
DAMSEL - A Data Model Storage Library for
Exascale Science (API and Use cases)

(This work is supported by Office of Advanced Scientific Computing
Research under the program of X-stack Software Research)

Saba Sehrish
CScADS 2012
July 31, 2012

1

Outline

Project Team

Motivation

Damsel I/O Library

Usecases: FLASH, GCRM

Data layout (In Progress)

2

Project Team

Northwestern University: Alok Choudhary, Wei-keng Liao,
Saba Sehrish, Sueng Woo Son

Argonne National Laboratory: Rob Ross, Rob Latham, Tim
Tautges

The HDF Group: Quincey Koziol, Ben Clifford, Peter Cao

NC State University: Nagiza Samatova, Sriram
Lakshminarasimhan

3

Motivation

1 Motivation
Existing I/O Libraries
Goals

4

Motivation
Existing I/O Libraries
Goals

Existing I/O Libraries

Storage data models developed in the 1990s; Network
Common Data Format (netCDF) and Hierarchical Data
Format (HDF)

I/O library interfaces still based on low-level vectors of
variables

Lack of support for sophisticated data models, e.g. AMR,
unstructured Grids, Geodesic grid, etc

Require too much work at application level to achieve close to
peak I/O performance

5

Motivation
Existing I/O Libraries
Goals

Example: Lower Triangle Matrix

Damsel: A Data Model Storage Library for Exascale Science

Figure 2: Traditional I/O software stack.
Proposed work has impact on high-level
I/O libraries and I/O middleware.

Figure 3: One way in which storage models do not match perfectly
with application abstractions. Layout for a simple lower triangular ma-
trix results in wasted space and possibly lower performance (either
more seeks or larger I/O requests) when reading.

2.1 Today’s I/O Software Stack

I/O systems on modern HPC hardware is actually a stack of components, consisting of disk and network
hardware, high-level I/O libraries, and I/O middleware that link the two. A depiction of this I/O stack is
shown in Figure 2. At the bottom of this stack is the storage layer, appearing as a parallel file system
connected to disk and network hardware. I/O middleware, such as an MPI-IO implementation [17], sits on
top of the parallel file system and handles communication between parallel compute nodes and I/O nodes,
including management of both concurrency and locality of accessing data.

I/O middleware and lower layers are designed to maximize I/O throughput, primarily as a linear stream of
bytes. Computational science codes, in contrast, understand the semantics of those bytes, as grids, fields
on the grids, and metadata annotations to both. High level I/O libraries are designed to translate between
the semantic and storage representations. HDF5 and PnetCDF are the two most popular options in HPC,
supporting the management and organization of semantic information, as well as the mechanics of I/O
storage operations. Currently, these high-level I/O libraries present a data model based on multi-dimensional
arrays of typed elements, with annotations for timestamps, runtime parameters, or other provenance. In
addition to multi-dimensional arrays and attributes, the libraries also define a portable, self-describing on-
disk file format, making it easier to exchange data with colleagues.

However, even a fairly simple example of solution data on a structured grid can map to I/O libraries in
less than ideal ways. Figure 3 illustrates the mapping from a conceptually straightforward lower triangular
matrix to several storage layouts. The netCDF layout, based on fixed-dimensional arrays, results in an array
that wastes just under half its allocated space. HDF5 supports multi-dimensional arrays and chunk-based
allocators, which alleviate this problem somewhat. However, the application must specify the chunk size,
and coordinate matching the matrix structures to those chunks. This can add development complexity, and is
even more difficult for unstructured data types. A better approach would take advantage of the data model’s
semantic information and avoid allocating space that will not be used.

2.2 Data Models and Layouts

A data model describes how simulation data is represented and accessed. For discretization-based solutions
of PDEs, the data model includes a description of the discretized domain (space and time, and sometimes
other dimensions like energy), and field data computed by the simulation over those discretizations. The
data model is a key part of HPC codes and strongly influences the efficiency of both computation and
communication. At their core, scientific codes usually store the model as multi-dimensional arrays, since

5

6

Motivation
Existing I/O Libraries
Goals

Example: FLASH

7	
 6	
 5	
 4	

1	

2	
 13	
 12	
 11	

14	
 17	
 16	
 15	
 3	
 10	
 9	
 8	

1	

2	

3	

4	
 5	

6	
 7	

8	

9	
 10	

11	

12	
 13	

14	
 15	

16	
 17	

Morton order

•  Red	
 boxes	
 are	
 cells	

•  Black	
 boxes	
 are	
 blocks	

Each	
 block	
 in	
 AMR	
 grid	

corresponds	
 to	
 a	
 tree	

node	

FLASH	
 -­‐	

AMR	
 Grid	
 	

7

Motivation
Existing I/O Libraries
Goals

Example: FLASH

Parallel adaptive-mesh refinement (AMR) code; Block
structured - a block is the unit of computation

Tree information: FLASH uses tree data structure for storing
grid blocks and relationships among blocks, including lrefine,
which child, nodetype and gid.

