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•  A software layer (library) designed to provide the tool developer and 
application engineer with a consistent interface and methodology for use of 
the performance counter hardware found in most major micro-processors. 

•  Platform-neutral Preset Events  
•  Platform-dependent Native Events 

•  All events referenced by name and collected in EventSets for sampling 
•  Events can be multiplexed if counters are limited 
•  Statistical sampling on timeout or overflow 

•  A software layer (library) designed to provide the tool developer and 
application engineer with a consistent interface and methodology for 
measurement of performance events found at any level of the computing 
hierarchy. 

•  CPU core events 
•  CPU chip level events 
•  Networks 
•  System Health 
•  Peripheral subsystems 
•  Etc… 

(component??) 
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Indirect calls  
add overhead. 
How much? 
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•  How much does an indirect call cost? 
•  Test on various platforms 
•  1M iterations of 10 calls 

•  To empty functions 
•  To PAPI functions 

Pentium4 Core2 Nehalem Opteron POWER6 
direct cycles/call 13.8 8.4 5.8 9.6 106.3 
indirect cycles/call 17.8 10.3 6.2 11 155.2 
% slowdown 29.00% 22.60% 6.90% 14.60% 46.00% 
PAPI start/stop slowdown 0.66% 0.52% 0.13% 0.39% 1.36% 

PAPI 2 counter read 
slowdown 

9.76% 6.40% 2.47% 11.30% 1.26% 
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•  Events are encapsulated in EventSets 
•  An EventSet can contain multiple events 
•  Multiple EventSets can co-exist 
•  Only one EventSet can be active per component 
•  An EventSet is bound to a single component 

•  When the first event is added 
•  Late binding insures backward compatibility 

•  By use of a new API call: 
•  PAPI_assign_eventset_component() 

•  Old code can run with no source modification 
•  (except some instances of multiplexing) 
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•  3 calls augmented with a component index 
•  PAPI_get_opt    PAPI_get_cmp_opt 
•  PAPI_set_domain   PAPI_set_cmp_domain 
•  PAPI_num_hwctrs   PAPI_num_cmp_hwctrs 

•  Old syntax preserved in wrapper functions for backward 
compatibility 
•  CPU component is assumed to be component 0 

•  New entry points for new functionality: 
•  PAPI_num_components 
•  PAPI_get_component_info 

•  Old code can run with no source modifications 
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UNIX> configure --with-components="lustre net acpi” 
UNIX> cat components_config.h 

/* Automatically generated by configure */ 
extern papi_vector_t MY_VECTOR; 
extern papi_vector_t _lustre_vector; 
extern papi_vector_t _net_vector; 
extern papi_vector_t _acpi_vector; 

papi_vector_t *_papi_hwd[] = { 
   &MY_VECTOR, 
   &_lustre_vector, 
   &_net_vector, 
   &_acpi_vector, 
   NULL 
}; 

UNIX> make 
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Ask not… 

…Ask what you can do  
for Performance Components 

“                  
                                           ” 
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include components/lmsensors/Makefile.lmsensors 

COMPSRCS += components/lmsensors/linux-lmsensors.c  
COMPOBJS += linux-lmsensors.o 
CFLAGS += -I$(SENSORS_INCDIR) 
LDFLAGS += -L$(SENSORS_LIBDIR) -lsensors 
LINKLIB += $(SENSORS_LIBDIR)/libsensors.a -lm 

linux-lmsensors.o: components/lmsensors/linux-lmsensors.c components/lmsensors/linux-lmsensors.h 
 $(HEADERS) $(CC) $(LIBCFLAGS) $(OPTFLAGS) -c components/lmsensors/linux-lmsensors.c 
 -o linux-lmsensors.o  



•  About 40 calls in the complete CDI 
•  About 15 needed for a useful component 
•  About 1000 lines of code 
•  CDI Documentation 
•  Component Function List 
•  Component Cookbook 
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•  We want user contributions 
•  We don’t want to maintain them 

•  Users want to know what’s available 
•  And often want to contribute 

•  Why not a web-based Repository? 
•  Registration form to submit and track components 
•  Link to a tarball or RCS repository  

•  Sourceforge, GitHub, Google code, private repository 
•  Public page to view current components & descriptions 
•  Private page for author updates 
•  Admin page to monitor / control submissions 
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•  HPCC HPL benchmark on Opteron with 3 performance metrics: 
•  FLOPS; Temperature; Network Sends/Receives 

•  Temperature is from an on-chip thermal diode 
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 libsensors version 3.1.1 
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 IB Counter 
resolution 
in Vampir: 
 1 sec 

Run Pingpong 5x: send 1,000,000 integers
 1000x (theor: ~19GB) 
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•  PAPI without cpu events?? 
•  Requested by developers in Dresden 
•  Debugging components on unpatched kernels 
•  Running non-cpu components only 

•  Requires emulation of basic timing functions 
•  Available in PAPI 4.1.0 
•  Invocation: 

•  > configure –-with-no-cpu-counters = yes 
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