Dynamic Instrumentation with
Pin

Robert Cohn
Intel

Pin

Fine-grained dynamic instrumentation of user mode programs
Instrumentation

— Inserting extra code to observe/change program

— Profilers, trace collectors, ...

Dynamic

— Done at run-time, no special compilation or linking

— Adapt instrumentation during execution

Fine-grained

— Observe the execution of every instruction

— Request instrumentation before or after any instruction execution
Transparent

— Instrumentation observes original program

#include <stdio.h>
#include "pin.H"

Instruction Trace
FILE * trace;

VOID tracelnst(VOID *ip) {
fprintf(trace, "%p\n", ip);
¥

VOID Instruction(INS ins, VOID *v) {

INS_InsertCall(ins, IPOINT_BEFORE, (AFUNPTR)tracelnst, IARG_INST_PTR,
IARG. END);

g

int main(int argc, char * argv[]) {
trace = fopen("itrace.out", "w");
PIN_Init(argc, argv);
INS_AddInstrumentFunction(Instruction, 0);
PIN_StartProgram();

return O;

Example: Malloc Trace

VOID Image (IMG img, VOID *v) {
RTN mallocRtn = RTN FindByName (img, "malloc") ;

if (RTN Valid(mallocRtn))

{

RTN Open (mallocRtn); // fetch insts in mallocRtn

RTN InsertCall (mallocRtn, IPOINT BEFORE,

(AFUNPTR) ArglBefore,
IARG FUNCARG ENTRYPOINT VALUE, 0, IARG END)

RTN InsertCall (mallocRtn, IPOINT AFTER,

(AFUNPTR)MallocAfter,
IARG FUNCRET EXITPOINT VALUE, IARG END) ;

RTN Close (mallocRtn) ;

el)

‘_/

Instrumentation Philosophy

e Tools view instruction list of application instructions
e Users only insert function calls
* No general code modification ability for tools

e Try to close gap by inlining and optimization of
Instrumentation

e Still @ gap in altering control flow

Just-in-time Instrumentation

Original
code

Compiler

Just-in-time Instrumentation

Original

Code

cache - @\

1

Compiler

JIT-based Instrumentation Features

« Handles mixed code and data, variable alignment,
variable size instructions with 100% accuracy

 Maintains control at all times, change/observe
anything

 Only Instrument executed code

— Database server code is 60Meg + shared libraries
 No special handling for shared libraries
« Handles dynamically generated code

* No dependence on compiler or binary format

— applies to instrumentation engine, but tools may need to
access symbol information

* Trace based optimization of instrumentation

JIT Based Instrumentation
Drawbacks

e Time overhead 0% - 300%

» Hardware counters may not be give useful
information

Probe-based instrumentation

Overwrite original program with probe (branch) to reach
dyninst-style trampolines

Mostly execute original program, enter instrumentation via
probes

Subset of API
— Started with very general capability

— Replaced with straight jacket - wrap function calls to observe or
alter behavior

Near zero overhead and perturbation
Relevant timing, hardware counter data

Weak code and CFG discovery

— Sufficient for tools that watch API usage
— MPI trace analysis
— Memory allocation errors

Shares compiler & injector with JIT based instrumentation

Details

e« [A32, Intel 64, IA64
e Linux, Windows, MacOs

e No charge
— But not open source

e BSD-like license
— No restrictions on use or redistribution
— Instrumentation vm distributed as binary
— Sample tools are open source

* Download it at
— 600 downloads/month

Pin Users

e Microprocessor development
— Fast & easy to extend emulator

o Intel Software Quality and Performance Analysis
Products

— Emphasis on parallelism

e [SV

— Software quality & performance tools

e University
— research & education

Microprocessor Development

Model performance of hardware that does not
exist

Instrumentation based tools are fast and easy to
develop

r=CMPSIim — memory system performance modeling
E@EMX - instruction emulation
E@PinPoints, PinPlay — workload capture

CMP$im Features

—Use Pin to instrument all loads and store
— Fast Memory Characterization: % %

— Single/multi-threaded workloads
— 4-25 MIPS (100x-800x slow) ore ore 1}Core ore

—Memory System Configurations:
— Model private/shared caches
— Model single/hyper-threaded cores
— Model inclusive or non-inclusive caches
. 4-threaded, 4-core, CMP
— Statistics: Multi-Level Cache Sharing:
— Detailed instruction/cache statistics 4-threads per FLC

