
 Memory Subsystem Profiling
 with the
Sun Studio Performance Analyzer

 CScADS, July 20, 2009

Marty Itzkowitz, Analyzer Project Lead
Sun Microsystems Inc.
marty.itzkowitz@sun.com

mailto:marty.itzkowitz@sun.com

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 2

Outline

• Memory performance of applications
> The Sun Studio Performance Analyzer

• Measuring memory subsystem performance
> Four techniques, each building on the previous ones

– First, clock-profiling
– Next, HW counter profiling of instructions
– Dive deeper into dataspace profiling
– Dive still deeper into machine profiling

– What the machine (as opposed to the application) sees

> Later techniques needed if earlier ones don't fix the problems

• Possible future directions

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 3

No Comment

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 4

The Message
• Memory performance is crucial to application performance
> And getting more so with time

• Memory performance is hard to understand
> Memory subsystems are very complex

– All components matter
> HW techniques to hide latency can hide causes

• Memory performance tuning is an art
> We're trying to make it a science

• The Performance Analyzer is a powerful tool:
> To capture memory performance data
> To explore its causes

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 5

Memory Performance of Applications

• Operations take place in registers
> All data must be loaded and stored; latency matters

• A load is a load is a load, but
> Hit in L1 cache takes 1 clock
> Miss in L1, hit in L2 cache takes ~10-20 clocks
> Miss in L1, L2, hit in L3 cache takes ~50 clocks
> Fetch from memory takes ~200-500 clocks (or more)
> Page-in from disk takes milliseconds

– Costs are typical; each system is different

• What matters is total stalls in the pipeline
> If latency is covered, there's no performance cost

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 6

Why Memory Performance is Hard

• SW developers know code, algorithms, data structures
> What the HW does with them is magic

– Many, if not most, SW developers can't even read assembler

• HW engineers know instruction, address streams
> How the SW generates them is magic

• HW performance optimizations further confuse the issue
• Difficulty lies in bridging the gap
> Get data to show HW perspective to SW developers

• The rest of this talk will show how we do so

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 7

Memory Performance Problems

• Some causes of memory performance problems:
> Initial cache miss, capacity misses

– Layout and padding; lack of prefetch
> Conflict cache misses within a thread

– Striding through arrays
> Coherence misses across thread

– Sharing: unavoidable misses
– False sharing: avoidable miss, not a real conflict

– Threads refer to different fields in same cache line
– Different processes use same VA for different PA's

> Cache and Page coloring
– Mappings from addresses to cache lines

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 8

The Sun Studio Performance Analyzer

• Integrated set of tools for performance measurement
> Data collection
> Data examination

• Many types of data:
> Clock-profiling, HW counter profiling, ...
> Special support for OpenMP, MPI, Java

• Common command-line and GUI interface for all
• Available on SPARC and X86, Solaris and Linux
> It's FREE!

• You've seen it before....

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 9

Clock Profiling

• Periodic statistical sampling of callstacks
> collect -p <interval> target

– Note: many other tools do clock-profiling, too

• Shows expensive functions, instructions
> Is it the heart of the computation, or is it stalled?
> If it's stalled,

– Is it stalled waiting for a previous operation?
– Is it stalled waiting for a load?
– Is it stalled trying to do a store?

> Can only guess with clock profiling

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 10

Measuring Memory Costs

• Need better data to understand more
> See: Zagha, et.al., SC `96

• Use HW counters to trigger sampling
> collect -h <cntr1>,<val1>,<cntr2>,<val2>,...

– As many counters as chip supports
– collect with no arguments prints list for that machine

• Collect counter name, overflow value, callstack
> Cache misses/references, TLB misses, instructions, ...
> Cycles, L1-Cache stalls, L2-Cache stalls, ...

