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Outline

• Memory performance of applications
> The Sun Studio Performance Analyzer

• Measuring memory subsystem performance
> Four techniques, each building on the previous ones

– First, clock-profiling
– Next, HW counter profiling of instructions
– Dive deeper into dataspace profiling
– Dive still deeper into machine profiling

– What the machine (as opposed to the application) sees

> Later techniques needed if earlier ones don't fix the problems

• Possible future directions
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No Comment
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The Message
• Memory performance is crucial to application performance
> And getting more so with time

• Memory performance is hard to understand
> Memory subsystems are very complex

– All components matter
> HW techniques to hide latency can hide causes

• Memory performance tuning is an art
> We're trying to make it a science

• The Performance Analyzer is a powerful tool:
> To capture memory performance data
> To explore its causes
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Memory Performance of Applications

• Operations take place in registers
> All data must be loaded and stored; latency matters

• A load is a load is a load, but
> Hit in L1 cache takes 1 clock
> Miss in L1, hit in L2 cache takes ~10-20 clocks
> Miss in L1, L2, hit in L3 cache takes ~50 clocks
> Fetch from memory takes ~200-500 clocks (or more)
> Page-in from disk takes milliseconds

– Costs are typical; each system is different

• What matters is total stalls in the pipeline
> If latency is covered, there's no performance cost
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Why Memory Performance is Hard

• SW developers know code, algorithms, data structures
> What the HW does with them is magic

– Many, if not most, SW developers can't even read assembler

• HW engineers know instruction, address streams
> How the  SW generates them is magic

• HW performance optimizations further confuse the issue
• Difficulty lies in bridging the gap
> Get data to show HW perspective to SW developers

• The rest of this talk will show how we do so
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Memory Performance Problems

• Some causes of memory performance problems:
> Initial cache miss, capacity misses

– Layout and padding; lack of prefetch
> Conflict cache misses within a thread

– Striding through arrays
> Coherence misses across thread

– Sharing: unavoidable misses
– False sharing: avoidable miss, not a real conflict

– Threads refer to different fields in same cache line
– Different processes use same VA for different PA's

> Cache and Page coloring
– Mappings from addresses to cache lines
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The Sun Studio Performance Analyzer

• Integrated set of tools for performance measurement
> Data collection
> Data examination

• Many types of data:
> Clock-profiling, HW counter profiling, ...
> Special support for OpenMP, MPI, Java

• Common command-line and GUI interface for all
• Available on SPARC and X86, Solaris and Linux
> It's FREE!

• You've seen it before....
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Clock Profiling

• Periodic statistical sampling of callstacks
> collect -p <interval> target

– Note: many other tools do clock-profiling, too

• Shows expensive functions, instructions
> Is it the heart of the computation, or is it stalled?
> If it's stalled,

– Is it stalled waiting for a previous operation?
– Is it stalled waiting for a load?
– Is it stalled trying to do a store?

> Can only guess with clock profiling
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Measuring Memory Costs

• Need better data to understand more
> See: Zagha, et.al., SC `96

• Use HW counters to trigger sampling
> collect -h <cntr1>,<val1>,<cntr2>,<val2>,...

– As many counters as chip supports
– collect with no arguments prints list for that machine

• Collect counter name, overflow value, callstack
> Cache misses/references, TLB misses, instructions, ...
> Cycles, L1-Cache stalls, L2-Cache stalls, ...

