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Summary of Autotuning (1/2)

* Dense linear algebra

— New algorithms that attain lower bounds on
communication (parallel and sequential)

— New algorithms for GPUs
e Sparse linear algebra (summary)
— New algorithms that attain lower bounds on comm.

* Collective communications
— Choosing right tree for reductions/broadcasts/etc



Summary of Autotuning (2/2)
To be presented by Shoaib Kamil on Thursday

Recent work autotuning three parallel kernels
— Sparse Matrix Vector Multiply (SpMV)

— Lattice Boltzmann MHD

— Stencils (Heat Equation)

Lessons learned/commonalities between the
autotuners

Towards a framework for building autotuners

— What is the role of the compiler?



Motivation

e Running time of an algorithm is sum of 3 terms:
 Hflops * time_per_flop
 # words moved / bandwidth

} communication
* H# messages * latency

e Exponentially growing gaps between
* Time_per_flop << 1/Network BW << Network Latency
* Improving 59%/year vs 26%/year vs 15%/year
* Time_per_flop << 1/Memory BW << Memory Latency
* Improving 59%/year vs 23%/year vs 5.5%/year



Motivation

e Running time of an algorithm is sum of 3 terms:
 Hflops * time_per_flop
 # words moved / bandwidth

} communication
* H# messages * latency

e Exponentially growing gaps between
* Time_per_flop << 1/Network BW << Network Latency
* Improving 59%/year vs 26%/year vs 15%/year
* Time_per_flop << 1/Memory BW << Memory Latency
* Improving 59%/year vs 23%/year vs 5.5%/year

* Goal : reorganize/tune motifs to avoid communication
e Not just hiding communication (speedup < 2x )
e Arbitrary speedups possible for linear algebra
e Success metric — attain lower bounds on communication



Linear Algebra Collaborators (so far)

 UC Berkeley
— Kathy Yelick, Ming Gu

— Mark Hoemmen, Marghoob Mohiyuddin, Kaushik Datta, George Petropoulos,
Sam Williams, BeBOp group

— Lenny Oliker, John Shalf

— ParLab/UPCRC — new parallel computing research center funded by Intel and
Microsoft

* CU Denver

— Julien Langou
* |INRIA

— Laura Grigori, Hua Xiang
 Georgia Tech

— Rich Vuduc

* Dense work € ongoing development of Sca/LAPACK
— Joint with UTK



Communication Lower Bounds
for Dense Linear Algebra (1/2)

Hong-Kung (1981), Irony/Tishkin/Toledo (2004)
Usual matmul using 2n3 flops

Sequential case, with fast memory of size W < 3n2
— Thm: #words moved = Q (n3 / wl/2 )

Parallel case, P procs, O(n? / P) memory/proc

— Thm: #words moved = Q (n2 / pl/2 )

Bandwidth lower bound = latency lower bound
— #fmessages = # words moved / (fast,local)memory size
— Sequential: # messages = Q (n3 /W?’/2 )

— Parallel: # messages = Q (Pl/2 )



Communication Lower Bounds
for Dense Linear Algebra (2/2)

 Same lower bounds apply to LU and QR
— Assumption: O(n3) algorithms; LU is easy but QR is subtle
 LAPACK and ScalAPACK do not attain these bounds
— ScalLAPACK attains bandwidth bound

— But sends O((mn/P)l/z) times more messages
— LAPACK attains neither; O((mz/W)l/z) X more words moved

* But new algorithms do attain them, mod polylog factors
— Parallel QR: requires new representation of Q, redundant flops
— Sequential QR: can use new one, or recursive
— Parallel LU: new pivoting strategy needed, stable in practice
— Sequential LU: can use new one or recursive, but higher latency



Minimizing Communication in Parallel QR

* QR decomposition of m x n matrix W, m >>n
* TSQR = “Tall Skinny QR”
* P processors, block row layout
e Usual Parallel Algorithm
* Compute Householder vector for each column
* Number of messages o« n log P
* Communication Avoiding Algorithm
* Reduction operation, with QR as operator
* Number of messages o« log P - optimal
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TSQR in more detail
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Minimizing Communication in TSQR
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Performance of TSQR vs Sca/LAPACK

Parallel
— Pentium llI cluster, Dolphin Interconnect, MPICH
* Up to 6.7x speedup (16 procs, 100K x 200)
— BlueGene/L
e Up to 4x speedup (32 procs, 1M x 50)
— Both use Elmroth-Gustavson locally — enabled by TSQR
Sequential

— OOC on PowerPC laptop
* As little as 2x slowdown vs (predicted) infinite DRAM

See UC Berkeley EECS Tech Report 2008-74
* Being revised to add optimality results!

