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Pin

Fine-grained dynamic instrumentation of user mode programs
Instrumentation

— Inserting extra code to observe/change program

— Profilers, trace collectors, ...

Dynamic

— Done at run-time, no special compilation or linking

— Adapt instrumentation during execution

Fine-grained

— Observe the execution of every instruction

— Request instrumentation before or after any instruction execution
Transparent

— Instrumentation observes original program




#include <stdio.h>
#include "pin.H"

Instruction Trace
FILE * trace;

VOID tracelnst(VOID *ip) {
fprintf(trace, "%p\n", ip);
¥

VOID Instruction(INS ins, VOID *v) {

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)tracelnst, IARG_INST_PTR,
IARG. END);

g

int main(int argc, char * argv[]) {
trace = fopen("itrace.out", "w");
PIN_Init(argc, argv);
INS_AddInstrumentFunction(Instruction, 0);
PIN_StartProgram();

return O;




Example: Malloc Trace

VOID Image (IMG img, VOID *v) {
RTN mallocRtn = RTN FindByName (img, "malloc") ;

if (RTN Valid(mallocRtn))

{

RTN Open (mallocRtn); // fetch insts in mallocRtn

RTN InsertCall (mallocRtn, IPOINT BEFORE,

(AFUNPTR) ArglBefore,
IARG FUNCARG ENTRYPOINT VALUE, 0, IARG END)

RTN InsertCall (mallocRtn, IPOINT AFTER,

(AFUNPTR)MallocAfter,
IARG FUNCRET EXITPOINT VALUE, IARG END) ;

RTN Close (mallocRtn) ;

el)
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Instrumentation Philosophy

e Tools view instruction list of application instructions
e Users only insert function calls
* No general code modification ability for tools

e Try to close gap by inlining and optimization of
Instrumentation

e Still @ gap in altering control flow
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Original
code

Compiler




Just-in-time Instrumentation

Original

Code

cache - @\

1

Compiler




JIT-based Instrumentation Features

« Handles mixed code and data, variable alignment,
variable size instructions with 100% accuracy

 Maintains control at all times, change/observe
anything

 Only Instrument executed code

— Database server code is 60Meg + shared libraries
 No special handling for shared libraries
« Handles dynamically generated code

* No dependence on compiler or binary format

— applies to instrumentation engine, but tools may need to
access symbol information

* Trace based optimization of instrumentation




JIT Based Instrumentation
Drawbacks

e Time overhead 0% - 300%

» Hardware counters may not be give useful
information




Probe-based instrumentation

Overwrite original program with probe (branch) to reach
dyninst-style trampolines

Mostly execute original program, enter instrumentation via
probes

Subset of API
— Started with very general capability

— Replaced with straight jacket - wrap function calls to observe or
alter behavior

Near zero overhead and perturbation
Relevant timing, hardware counter data

Weak code and CFG discovery

— Sufficient for tools that watch API usage
— MPI trace analysis
— Memory allocation errors

Shares compiler & injector with JIT based instrumentation




Details

e« [A32, Intel 64, IA64
e Linux, Windows, MacOs

e No charge
— But not open source

e BSD-like license
— No restrictions on use or redistribution
— Instrumentation vm distributed as binary
— Sample tools are open source

* Download it at
— 600 downloads/month




Pin Users

e Microprocessor development
— Fast & easy to extend emulator

o Intel Software Quality and Performance Analysis
Products

— Emphasis on parallelism

e [SV

— Software quality & performance tools

e University
— research & education




Microprocessor Development

Model performance of hardware that does not
exist

Instrumentation based tools are fast and easy to
develop

r=CMPSIim — memory system performance modeling
E@EMX - instruction emulation
E@PinPoints, PinPlay — workload capture




CMP$im Features

—Use Pin to instrument all loads and store
— Fast Memory Characterization: % %

— Single/multi-threaded workloads
— 4-25 MIPS (100x-800x slow) ore ore 1}Core ore

—Memory System Configurations:
— Model private/shared caches
— Model single/hyper-threaded cores
— Model inclusive or non-inclusive caches
. 4-threaded, 4-core, CMP
— Statistics: Multi-Level Cache Sharing:
— Detailed instruction/cache statistics 4-threads per FLC