– Measured in cycles; convertible to time

• Shows memory costs based on the counters
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Memory Performance Example

•  Test code: 8 copies of vector-matrix multiply
> 8 functions named: dgemv_<opt-flag><order>

– Same computation, different performance
> Two loop orders

– Row, column and column,row
– <order> = 1, 2

> Four optimization levels
– Compile with -g, -O, -fast, and -fast -autopar

– <opt-flag> = _g, _opt, _hi, and _p
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Detailed Memory Performance

 Separate out costs of the various caches
  Two experiments, combined in Analyzer
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Memory Performance Problems

• Data shows where in program problems occur
> High cache misses, TLB misses

– Does not show why

• Cause is striding through memory
> Clue from differences between loop order versions
> In this example, the compiler can diagnose

– Studio compilers generate commentary to say what they did
– See next slide

• In general, diagnosing these problems is hard
> This one is easy – other cases are more difficult
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Annotated Source of dgemv_hi1

 Loop interchange – compiler knows best order of loops
      Compiler commentary from -fast compilation
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Dive Deeper

• We understand program instructions, not data
• Want better performance data
> The data addresses that trigger the problems
> The data objects that trigger the problems

– i.e., Source references

• Hard to get data reference address:
> HW counters skid past triggering instruction

– Interrupt PC != Trigger PC
– Current registers may not reflect state at time of event

• Solution: Dataspace profiling
> Built on top of HW counter profiling
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Dataspace Profiling Technology
• Extend HW counter to capture more data
> collect -h +<cntr1>,<val1>,+<cntr2>,<val2>,...

– + sign in front of counter name

• Causes backtracking at HW profile event delivery
> Capture trigger PC (might fail)
> Capture virtual and physical data addresses (might fail)

– Track register changes that might affect address
> Post-process to see if branch-target crossed

– Typically, 95% of backtracking succeeds

• SPARC-only functionality, alas
> Backtracking not possible on x86/x64

– But instruction sampling can extend it to x86/x64
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Dataspace Profiling Example

•  mcf  from SPEC cpu2000 benchmark suite
> Single depot vehicle scheduler; network simplex

– Single-threaded application

• Collect two experiments
> -p on -h +ecstall,lo,+ecrm,on
> -p off -h +ecref,on,+dtlbm,on

• Combine in Analyzer
• See Itzkowitz, et.al., SC|03 for details
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Dataspace Profiling: Function List

Which functions have memory performance issues
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Dataspace Profiling: Data Layout

 Show costs against Data Structure Layout, not code
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Dataspace Example Conclusions

• Hot references all are to node and arc fields

• Structures not well-aligned for cache
> Need to pad to cache-line boundary
> Reorganize structures to put hot fields on same line

– Note: reorganizing might move hot fields, but not improve perf.

• High TLB misses imply need for large heap pages
• These changes led to ~21% improvement
> But not following SPEC cpu2000 rules

– That does not matter for real codes, of course
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Dive Still Deeper

• We understand instructions and data, but not machine
> So far, problems have been in a single thread

• Use same data to explore interactions among threads
> Sample questions to answer:

– Which cache lines are hot?
– Is usage uniform across lines, or is there one very hot line?  

– Which threads refer to those lines?
– Which addresses are being referred to by which threads?
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Advanced Diagnostic Strategy

• Iterative analysis of the data:
> Slice and dice data into sets of “objects”

– Cache lines, pages, TLB entries, CPUs, ...
– Threads, Processes, Time intervals

> Find the hot objects of one set
> Filter to include data only for those hot objects
> Look at other types of objects to see why

– It is non-trivial to know which ones to look at
> Repeat as needed
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Advanced Diagnostic Techniques

• Collect Dataspace profiling data
> collect -h +<cntr1>,<val1>,+<cntr2>,<val2>,...

• Collect over all threads and processes
• Slice into “Index Object” or “Memory Object” sets
> Each set has formula for computing an index from records
> Analyzer has a Tab for each object set
> Each Tab shows metrics for the objects in each set

– e.g., Threads, L2-cache lines, ...
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Memory and Index Objects

• Index Objects: formula does not use VADDR or PADDR
> Formula fields present in all records
> Can be used for all data
> Some are predefined

• Memory Objects: formula uses VADDR or PADDR
> Address fields present only dataspace records 
> Definitions depend on the specific physical machine

– Cache structure, page size, TLB organization
– Not yet captured automatically, but could be