General rectangular QR
* TSQR for panel factorization, then right-looking
* Implementation under way (Julien Langou)



Modeled Speedups of CAQR vs ScaLAPACK
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Petascale machine with 8192 procs, each at 500 GFlops/s, a bandwidth of 4 GB/s.
y=2-10"s,a=10"s,8=2-10"s/word.



TSLU: LU factorization of a tall skinny matrix

First try the obvious generalization of TSQR:
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Growth factor for TSLU based factorization

average growth factor (partial pivoting;b=1,2,4,8,16,32)

10 3 7
C 7

7 parallel pivoting

growth factor

matirx size

Unstable for large P and large matrices.
When P = # rows, TSLU is equivalent to parallel pivoting.

Courtesy of H. Xiang




Making TSLU Stable

At each node in tree, TSLU selects b pivot rows from 2b
candidates from its 2 child nodes

At each node, do LU on 2b original rows selected by child
nodes, not U factors from child nodes

When TSLU done, permute b selected rows to top of original
matrix, redo b steps of LU without pivoting

CALU — Communication Avoiding LU for general A

— Use TSLU for panel factorizations

— Apply to rest of matrix

— Cost: redundant panel factorizations

Benefit:

— Stable in practice, but not same pivot choice as GEPP

— b times fewer messages overall - faster



Growth factor for better CALU approach

Average growth factor(Wilkinson's definition, randn, 2D layout, New pivoting)
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Performance vs ScaLAPACK

TSLU
— IBM Power 5
e Up to 4.37x faster (16 procs, 1M x 150)
— Cray XT4
e Up to 5.52x faster (8 procs, 1M x 150)
CALU
— IBM Power 5
e Up to 2.29x faster (64 procs, 1000 x 1000)
— Cray XT4
e Up to 1.81x faster (64 procs, 1000 x 1000)

Optimality analysis analogous to QR
See INRIA Tech Report 6523 (2008)



Speedup prediction for a Petascale machine - up to 81x faster
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Petascale machine with 8192 procs, each at 500 GFlops/s, a bandwidth of 4 GB/s.
y=2-10"s,a=10"s,8=2-10"s/word.



Related Work and Contributions for

Dense Linear Algebra

* Related work
— Pothen & Raghavan (1989)
— Toledo (1997), Rabani & Toledo (2001)
— Dunha, Becker & Patterson (2002)
— Gunter & van de Geijn (2005)

* Qur contributions
— QR: 2D parallel, efficient 1D parallel QR
— Unified approach to sequential, parallel, ...
— Parallel LU

— Communication lower bounds, proving optimality



Heterogeneous (CPU+GPU) Performance
Libraries

Vasily Volkov

28



Challenges in programming GPUs

Relatively little tuning information for GPU hardware
- Hardware exposed via abstract programming model
- Hard to develop accurate performance models
- Hardware changing rapidly

We get ~2x speedups vs. best other work on variety of libraries
- Matrix-matrix multiply (1.6x speedup)
- FFT (2x speedup)
- LU/Cholesky factorization (3x/2x speedups)
- Tridiagonal eigenvalue solver (2x speedup)

Example: partial pivoting in LU factorization on NVIDIA GPU
- Ad: “GPU supports gather/scatter with arbitrary access patterns”
- LAPACK code (sgetrf) spends 50% of time doing pivoting
- Gets worse with larger matrices
- Only 1% of time is spent in pivoting if matrix is transposed
- 2X speedup!