Per-block metadata: FLASH stores the size and coordinates
of each block in three different arrays: coord, bsize and
bnd box

Solution Data: Physical variables i.e. located on actual grid
are stored in a multi-dimensional (5D) array e.g. UNK

8

Motivation
Existing I/O Libraries
Goals

Goals

Provide higher-level data model API to describe more
sophisticated data models, e.g. structured AMR, geodesic
grid, etc

Enable exascale computational science applications to interact
conveniently and efficiently with storage through the data
model API

Develop a data model storage library to support these data
models, provide efficient storage data layouts

Productizing Damsel and working with computational
scientists to encourage adoption of this library by the scientific
community

9

Damsel I/O Library

2 Damsel I/O Library
Data Model
API

10

Damsel I/O Library
Data Model
API

Proposed Approach

A set of data models I/O APIs relevant to computational
science applications

A data layout component that maps these data models onto
storage efficiently,

A rich metadata representation and management layer that
handles both internal metadata and that generated by users
and external tools,

I/O optimizations: adaptive collective I/O, request
aggregation, and virtual filing,

11

Damsel I/O Library
Data Model
API

Damsel Big Picture

Applica'ons	

HDF5	
 PNetCDF	
 DAMSEL	

Data	
 Model	
 I/O	
 API	

I/O	
 Op'miza'ons	

Data	
 Layout	
 and	
 Metadata	

Management	

MOAB/
ITAPS	

12

Damsel I/O Library
Data Model
API

Data Model Components

Describe structural/(hierarchical) and solution information
through API

To describe the structural information, i.e. Grid data
Entity, Collections, Structured Blocks

To describe the solution variable, i.e. Solution data
Tags on Entities, Collections, Structured Blocks

13

Damsel I/O Library
Data Model
API

Example: Entity and Tags

vertex	

Edge	

Face	

Cell	
 center	

Ver1ces	

Cell	
 center	

Edge	

En11es:	
 Vertex,	
 Edge,	
 Rectangle,	
 Hex	

Tags:	
 Solu1on	
 data	
 at	
 ver1ces,	
 edges,	
 centers,	
 etc	

14

Damsel I/O Library
Data Model
API

Example: Sequence of entities and Tags

Step 3: Set coordinates of vertices!

Step 1: Create a sequence of entities (QUADS) !
Step	
 2:	
 Define	
 an	

en,ty	
 by	
 specifying	

ver,ces	

start_coord[2]	
 =	
 {0.0,	
 0.0}	

Step 4: Define tags with name (temp) and type (float)!

Step 5: Map tags to the entities!

Step 6: Iterate through all tags and write to file !

15

Damsel I/O Library
Data Model
API

Example: Lower Triangle Matrix

Damsel: A Data Model Storage Library for Exascale Science

Figure 2: Traditional I/O software stack.
Proposed work has impact on high-level
I/O libraries and I/O middleware.

Figure 3: One way in which storage models do not match perfectly
with application abstractions. Layout for a simple lower triangular ma-
trix results in wasted space and possibly lower performance (either
more seeks or larger I/O requests) when reading.

2.1 Today’s I/O Software Stack

I/O systems on modern HPC hardware is actually a stack of components, consisting of disk and network
hardware, high-level I/O libraries, and I/O middleware that link the two. A depiction of this I/O stack is
shown in Figure 2. At the bottom of this stack is the storage layer, appearing as a parallel file system
connected to disk and network hardware. I/O middleware, such as an MPI-IO implementation [17], sits on
top of the parallel file system and handles communication between parallel compute nodes and I/O nodes,
including management of both concurrency and locality of accessing data.

I/O middleware and lower layers are designed to maximize I/O throughput, primarily as a linear stream of
bytes. Computational science codes, in contrast, understand the semantics of those bytes, as grids, fields
on the grids, and metadata annotations to both. High level I/O libraries are designed to translate between
the semantic and storage representations. HDF5 and PnetCDF are the two most popular options in HPC,
supporting the management and organization of semantic information, as well as the mechanics of I/O
storage operations. Currently, these high-level I/O libraries present a data model based on multi-dimensional
arrays of typed elements, with annotations for timestamps, runtime parameters, or other provenance. In
addition to multi-dimensional arrays and attributes, the libraries also define a portable, self-describing on-
disk file format, making it easier to exchange data with colleagues.