– Measured in cycles; convertible to time

• Shows memory costs based on the counters

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 11

Memory Performance Example

• Test code: 8 copies of vector-matrix multiply
> 8 functions named: dgemv_<opt-flag><order>

– Same computation, different performance
> Two loop orders

– Row, column and column,row
– <order> = 1, 2

> Four optimization levels
– Compile with -g, -O, -fast, and -fast -autopar

– <opt-flag> = _g, _opt, _hi, and _p

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 12

Detailed Memory Performance

 Separate out costs of the various caches
 Two experiments, combined in Analyzer

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 13

Memory Performance Problems

• Data shows where in program problems occur
> High cache misses, TLB misses

– Does not show why

• Cause is striding through memory
> Clue from differences between loop order versions
> In this example, the compiler can diagnose

– Studio compilers generate commentary to say what they did
– See next slide

• In general, diagnosing these problems is hard
> This one is easy – other cases are more difficult

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 14

Annotated Source of dgemv_hi1

 Loop interchange – compiler knows best order of loops
 Compiler commentary from -fast compilation

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 15

Dive Deeper

• We understand program instructions, not data
• Want better performance data
> The data addresses that trigger the problems
> The data objects that trigger the problems

– i.e., Source references

• Hard to get data reference address:
> HW counters skid past triggering instruction

– Interrupt PC != Trigger PC
– Current registers may not reflect state at time of event

• Solution: Dataspace profiling
> Built on top of HW counter profiling

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 16

Dataspace Profiling Technology
• Extend HW counter to capture more data
> collect -h +<cntr1>,<val1>,+<cntr2>,<val2>,...

– + sign in front of counter name

• Causes backtracking at HW profile event delivery
> Capture trigger PC (might fail)
> Capture virtual and physical data addresses (might fail)

– Track register changes that might affect address
> Post-process to see if branch-target crossed

– Typically, 95% of backtracking succeeds

• SPARC-only functionality, alas
> Backtracking not possible on x86/x64

– But instruction sampling can extend it to x86/x64

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 17

Dataspace Profiling Example

• mcf from SPEC cpu2000 benchmark suite
> Single depot vehicle scheduler; network simplex

– Single-threaded application

• Collect two experiments
> -p on -h +ecstall,lo,+ecrm,on
> -p off -h +ecref,on,+dtlbm,on

• Combine in Analyzer
• See Itzkowitz, et.al., SC|03 for details

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 18

Dataspace Profiling: Function List

Which functions have memory performance issues

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 19

Dataspace Profiling: Data Layout

 Show costs against Data Structure Layout, not code

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 20

Dataspace Example Conclusions

• Hot references all are to node and arc fields

• Structures not well-aligned for cache
> Need to pad to cache-line boundary
> Reorganize structures to put hot fields on same line

– Note: reorganizing might move hot fields, but not improve perf.

• High TLB misses imply need for large heap pages
• These changes led to ~21% improvement
> But not following SPEC cpu2000 rules

– That does not matter for real codes, of course

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 21

Dive Still Deeper

• We understand instructions and data, but not machine
> So far, problems have been in a single thread

• Use same data to explore interactions among threads
> Sample questions to answer:

– Which cache lines are hot?
– Is usage uniform across lines, or is there one very hot line?

– Which threads refer to those lines?
– Which addresses are being referred to by which threads?

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 22

Advanced Diagnostic Strategy

• Iterative analysis of the data:
> Slice and dice data into sets of “objects”

– Cache lines, pages, TLB entries, CPUs, ...
– Threads, Processes, Time intervals

> Find the hot objects of one set
> Filter to include data only for those hot objects
> Look at other types of objects to see why

– It is non-trivial to know which ones to look at
> Repeat as needed

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 23

Advanced Diagnostic Techniques

• Collect Dataspace profiling data
> collect -h +<cntr1>,<val1>,+<cntr2>,<val2>,...

• Collect over all threads and processes
• Slice into “Index Object” or “Memory Object” sets
> Each set has formula for computing an index from records
> Analyzer has a Tab for each object set
> Each Tab shows metrics for the objects in each set

– e.g., Threads, L2-cache lines, ...