Matrix-matrix multiply (SGEMM)
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- Uses software prefetching, strip-mining, register blocking
- Resembles algorithms used for Cray X1 and IBM 3090 VF
- 60% of peak, bound by access to on-chip shared memory



FFT, complex-to-complex, batched
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Heterogeneous Computing

Question: should you port entire applications to GPU? —
Maybe not

Example: Eigenvalue solver (bisection, LAPACK’s sstebz)
- Most work (O(n?)) in vectorized, embarrassingly parallel code

- Do it on GPU and finely tune

- May do many redundant flops on GPU to go faster

- multisection

- Run on CPU when problem too small for GPU

- Use performance model to choose CPU or GPU version
- Little work (O(n)) in nearly serial code

- Do it on CPU: time-consuming and non-trivial to port

Independent project:
- Did everything on the GPU
- Used advanced parallel algorithms for O(n) work
- Up to 2x slower running on faster GPU (compared to us)



Breakdown of Runtime (sstebz)
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“Count(x)” is the O(n?) work, use either SSE or GPU
“the rest” is the O(n) work, isn’t worth optimizing



LU Factorization

LU factorization:

- O(n3) work in bulky BLAS3 operations

- O(n?) work in fine-grain BLAS1 / BLAS2 (panel factorization)
Panel factorization is usually faster on the CPU

- Peak sustained bandwidth of 8800GTX is 75GB/s

- Kernel launch overhead is 5us

- BLAS1 and BLAS2 are bandwidth bound, so run at

bandwidth required
75GB/s

- compare vs. CPU handicapped by CPU-GPU transfers
- Faster on CPU up to n ~ 16K on NVIDIA 8800GTX

Time=35us +



GFLOPS
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Time

Overlap in LU factorization
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Overlap panel factorization on CPU with sgemm on GPU



LU slowdowns from omitting optimizations
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Summary of GPU Experience

 Heterogeneity expands tuning space
— Dividing work between CPU and GPU
* Depends a lot on flop-rate/bandwidth/latency/startup

— Different data layouts may be best for CPU and GPU

e Rowwise vs columnwise for LU

— May want to do (many) extra flops on GPU
* Multisection vs Bisection in eigensolver
* TRINV + TRMM vs TRSM in LU

* Rapid evolution of GPU architectures motivates
autotuning



Why all our problems are solved for dense linear algebra—
in theory

Thm (D., Dumitriu, Holtz, Kleinberg) (Numer.Math. 2007)

— Given any matmul running in O(n®) ops for some w>2, it can be
made stable and still run in O(n®*%) ops, for any >0.

e Currentrecord: 0w = 2.38

Thm (D., Dumitriu, Holtz) (Numer. Math. 2008)

— Given any stable matmul running in O(n®*%) ops,
can do backward stable dense linear algebra in O(n®*%) ops:

« GEPP, QR (recursive)
* rank revealing QR (randomized)
* (Generalized) Schur decomposition, SVD (randomized)

Also reduces communication to O(n“’+8)

But constants?



Avoiding Communication in Sparse Linear Algebra -
Summary

* Take k steps of Krylov subspace method
— GMRES, CG, Lanczos, Arnoldi

— Assume matrix “well-partitioned,” with modest surface-
to-volume ratio

— Parallel implementation
e Conventional: O(k log p) messages
* “New”: O(log p) messages - optimal
— Serial implementation
e Conventional: O(k) moves of data from slow to fast memory
 “New”: O(1) moves of data — optimal

* Can incorporate some preconditioners
— Hierarchical, semiseparable matrices ...

e Lots of speed up possible (modeled and measured)
— Price: some redundant computation



Tuning Collectives
Rajesh Nishtala

Collectives called by all threads to perform globally
communication

— Broadcase, reduction, all-to-all

Need to tune because best algorithm depends on
— #Hprocs,

— Network latency

— Network bandwidth,

— Transfer size, etc.

Focus on PGAS languages and one-sided communication
models

— E.g. UPC, Titanium, Co-Array Fortran



Emple Tree Topologies

Radix 4 k-nomial tree

Radix 2 k-nomial tree ,
(quadnomial)

(binomial)

Binary Tree Fork Tree



Distributed Memory Broadcast

1000 16 Byte broadcasts

Best implementation is
platform specific

Low cost to inject
message =>want flat tree
(6-ary)

High cost = want deep
tree to parallelize the
overhead (binomial)

Normalized Time
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(Best Time

16 Byte Broadcast Latency Comparison
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Algorithm




Distributed Memory All-to-All

Optimal algorithm varies
based on transfer size
— O(P log P) algorithm
doubles message size after
every round