However, even a fairly simple example of solution data on a structured grid can map to I/O libraries in
less than ideal ways. Figure 3 illustrates the mapping from a conceptually straightforward lower triangular
matrix to several storage layouts. The netCDF layout, based on fixed-dimensional arrays, results in an array
that wastes just under half its allocated space. HDF5 supports multi-dimensional arrays and chunk-based
allocators, which alleviate this problem somewhat. However, the application must specify the chunk size,
and coordinate matching the matrix structures to those chunks. This can add development complexity, and is
even more difficult for unstructured data types. A better approach would take advantage of the data model’s
semantic information and avoid allocating space that will not be used.

2.2 Data Models and Layouts

A data model describes how simulation data is represented and accessed. For discretization-based solutions
of PDEs, the data model includes a description of the discretized domain (space and time, and sometimes
other dimensions like energy), and field data computed by the simulation over those discretizations. The
data model is a key part of HPC codes and strongly influences the efficiency of both computation and
communication. At their core, scientific codes usually store the model as multi-dimensional arrays, since

5

A	
 QUAD	
 en(ty	
 	

In	
 Damsel	

A	
 sequence	

of	
 quads	

1	

4	

2	
 3	

5	
 6	

16

Damsel I/O Library
Data Model
API

Damsel Program Flow

damsel library lib = DMSLlib Init();

Create a model
DMSLmodel create(DAMSEL TYPE HANDLE 64);

Fill in the application specific model details e.g. number of
entities, types of entities, etc
1) damsel handle my handle = {12, 45, 67, 89 };
2) damsel container my container =

DMSLcontainer create vector(model, my handle, 4);

3) damsel collection my coll =

DMSLcoll create(model, my handle, my container,

DAMSEL HANDLE COLLECTION TYPE VECTOR);

17

Damsel I/O Library
Data Model
API

Damsel Program Flow

Fill in the application specific variables and solution data e.g.
tags (coordinates, solution data)
1) damsel handle tag handle = 10001;

2) DMSLtag define(model, "temperature",

DAMSEL TYPE FLOAT);

3) DMSLmodel map tag(data, my coll, &tag handle);

DMSLexecute(model);

DMSLlib finalize(lib);

18

Usecases

3 Usecases
Usecase I: FLASH
Usecase II: GCRM

19

Usecases
Usecase I: FLASH
Usecase II: GCRM

Introduction

7	
 6	
 5	
 4	

1	

2	
 13	
 12	
 11	

14	
 17	
 16	
 15	
 3	
 10	
 9	
 8	

1	

2	

3	

4	
 5	

6	
 7	

8	

9	
 10	

11	

12	
 13	

14	
 15	

16	
 17	

Morton order

•  Red	
 boxes	
 are	
 cells	

•  Black	
 boxes	
 are	
 blocks	

Each	
 block	
 in	
 AMR	
 grid	

corresponds	
 to	
 a	
 tree	

node	

FLASH	
 -­‐	

AMR	
 Grid	
 	

20

Usecases
Usecase I: FLASH
Usecase II: GCRM

Introduction

The FLASH is a modular, parallel multi-physics simulation
code capable of handling general compressible flow problems
found in many astrophysical environments.

Parallel adaptive-mesh refinement (AMR) code; Block
structured - a block is the unit of computation

Tree information: FLASH uses tree data structure for storing
grid blocks and relationships among blocks, including lrefine,
which child, nodetype and gid.

Per-block metadata: FLASH stores the size and coordinates
of each block in three different arrays: coord, bsize and
bnd box

Solution Data: Physical variables i.e. located on actual grid
are stored in a multi-dimensional (5D) array e.g. UNK

21

Usecases
Usecase I: FLASH
Usecase II: GCRM

FLASH using existing I/O Libraries

FLASH	
 in	
 PnetCDF	

/*Step 1: Create data set*/!
ncmpi_create_data()!
!
/*Step 2: Define dimension*/!
status = ncmpi_def_dim(ncid, "dim_tot_blocks", (MPI_Offset)
(*total_blocks), &dim_tot_blocks); !
!
/*Step 3: Define variables*/!
Status = ncmpi_def_var (ncid, "runtime_parameters", NC_INT, rank,
dimids, &varid[id]);!
status = ncmpi_def_var (ncid, "lrefine", NC_INT, rank, dimids,
&varid[id]);!
!
/*Step 4: Create attributes for some variables*/!
status = ncmpi_put_att_int(ncid, 1, intScalarNames[i], NC_INT, 1,
&intScalarValues[i]);!
!
/*Step 5: Write structural & solution data*/!
/* Write data from memory to file */!
 err = ncmpi_put_vara_all(fileID, varID, diskStart, diskCount,
pData, memCountScalar, memType);!
!
/*Step 6: Close the dataset/file*/!
ncmpi_close(fileID);!
!

