)+ (2k®n? /p,k%logp/2,k?logp/2)

« How much latency cost from MGS can you avoid? Almost all

GMRES, ver. 3:
W =[v, Av, Ay, ..., Akv]
[Q,R] = TSQR(W) ... “Tall Skinny QR”
Build H from R, solve LSQ problem

W1 - | Ry | R
7 Ry
w=| W, | 7| R, T~ R1234
L W, _ L Ry

. Cost(TSQR) = (~ same, ~ same, logp)
e Oops

Minimizing Communication of GMRES

* Cost(GMRES, ver. 2) = Cost(W) + Cost(MGS)
= (9kn? /p, 4kn / p”*, 8)+ (2k®n? /p,k%logp/2,k?logp/2)

« How much latency cost from MGS can you avoid? Almost all

GMRES, ver. 3:
W =[v, Av, Ay, ..., Akv]
[Q,R] = TSQR(W) ... “Tall Skinny QR”
Build H from R, solve LSQ problem

W1 - | Ry | R
7 Ry
w=| W, | 7| R, T~ R1234
L W, _ L Ry

. Cost(TSQR) = (~ same, ~ same, logp)
e Oops — W from power method, precision lost!

Log10 of 2-norm relative residual

Matrix diag-cond-1.000000e-11: rel. 2-nrm resid.
I I 1 I I I |

Nonrestarted GMRES
v Restarted GMRES(192)
O Monomial-GMRES(24 8)

A Newton-GMRES(24,8)

-6 | | | | | | | | |

100 200 300 400 S00 600 700 800 900 1000
Inner iteration number

Minimizing Communication of GMRES

* Cost(GMRES, ver. 3) = Cost(W) + Cost(TSQR)
= (9kn? /p, 4kn / p”*, 8)+(2k*n? /p,k%logp/2,logp)

e latency cost independent of k, just log p — optimal
e Oops—W from power method, so precision lost — What to do?

® Use a different polynomial basis

e Not Monomial basis W = [v, Av, A2y, ...], instead ...

e Newton Basis Wy =[v, (A=06,1)v, (A=06,1)(A-0,1)v, ..] or
e Chebyshev Basis W = [v, T{(v), T5(v), ...]

Log10 of 2-norm relative residual

Matrix diag-cond-1.000000e-11: rel. 2-nrm resid.
I I 1 I I I |

Nonrestarted GMRES
v Restarted GMRES(192)
O Monomial-GMRES(24 8)

A Newton-GMRES(24,8)

-6 | | | | | | | | |

100 200 300 400 S00 600 700 800 900 1000
Inner iteration number

Related Work and Contributions for
Sparse Linear Algebra

e Related work

— s-step GMRES: De Sturler (1991), Bai, Hu & Reichel (1991),
Joubert et al (1992), Erhel (1995)

— s-step CG: Van Rosendale (1983), Chronopoulos & Gear (1989), Toledo (1995)

— Matrix Powers Kernel: Pfeifer (1963), Hong & Kung (1981),
Leiserson, Rao & Toledo (1993), Toledo (1995),
Douglas, Hu, Kowarschik, Riide, Weiss (2000), Strout, Carter & Ferrante (2001)

e Our contributions
— Unified approach to serial and parallel, use of TSQR
— Optimizing serial case via TSP
— Unified approach to stability
— Incorporating preconditioning

Summary and Conclusions (1/2)

Possible to minimize communication complexity
of much dense and sparse linear algebra

— Practical speedups
— Approaching theoretical lower bounds

Optimal asymptotic complexity algorithms for
dense linear algebra — also lower communication

Hardware trends mean the time has come to do
this
Lots of prior work (see pubs) —and some new

Summary and Conclusions (2/2)

* Many open problems

— Automatic tuning - build and optimize complicated
data structures, communication patterns, code
automatically: bebop.cs.berkeley.edu

— Extend optimality proofs to general architectures
— Dense eigenvalue problems — SBR or spectral D&C?
— Sparse direct solvers — CALU or SuperlLU?

— Which preconditioners work?

— Why stop at linear algebra?