— Expensive as the processor
count grows

Cross-over point is
platform specific
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Collective Synchronization

Performance Advantages of Looser Synchronization

(16 Byte Broadcast)
180
B UPC Loose Synch
B MPI
140 M UPC Strict Synch
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UPC presents new semantics for collective synchronization

* Loose synchronization lets collective begin after any
thread arrives (looser than MPI semantics)

e Strict synchronization requires all threads to arrive
before communication can start (stricter than MPI)

Synchronization semantics affects algorithm choice



Multicore Barrier Performance Results

Time many back-to-back barriers on Dual
Socket Sun Niagra2 (128 hardware threads)

Flat tree is just one level with all threads
reporting to thread O

— Leverages shared memory but non
-scalable

Architecture Independent Tree (radix=2)

— Pick a generic “good” radix that is
suitable for many platforms

— Mismatched to architecture
Architecture Dependent Tree

— Search overall radices to pick the tree
that best matches the architecture

— Search revealed radix 8 to be the best

Execution Time (us)
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(radix=Dbest)
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Niagara2 (Maramba) Barrier Performance



Summary and Conclusions (1/2)

Possible to minimize communication complexity of
much dense and sparse linear algebra

— Practical speedups
— Approaching theoretical lower bounds

Hardware trends mean the time has come to do this

Optimal asymptotic complexity algorithms for dense
linear algebra — also lower communication

Important to optimize communication collectives
themselves



Summary and Conclusions (2/2)

* Many open problems

— How to add these to automatic tuning design space
 PLASMA (Jakub Kurzak)

— Extend optimality proofs, algorithms to more general
architectures
* Heterogeneity, including multiple bandwidths and latencies

— Dense eigenvalue problems — SBR or spectral D&C?
— Sparse direct solvers — CALU or SuperLU?

— Which preconditioners work?

— Other motifs



Answers to Questions from Organizers (1/5)

 What about tuning on petascale?
— Communication avoiding algorithms help address it
— Can leverage multicore tuning, if we can mirror hierarchy of
machines in hierarchy of algorithms/tuners
* How do we measure success for tuning?
— Performance gains attained
— Ease of use by end-user
— Ease of development/evolution/maintenance of tuners

 What architectures should we target?
— Multicore and Petascale as above,
— Emerging architectures like GPUs



Answers to Questions from Organizers (2/5)

* T/F: “Parameter Tuning” is not enough

— Many of us have been changing data structures and
algorithms for a while, which goes beyond “parameters”

* T/F: Self-tuned libraries will beat compilers

— What is the starting point for the compiler? The most naive
possible code? Then yes (but may work for some motifs)

— But autotuners use compilers to compile tuned source code

* Will compilers change data structures/algorithms?

— Would they still be called compilers or something else?

— How much wisdom about algorithms, numerical analysis and
applied math can we expect compilers to incorporate?



Answers to Questions from Organizers (3/5)

 Simple performance models will make search
unnecessary, eg “cache-oblivious”

— If search is easy compared to figuring out a “simple”
performance model, it is more productive

— “Cache oblivious” would not have found new communication
avoiding algorithms

— Simple models help decide when to stop tuning
* Boundaries between SW layer too rigid

— Yes! See ParlLab structure for one take on breaking usual
layering of the HW/SW stack, eg schedulers



Answers to Questions from Organizers (4/5)
 What issues/technologies are we ignoring?

— Need more compiler-based expertise to build autotuners,
so they are easier to design/develop/maintain, and not
just big PERL scrips that need to be written from scratch
for each new architecture or slightly different function

*  What common tools should we build?

— See answer to last question; see Pluto, talk by Chen

 Tuning systems are too narrow, invest in compilers
instead

— If compilers do not change data structures or algorithmes,
they will miss a lot of performance gains

— ParlLab hypothesis is that 13 motifs/tuners is enough
— Invest in compiler tools to help build autotuners



Answers to Questions from Organizers (5/5)

* Runtime optimization is needed

— Yes! A number of autotuners do this now, eg JIT, OSKI

* If all layers of the SW stack are autotuned, how will
they be composed?