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 24

Memory and Index Objects

• Index Objects: formula does not use VADDR or PADDR
> Formula fields present in all records
> Can be used for all data
> Some are predefined

• Memory Objects: formula uses VADDR or PADDR
> Address fields present only dataspace records
> Definitions depend on the specific physical machine

– Cache structure, page size, TLB organization
– Not yet captured automatically, but could be

• Define in .er.rc file, based on specific machine

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 25

Sample Object Definitions
• Each definition uses one (or more) fields
> Thread

– indxobj_define Threads THRID

> Virtual address
– mobj_define VA VADDR

> L2 cache line
– mobj_define PA_L2 (PADDR&0x7ffc0)>>6

• Can be a lot more complicated
> e.g., Niagara-2 level-2 data cache line set

– mobj_define UST2_L2DCacheSet \
(((((PADDR>>15)^PADDR)>>9)&0x1f0) | \
((((PADDR>>7)^PADDR)>>9)&0xc) | \
((PADDR>>9)&3))

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 26

Displaying Objects in Analyzer Tabs

2 Tabs from .er.rc file

Predefined Tabs

Buttons to add custom Tabs

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 27

Example: mttest
• Analyzer test code
> Organized as series of tasks

– Each task queues 4 blocks, spawns 4 threads
– Threads synchronize differently for each task
– Each thread calls one of the compute* functions for its block

• We will explore why computeB is different
> Takes almost 3X as much time as the others

• Collect experiment:
> collect -p on -h +ecstall,on

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 28

Demo

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 29

Function List

Alphabetical (name) sort – note ComputeB vs. others

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 30

Source for compute*

Lines 1298,1306,1314 are identical
 But they perform differently

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 31

Set Filter on computeB

Filter to show only those events with computeB as leaf
Sorry syntax is so ugly

 Advanced filter button

Index number filled in from selection

Button to set filter

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 32

Function List Filtered on ComputeB

Function list only shows callers of computeB
 (In this example computeB is a leaf function)

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 33

Threads, VA, and PA_L2 Tabs

Four threads, four virtual addresses, one cache line

Graphical view

Text views

Threads

L2 cache lines

Virtual Address

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 34

Add VA Filter for One Address

Will show only events in computeB referring to that one address

Button to add && clause to filter

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 35

Look at VA and Threads again

 One thread per address; true of all four addresses

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 36

Diagnosis
• Most cache misses are on a single cache line
> Four threads get the misses
> Four addresses are referenced
> Each thread references only one virtual address

> Write from one thread invalidates line for all others

• Classic manifestation of false sharing
> A notoriously difficult problem to spot
> In true sharing, multiple threads refer to each address

Word 0 Word 1 Word 2 Word 3Line:

Thread 1 Thread 3Thread 2 Thread 4

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 37

Potential Future Development

• Enhance data collection
> Support x86/x64 with instruction-based sampling

– Set up working group at this meeting?
> Integrate configuration capture with data collection

• Improve the GUI and navigation
> Improve filtering grammar and syntax
> Other usability improvements

• Develop tuning strategy
> Systematic procedures for exploring problems

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 38

For more information
External Sun Studio Website

 http://developers.sun.com/sunstudio/

External Sun Studio Performance Tools Website

 http://developers.sun.com/sunstudio/overview/topics/analyzer_index.html

SC'96 paper on HW Counter Profiling
http://portal.acm.org/citation.cfm?id=369028.369059&coll=portal&dl=ACM&CFID=33541981&CFTOKEN=50518735

SC|03 paper on Dataspace Profiling
 http://www.sc-conference.org/sc2003/paperpdfs/pap182.pdf

Solaris Application Programming by Darryl Gove
 http://www.sun.com/books/catalog/solaris_app_programming.xml

http://developers.sun.com/sunstudio
http://developers.sun.com/sunstudio/overview/topics/analyzer_index.html
http://portal.acm.org/citation.cfm?id=369028.369059&coll=portal&dl=ACM&CFID=33541981&CFTOKEN=50518735
http://www.sc-conference.org/sc2003/paperpdfs/pap182.pdf
file:///home/martyi/PRESOS/DProfile.cscads/ http://www.sun.com/books/catalog/solaris_app_programming.xml

MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer 6/30/09 39

Acknowledgments
• Nicolai Kosche, PAE
> Driving force for dataspace profiling enhancements
> Developed advanced techniques
> Invented term “DProfile” to refer to those techniques

• The Sun Studio Peformance Analyzer team
> Made it all work

 Thank You

Marty Itzkowitz, Analyzer Project Lead
Sun Microsystems Inc.
marty.itzkowitz@sun.com

mailto:marty.itzkowitz@sun.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