22

Usecases
Usecase I: FLASH
Usecase II: GCRM

FLASH using DAMSEL data model

Goal: to describe hierarchical/structural and solution
information through API

Entity

FLASH blocks as a sequence of entities

Collections

Blocks assigned to collections to define hierarchical/structural
information

Tags

coordinates, size, bounding box
UNK (temprature, pressure, etc)

23

Usecases
Usecase I: FLASH
Usecase II: GCRM

FLASH using DAMSEL API

Step 1: Define sequence of block entities !
1.  damsel_handle block_id [17]={1, 2, 3, 4, 5,

6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17};
2.  damsel_container block_collection_id =

DMSLcontainer_create_vector(model, block_id,
17);

3.  Damsel_collection DMSLcoll_create();
4.  DMSLentity_define(block_collection_id, , ,);

Step 2: Defining block metadata using tags!

1.  damsel_handle coord_tag_handle = 10004;
2.  DMSLtag_define(model, &coord_tag_handle,

coords_array_type, "coordinates");
3.  DMSLmodel_map_tag(block_coords,

block_collection_id, &coord_tag_handle); !

// Same procedure for bounding box, size, etc!

24

Usecases
Usecase I: FLASH
Usecase II: GCRM

FLASH using DAMSEL API

Step 3: Define hierarchy through collections!
1.  damsel_handle temp_cont[5] = {3, 4, 5, 6, 7};
2.  damsel_container c31 =

DMSLcontainer_create_vector(model, temp_cont, 5);

3.  damsel_handle parent_tag_handle = 10023;

4.  DMSLtag_define(model, &parent_tag_handle, TYPE_HANDLE,
”Parent_b3");

5.  DMSLmodel_map_tag(2, c31, &parent_tag_handle);

Step 4: Defining Solution data using tags!
1.  damsel_handle unk_tag_handle = 10004;

2.  DMSLtag_define(model, &unkd_tag_handle, unk_array_type,
”UNK");

3.  DMSLmodel_map_tag(unk_data, block_collection_id,
&unk_tag_handle); !

!

25

Usecases
Usecase I: FLASH
Usecase II: GCRM

FLASH using DAMSEL API

Step 5: Mapping to file handles !
1.  DMSLmodel_attach(model, "test-flash.h5",

MPI_COMM_WORLD, NULL);

2.  DMSLmodel_map_handles_inventing_file_handles(block_c
ollection_id);

3.  DMSLmodel_map_handles_inventing_file_handles(unk_tag
_handle);

4.  …
5.  DMSLmodel_transfer_async(model,

DAMSEL_TRANSFER_TYPE_WRITE, &req);

6.  Finalize lib instance

26

Usecases
Usecase I: FLASH
Usecase II: GCRM

Introduction

27

Usecases
Usecase I: FLASH
Usecase II: GCRM

Introduction

•  Grid data
–  Cell corners (2/cell)

–  Cell	
 edges	
 (3/cell)	

–  Layers	
 and	
 interfaces	

•  Solu8on	
 data	
 at	
 both	
 interfaces	
 and	
 layers	

–  Cell	
 centers,	
 	

–  corners,	
 edges

	
 	

	
 	

	
 	
 	
 	

Interface	

Interface	

Layer	

Corner	
 	

variables	

Edge-­‐centered	
 variables	

Cell-­‐centered	
 	

variables	

28

Usecases
Usecase I: FLASH
Usecase II: GCRM

GCRM using existing I/O Libraries

PNetCDF

Grid Data:

Dimensions: Cells, edges, interfaces, etc
Variables: grid center lat(cells), grid corner lat(corners),
cell corners(cells, cellcorners)

Solution Data:

float pressure(time, cells, layers)
float u(time, corners, layers)
float wind(time, edges, layers)

29

Usecases
Usecase I: FLASH
Usecase II: GCRM

GCRM using DAMSEL

A Hexagonal Prism entity to describe a cell

An unstructured mesh to describe GCRM grid (no hierarchical
information)

Or a structured mesh to describe GCRM grid

30

Usecases
Usecase I: FLASH
Usecase II: GCRM

Summary

Motivation

DAMSEL Data Model

API Implementation

Usecases: FLASH and GCRM

Data layout work is in progress

31

	Motivation
	Motivation
	Existing I/O Libraries
	Goals

	Damsel
	Damsel I/O Library
	Data Model
	API

	Usecases
	Usecases
	Usecase I: FLASH
	Usecase II: GCRM