— A big question for ParLab too! One answer for multicore is
in having schedulers for each library that can accept or
give up resources (cores) on the fly so that higher level
schedulers can balance work at a higher level



EXTRA SLIDES



Avoiding Communication in Sparse Linear Algebra -
Summary

* Take k steps of Krylov subspace method
— GMRES, CG, Lanczos, Arnoldi

— Assume matrix “well-partitioned,” with modest surface-
to-volume ratio

— Parallel implementation
e Conventional: O(k log p) messages
* “New”: O(log p) messages - optimal
— Serial implementation
e Conventional: O(k) moves of data from slow to fast memory
 “New”: O(1) moves of data — optimal

* Can incorporate some preconditioners
— Hierarchical, semiseparable matrices ...

e Lots of speed up possible (modeled and measured)
— Price: some redundant computation



Locally Dependent Entries for
[x,AXx], A tridiagonal, 2 processors
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Can be computed without communication



Locally Dependent Entries for
[x,Ax,A2x], A tridiagonal, 2 processors

Can be computed without communication



Locally Dependent Entries for
[x,AX,...,A3x], A tridiagonal, 2 processors

Can be computed without communication
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Locally Dependent Entries for
[x,AX,...,A%X], A tridiagonal, 2 processors

Can be computed without communication



Locally Dependent Entries for
[x,AX,...,A%X], A tridiagonal, 2 processors
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Can be computed without communication
k=8 fold reuse of A



Remotely Dependent Entries for
[x,AX,...,A%X], A tridiagonal, 2 processors
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Fewer Remotely Dependent Entries for
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Performance Results

* Measured
— Sequential/O0C speedup up to 3x

* Modeled
— Sequential/multicore speedup up to 2.5x

— Paral
— Paral

e See be

el/Petascale speedup up to 6.9x
el/Grid speedup up to 22x

pop.cs.berkeley.edu/#pubs



Optimizing Communication Complexity of
Sparse Solvers

 Example: GMRES for Ax=b on “2D Mesh”
— x lives on n-by-n mesh
— Partitioned on p” -by- p”* grid
— A has “5 point stencil” (Laplacian)
* (Ax)(i,j) = linear_combination(x(i,j), x(i,jx1), x(ix1,j))

— Ex: 18-by-18 mesh on 3-by-3 grid




Minimizing Communication of GMRES

 What is the cost = (#flops, #words, #mess)
of k steps of standard GMRES?

GMRES, ver.1: e
for |=1 to k A ® R R EEEEL

w= A * v(i-1) iy |  Eeemseeeccs

MGS(w, v(0),...,v(i-1)) | 1 eesseeseceas
update v(i), H ]
endfor

solve LSQ problem with H

L L L L L L i L L L

-Cost(A*v)=k*(9n2/p, 4n/pyz; 4)

® Cost(MGS) =k?/2 * (4n? /p,logp,logp)
e Total cost ~ Cost( A * v ) + Cost (MGS)
e Can we reduce the latency?



Minimizing Communication of GMRES

e Cost(GMRES, ver.1) = Cost(A*v) + Cost(MGS)
= (9kn? /p, 4kn / p”*, 4k )+ (2k*n? /p,k%logp/2,k*logp/2)

« How much latency cost from A*v can you avoid? Almost all

endancies for Approa mash with 5 ptstancil

GMRES, ver. 2:
W =[v, Av, Ay, ..., Akv ]
[Q,R] = MGS(W)
Build H from R, solve LSQ problem

e Cost(W) = (~ same, ~ same, 8)

® [atency cost independent of k — optimal
e Cost (MGS) unchanged
e Can we reduce the latency more?



Minimizing Communication of GMRES

* Cost(GMRES, ver. 2) = Cost(W) + Cost(MGS)
= (9kn? /p, 4kn / p”*, 8 )+ (2k®n? /p,k%logp/2,k?logp/2)

« How much latency cost from MGS can you avoid? Almost all

GMRES, ver. 3:
W =[v, Av, Ay, ..., Akv ]
[Q,R] = TSQR(W) ... “Tall Skinny QR”
Build H from R, solve LSQ problem

_W1_ - | Ry | R
7 Ry
w=| W, | 7| R, T~ R1234
L W, _ L Ry

. Cost(TSQR) = ( ~ same, ~ same, logp )
® Latency cost independent of s - optimal