• Define in .er.rc file, based on specific machine
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Sample Object Definitions
• Each definition uses one (or more) fields
> Thread

– indxobj_define Threads THRID

> Virtual address
– mobj_define VA VADDR

> L2 cache line
– mobj_define PA_L2 (PADDR&0x7ffc0)>>6

• Can be a lot more complicated
> e.g., Niagara-2 level-2 data cache line set

– mobj_define UST2_L2DCacheSet \  
(((((PADDR>>15)^PADDR)>>9)&0x1f0) | \ 
((((PADDR>>7)^PADDR)>>9)&0xc) | \ 
((PADDR>>9)&3))
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Displaying Objects in Analyzer Tabs

2 Tabs from .er.rc file

Predefined Tabs

Buttons to add custom Tabs
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Example: mttest
• Analyzer test code
> Organized as series of tasks

– Each task queues 4 blocks, spawns 4 threads
– Threads synchronize differently for each task
– Each thread calls one of the compute* functions for its block

• We will explore why computeB is different
> Takes almost 3X as much time as the others

• Collect experiment:
> collect -p on -h +ecstall,on
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Demo
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Function List

Alphabetical (name) sort – note ComputeB vs. others
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Source for compute*

Lines 1298,1306,1314 are identical
      But they perform differently



MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer    6/30/09 31

Set Filter on computeB

Filter to show only those events with computeB as leaf
Sorry syntax is so ugly

 Advanced filter button

Index number filled in from selection

Button to set filter
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Function List Filtered on ComputeB

Function list only shows callers of computeB
  (In this example computeB is a leaf function)
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Threads, VA, and PA_L2 Tabs

Four threads, four virtual addresses, one cache line

Graphical view

Text views

Threads

L2 cache lines

Virtual Address
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Add VA Filter for One Address

Will show only events in computeB referring to that one address

Button to add && clause to filter



MSI Memory Subsystem Profiling with the Sun Studio Performance Analyzer    6/30/09 35

Look at VA and Threads again

  One thread per address; true of all four addresses
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Diagnosis
• Most cache misses are on a single cache line
> Four threads get the misses
> Four addresses are referenced
> Each thread references only one virtual address

> Write from one thread invalidates line for all others

• Classic manifestation of false sharing
> A notoriously difficult problem to spot
> In true sharing, multiple threads refer to each address

Word 0 Word 1 Word 2 Word 3Line:

Thread 1 Thread 3Thread 2 Thread 4
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Potential Future Development

• Enhance data collection
> Support x86/x64 with instruction-based sampling

– Set up working group at this meeting?
> Integrate configuration capture with data collection

• Improve the GUI and navigation
> Improve filtering grammar and syntax
> Other usability improvements

• Develop tuning strategy
> Systematic procedures for exploring problems
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For more information
External Sun Studio Website

      http://developers.sun.com/sunstudio/

External Sun Studio Performance Tools Website

      http://developers.sun.com/sunstudio/overview/topics/analyzer_index.html

SC'96 paper on HW Counter Profiling
http://portal.acm.org/citation.cfm?id=369028.369059&coll=portal&dl=ACM&CFID=33541981&CFTOKEN=50518735

SC|03 paper on Dataspace Profiling
       http://www.sc-conference.org/sc2003/paperpdfs/pap182.pdf

Solaris Application Programming by Darryl Gove
        http://www.sun.com/books/catalog/solaris_app_programming.xml

http://developers.sun.com/sunstudio
http://developers.sun.com/sunstudio/overview/topics/analyzer_index.html
http://portal.acm.org/citation.cfm?id=369028.369059&coll=portal&dl=ACM&CFID=33541981&CFTOKEN=50518735
http://www.sc-conference.org/sc2003/paperpdfs/pap182.pdf
file:///home/martyi/PRESOS/DProfile.cscads/ http://www.sun.com/books/catalog/solaris_app_programming.xml
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