
Dan Terpstra
with a little help from:

Heike Jagode,
 Brian Sheely,

 Vince Weaver,
 & James Ralph

Center for Scalable Application Development Software
 Performance Tools Aug 2 – 5, 2010

2

•  A software layer (library) designed to provide the tool developer and
application engineer with a consistent interface and methodology for use of
the performance counter hardware found in most major micro-processors.

•  Platform-neutral Preset Events
•  Platform-dependent Native Events

•  All events referenced by name and collected in EventSets for sampling
•  Events can be multiplexed if counters are limited
•  Statistical sampling on timeout or overflow

•  A software layer (library) designed to provide the tool developer and
application engineer with a consistent interface and methodology for
measurement of performance events found at any level of the computing
hierarchy.

•  CPU core events
•  CPU chip level events
•  Networks
•  System Health
•  Peripheral subsystems
•  Etc…

(component??)

3

PAPI HARDWARE SPECIFIC
LAYER

PAPI PORTABLE LAYER

Kernel Extension

Operating System

Perf Counter Hardware

Low Level
User API

High Level
User API

4

PAPI FRAMEWORK

Low Level
User API

High Level
User API

PAPI COMPONENT
(CPU)

Operating System

Counter Hardware

Developer API Developer API

PAPI COMPONENT
(NETWORK)

Operating System

Counter Hardware

PAPI COMPONENT
(THERMAL)

Operating System

Counter Hardware

Developer API

5

Low Level
User API

High Level
User API

platform
dependent
functions

platform
provided
structures

PAPI
PLATFORM
SPECIFIC

LAYER

OS
CPU
PMU

PAPI
FRAMEWORK

6

Low Level
User API

PAPI
FRAMEWORK

PAPI
COMPONENT

OS
CPU
PMU

High Level
User API

component vector

7

Low Level
User API

PAPI
FRAMEWORK

PAPI
COMPONENT

OS
CPU
PMU

High Level
User API

vector table

component vector

8

Low Level
User API

PAPI
FRAMEWORK

PAPI CPU
COMPONENT

OS
CPU
PMU

High Level
User API

vector table

component vector

PAPI
COMPONENT

PMU

component vector

9

Low Level
User API

PAPI
FRAMEWORK

OS
CPU

High Level
User API

vector table

component vector

PMU
component vector

PMU
component vector

PMU
component vector

10

Low Level
User API

PAPI
FRAMEWORK

OS
CPU

High Level
User API

vector table

component vector

PMU
component vector

PMU
component vector

PMU
component vector

Indirect calls
add overhead.
How much?

11

•  How much does an indirect call cost?
•  Test on various platforms
•  1M iterations of 10 calls

•  To empty functions
•  To PAPI functions

Pentium4 Core2 Nehalem Opteron POWER6
direct cycles/call 13.8 8.4 5.8 9.6 106.3
indirect cycles/call 17.8 10.3 6.2 11 155.2
% slowdown 29.00% 22.60% 6.90% 14.60% 46.00%
PAPI start/stop slowdown 0.66% 0.52% 0.13% 0.39% 1.36%

PAPI 2 counter read
slowdown

9.76% 6.40% 2.47% 11.30% 1.26%

12

•  Events are encapsulated in EventSets
•  An EventSet can contain multiple events
•  Multiple EventSets can co-exist
•  Only one EventSet can be active per component
•  An EventSet is bound to a single component

•  When the first event is added
•  Late binding insures backward compatibility

•  By use of a new API call:
•  PAPI_assign_eventset_component()

•  Old code can run with no source modification
•  (except some instances of multiplexing)

13

•  3 calls augmented with a component index
•  PAPI_get_opt  PAPI_get_cmp_opt
•  PAPI_set_domain  PAPI_set_cmp_domain
•  PAPI_num_hwctrs  PAPI_num_cmp_hwctrs

•  Old syntax preserved in wrapper functions for backward
compatibility
•  CPU component is assumed to be component 0

•  New entry points for new functionality:
•  PAPI_num_components
•  PAPI_get_component_info

•  Old code can run with no source modifications

14

UNIX> configure --with-components="lustre net acpi”
UNIX> cat components_config.h

/* Automatically generated by configure */
extern papi_vector_t MY_VECTOR;
extern papi_vector_t _lustre_vector;
extern papi_vector_t _net_vector;
extern papi_vector_t _acpi_vector;

papi_vector_t *_papi_hwd[] = {
 &MY_VECTOR,
 &_lustre_vector,
 &_net_vector,
 &_acpi_vector,
 NULL
};

UNIX> make

Dan Terpstra
with a little help from:

Heike Jagode,
 Brian Sheely,

 Vince Weaver,
 & James Ralph

Center for Scalable Application Development Software
 Performance Tools Aug 2 – 5, 2010

Ask not…

…Ask what you can do
for Performance Components

“
 ”

16

include components/lmsensors/Makefile.lmsensors

COMPSRCS += components/lmsensors/linux-lmsensors.c
COMPOBJS += linux-lmsensors.o
CFLAGS += -I$(SENSORS_INCDIR)
LDFLAGS += -L$(SENSORS_LIBDIR) -lsensors
LINKLIB += $(SENSORS_LIBDIR)/libsensors.a -lm

linux-lmsensors.o: components/lmsensors/linux-lmsensors.c components/lmsensors/linux-lmsensors.h
 $(HEADERS) $(CC) $(LIBCFLAGS) $(OPTFLAGS) -c components/lmsensors/linux-lmsensors.c
 -o linux-lmsensors.o

•  About 40 calls in the complete CDI
•  About 15 needed for a useful component
•  About 1000 lines of code
•  CDI Documentation
•  Component Function List
•  Component Cookbook

17

18

•  We want user contributions
•  We don’t want to maintain them

•  Users want to know what’s available
•  And often want to contribute

•  Why not a web-based Repository?
•  Registration form to submit and track components
•  Link to a tarball or RCS repository

•  Sourceforge, GitHub, Google code, private repository
•  Public page to view current components & descriptions
•  Private page for author updates
•  Admin page to monitor / control submissions

19

20

•  HPCC HPL benchmark on Opteron with 3 performance metrics:
•  FLOPS; Temperature; Network Sends/Receives

•  Temperature is from an on-chip thermal diode

21

22

23

 libsensors version 3.1.1

24

25

26

 IB Counter
resolution
in Vampir:
 1 sec

Run Pingpong 5x: send 1,000,000 integers
 1000x (theor: ~19GB)

27

•  PAPI without cpu events??
•  Requested by developers in Dresden
•  Debugging components on unpatched kernels
•  Running non-cpu components only

•  Requires emulation of basic timing functions
•  Available in PAPI 4.1.0
•  Invocation:

•  > configure –-with-no-cpu-counters = yes

28

29

Dan Terpstra
with a little help from:

Heike Jagode,
 Brian Sheely,

 Vince Weaver,
 & James Ralph

Center for Scalable Application Development Software
 Performance Tools Aug 2 – 5, 2010