: . 8-threads per MLC
— View phase behavior of workloads 16-threadspper LLC
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EMX - Instruction Emulation

e Architectural evaluation requires extensions to
existing instruction sets

— Debug compiler & libraries
— Performance evaluation

« EMX pintool

— Instrumentation replaces new instructions with emulation
functions

— Near native speed for everything else

— Can use instrumentation to study programs that use
extensions

intel)




Software Quality & Performance
Analysis

Observe
Pin instruments loads and stores, control flow

Analyze data

Present information
Pin provides symbol/debug info

Many tools use both probe-based instrumentation for
speed and JIT-based instrumentation for detailed
analysis

intel)




Intel® VTune™ Performance Analyzer

e Call graph
e Other profilers




Vtune™ Call Graph Profile
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Intel® Thread Checker

e Detects threading bugs
e Data Races
o Deadlocks

e [nstruments loads, stores, threading API




Intel® Thread Checker

w4 VTune(TM) Performance Environment - [Thread Checker - Activ 3:17 PM, 2005 Feb 13 (TC: primes.exe)]

Hﬂe Edit View Activity Configure Window Help

1st Access[Source Ling] Short Description 2nd Access[Source Line]
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Source

long factor = 3;
while ( number % factor ) factor += 2;
if ( factor == number )
primes[ number of primes++ ] = number;
}

printf( "Found %d primes\n", number of primes );
|

] 2nd Access |v |Stack: |main "2_openmp.cpp":14
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long factor = 3;
while ( number % factor ) factor += 2;
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How Does Thread Checker Work?

Thread 1 Thread 2

O
O

O

Lock(L);

n_of pt++

Unlock(L); Lock(L):

@)
: n of pt+;

Unlock(L); intel‘)




How Does Thread Checker Work?

Use binary instrumentation

RIS Thread 1 Thread 2

O
O

© record lock(L)
LOCk(Le)éord read(n_of_p)

record write(n_of_p)
n_of p++
record unlock(L)

Ularelk (L); record lock(L)

Lock(L);
record read(n_of_p)

. record write(n_of_p)
: n of p++;

record unlock(L)

Unlock(L); (intel”




How Does Thread Checker Work?

Thread 1 Thread 2

O
O

O

Lock(L); .

n_of p++
- Analysis reveals that “happens
\ pp

Unlock(L);befL> . So, no data race problem.

O
O
O

Lock(L);

n of p++

Analysis based on [Lamport 1978] Wiilkye UL )E ( intel)‘




How Does Thread Checker Work?

Thread 1 Thread 2
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With no locks, neither segment “happens before”

the other. So there is a data race! (intel)




Intel® Thread Profiler

 Find Contended Locks

e Most Overhead

e [argest Reduction in
Parallelism

e Probe-based instrumentation of
threading API’s




Using Thread Profiler
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Using Thread Profiler
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Intel Trace Analyzer and Collector

Collects MPI trace

Correctness checking of usage

Analysis for optimization

Probe-based to instrument MPI calls
o JIT-based for precise call stacks




Intel Trace Analyzer and Collector
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Cooperation

* Pin use of external components:
— Cannot use GPL libraries, but LGPL OK
— Symtab
— Unwind
— Code and CFG discovery (e.g. bloop)
— Thread safe instrumentation tool runtime (libc)
— No dependencies on system
e [Intel contributions:
— Pin is binary-only distribution
— Difficult to provide binaries for non Intel ISA
— XED IA32, Intel 64, AMD64 encoder/decoder/disassembler
— Open source components? E.g. injector




XED
encoder/decoder/disassembler

e Used in projects other than Pin
e Includes all public ISA extensions

e Correct
— Only decode what really is an instruction
— Get all the operands correct
— read/write/conditional, size, register type, ...
— Only encode well formed encode requests

e Fast, Small
 Thread safe
 Distributed as library in pin kit with manual

intel)




University Relations

e Close interaction with:
— Harvard
- MIT
— U Colorado Boulder
— U Virginia
e Internships

— Self contained projects
— Reliability, persistence

— Adds support in pin for projects continued at university
— Checkpoint/restart to support simulation

intel)




Summary

e Some instrumentation tools need full control and
ability to instrument every instruction

— JIT-based instrumentation

e Other tools need low overhead
— Native execution with probes

* Both styles of instrumentation share functionality




