Multidimensional Multiscale Dynamics of High-Energy Astrophysical Flows Sean M. Couch Flash Center, U. Chicago CScADS - July 26, 2010

SN 1987A

Hubble

Cas A

Cas A

Chandra Fe K

2D effects such as neutrino convection, SASI, and perhaps advective-acoustic effects, make explosions marginally successful

Results from different groups don't always agree

Section S

Burrows & Nordhaus 2010

Cows are aspherical and magnetic, and so are supernovae!

Begall, S. et al. Proc. Natl. Acad. Sci. USA advanced online publication, doi: 10.1073/ pnas.0803650105 (25 August 2008)

Magnetorotational SNe

Burrows et al. 2007

What do Jet-driven SNe Look Like?

Need simulations of the late-time dynamics
 Need resolution to study instabilities
 Need means of directly comparing to observations

The FLASH Code

Block-structured Adaptive-Mesh Refinement

- Piecewise-Parabolic Method, explicit Eulerian hydro
- Tabular EoS
- Poisson self-gravity
- HDF5 output

The FLASH Code

Block-structured Adaptive-Mesh Refinement

- Piecewise-Parabolic Method, explicit Eulerian hydro
- Tabular EoS
- Poisson self-gravity
 HDF5 output

Viz & Analysis Tools

- Primarily VisIt through Python interface
- Parallel viz hardware (primarily at TACC)
- å Also, some IDL...

Dynamic range

2D cylindrical geom. Radius, time-dependent max. refinement level Modified FLASH to excise central hole Hole radius expands with time Start with 25 refinement levels

Kinetic

Density

user: smc Tue Sep 29 17:09:10 20

Thermal

user: smc Mon Sep 28 11:56:02 20

Kinetic

X-ray emission modeling

LoS

- Optical depths integrated along lines of sight
- Accurate opacities from LANL
- Multiple photon energy groups
- Composition: helium with 0.5 solar metallicity
- Black body emission with color temperature = gas temperature at therm. depth

$$\tau_{\rm tot} = \tau_{\rm scat} + \tau_{\rm abs} \approx 2/3$$
$$\tau_{\rm eff} = \sqrt{3\tau_{\rm abs}\tau_{\rm tot}} \approx 2/3$$

Temperature

Would like to get away from IDL...

- Need parallel resources capable of handling 3D AMR data
- Lagrangian particle analysis
- Vector field viz
- Minimize data movement

Fast viz important, flexible data manipulation also needed