Minimizing Communication of GMRES

* Cost(GMRES, ver. 2) = Cost(W) + Cost(MGS)
= (9kn? /p, 4kn / p”*, 8 )+ (2k®n? /p,k%logp/2,k?logp/2)

« How much latency cost from MGS can you avoid? Almost all

GMRES, ver. 3:
W =[v, Av, Ay, ..., Akv ]
[Q,R] = TSQR(W) ... “Tall Skinny QR”
Build H from R, solve LSQ problem

_W1_ - | Ry | R
7 Ry
w=| W, | 7| R, T~ R1234
L W, _ L Ry

. Cost(TSQR) = ( ~ same, ~ same, logp )
e Oops



Minimizing Communication of GMRES

* Cost(GMRES, ver. 2) = Cost(W) + Cost(MGS)
= (9kn? /p, 4kn / p”*, 8 )+ (2k®n? /p,k%logp/2,k?logp/2)

« How much latency cost from MGS can you avoid? Almost all

GMRES, ver. 3:
W =[v, Av, Ay, ..., Akv ]
[Q,R] = TSQR(W) ... “Tall Skinny QR”
Build H from R, solve LSQ problem

_W1_ - | Ry | R
7 Ry
w=| W, | 7| R, T~ R1234
L W, _ L Ry

. Cost(TSQR) = ( ~ same, ~ same, logp )
e Oops — W from power method, precision lost!



Log10 of 2-norm relative residual

Matrix diag-cond-1.000000e-11: rel. 2-nrm resid.
I I 1 I I I |

Nonrestarted GMRES
v Restarted GMRES(192)
O Monomial-GMRES(24 8)

A Newton-GMRES(24,8)

-6 | | | | | | | | |

100 200 300 400 S00 600 700 800 900 1000
Inner iteration number




Minimizing Communication of GMRES

* Cost(GMRES, ver. 3) = Cost(W) + Cost(TSQR)
= (9kn? /p, 4kn / p”*, 8)+(2k*n? /p,k%logp/2,logp)

e latency cost independent of k, just log p — optimal
e Oops—W from power method, so precision lost — What to do?

® Use a different polynomial basis

e Not Monomial basis W = [v, Av, A2y, ...], instead ...

e Newton Basis Wy =[v, (A=06,1)v, (A=06,1)(A-0,1)v, ..] or
e Chebyshev Basis W = [v, T{(v), T5(v), ...]



Log10 of 2-norm relative residual

Matrix diag-cond-1.000000e-11: rel. 2-nrm resid.
I I 1 I I I |

Nonrestarted GMRES
v Restarted GMRES(192)
O Monomial-GMRES(24 8)

A Newton-GMRES(24,8)

-6 | | | | | | | | |

100 200 300 400 S00 600 700 800 900 1000
Inner iteration number




Related Work and Contributions for
Sparse Linear Algebra

e Related work

— s-step GMRES: De Sturler (1991), Bai, Hu & Reichel (1991),
Joubert et al (1992), Erhel (1995)

— s-step CG: Van Rosendale (1983), Chronopoulos & Gear (1989), Toledo (1995)

— Matrix Powers Kernel: Pfeifer (1963), Hong & Kung (1981),
Leiserson, Rao & Toledo (1993), Toledo (1995),
Douglas, Hu, Kowarschik, Riide, Weiss (2000), Strout, Carter & Ferrante (2001)

e Our contributions
— Unified approach to serial and parallel, use of TSQR
— Optimizing serial case via TSP
— Unified approach to stability
— Incorporating preconditioning



Summary and Conclusions (1/2)

Possible to minimize communication complexity
of much dense and sparse linear algebra

— Practical speedups
— Approaching theoretical lower bounds

Optimal asymptotic complexity algorithms for
dense linear algebra — also lower communication

Hardware trends mean the time has come to do
this
Lots of prior work (see pubs) —and some new




Summary and Conclusions (2/2)

* Many open problems

— Automatic tuning - build and optimize complicated
data structures, communication patterns, code
automatically: bebop.cs.berkeley.edu

— Extend optimality proofs to general architectures
— Dense eigenvalue problems — SBR or spectral D&C?
— Sparse direct solvers — CALU or SuperlLU?

— Which preconditioners work?

— Why stop at linear algebra?