: . 8-threads per MLC
— View phase behavior of workloads 16-threadspper LLC

Sharing Phase Dependent & f (cache size)
4 MB LLC 16 MB LLC 64 MB LLC

How Much Shared?
AHdINTS (e)

100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800
Instructions (billions) Instructions (billions) Instructions (billions)

~/ ~/ ~/
I J J
S S S
3 & 3

o
o
()
—
©
L
n
L
(8)
-
=
3
@)
L

10 20 30 4 10 20 30

10 20 30 40 _ 30 . 0
Instructions (billions) Instructions (billions)

Instructions (billions)

4 Threaded Run: 2 Thread

EMX - Instruction Emulation

e Architectural evaluation requires extensions to
existing instruction sets

— Debug compiler & libraries
— Performance evaluation

« EMX pintool

— Instrumentation replaces new instructions with emulation
functions

— Near native speed for everything else

— Can use instrumentation to study programs that use
extensions

intel)

Software Quality & Performance
Analysis

Observe
Pin instruments loads and stores, control flow

Analyze data

Present information
Pin provides symbol/debug info

Many tools use both probe-based instrumentation for
speed and JIT-based instrumentation for detailed
analysis

intel)

Intel® VTune™ Performance Analyzer

e Call graph
e Other profilers

Vtune™ Call Graph Profile

Module (88) /
prime_serial.exe
prime_serial.exe
prime_setrial.exe
prime_serial.exe
prime_serial.exe
prime_serial.exe
prime_setrial.exe
prime_serial.exe
prime_serial.exe
prime_serial.exe
prime_setrial.exe

| Thread (88)

Thread_0(B20)
Thread_0(B20)
Thread_0(B20)
Thread_0{B20)
Thread_0(B20)
Thread_0(B20)
Thread_0(B20)
Thread_0(B20)
Thread_0(B20)
Thread_0(B20)
Thread_0(B20)

B rainRTSta.. | 24

| Function (88)

clock
exit
free

mainCRTStartup
malloc
memmaove
memset

printf

strcpy

sttlen

main

_satenwp

8 _setargu

_ cGetEn.

o _heap_init

| % in function ... Calls (88) | Self Time (88) | Total Time (.| Self Wait Ti

- |58

4.3%

100.0%

0.0%
100.0%
100.0%

| _intel proc...
S clock
8 kmpc_begin

- | GetFileType

10,763,282

0

46

0

10,763 578
10,763 861

Intel® Thread Checker

e Detects threading bugs
e Data Races
o Deadlocks

e [nstruments loads, stores, threading API

Intel® Thread Checker

w4 VTune(TM) Performance Environment - [Thread Checker - Activ 3:17 PM, 2005 Feb 13 (TC: primes.exe)]

Hﬂe Edit View Activity Configure Window Help

1st Access[Source Ling] Short Description 2nd Access[Source Line]

"2_openmp.cpp":14 Write -> Write data-race "2_openmp.cpp":14
"2_openmp.cpp":14 Read -> Write data-race "2_openmp.cpp":14

Aewwns aiydels B

"2_openmp.cpp"5 Thread termination "2_openmp.cpp":5

1stAccess |~ |Stack: |main "2_openmp.cpp":14

RERR(LL LY |55

Source

long factor = 3;
while (number % factor) factor += 2;
if (factor == number)
primes[number of primes++] = number;
}

printf("Found %d primes\n", number of primes);
|

] 2nd Access |v |Stack: |main "2_openmp.cpp":14
REER(J% (297 (55|

Source

long factor = 3;
while (number % factor) factor += 2;
if (factor == number)
primes[number of primes++] = number;
}
printf("Found %d primes\n", number of primes);
<|‘

Source View I Stack Traces I

For Help, press F1

How Does Thread Checker Work?

Thread 1 Thread 2

O
O

O

Lock(L);

n_of pt++

Unlock(L); Lock(L):

@)
: n of pt+;

Unlock(L); intel‘)

How Does Thread Checker Work?

Use binary instrumentation

RIS Thread 1 Thread 2

O
O

© record lock(L)
LOCk(Le)éord read(n_of_p)

record write(n_of_p)
n_of p++
record unlock(L)

Ularelk (L); record lock(L)

Lock(L);
record read(n_of_p)

. record write(n_of_p)
: n of p++;

record unlock(L)

Unlock(L); (intel”

How Does Thread Checker Work?

Thread 1 Thread 2

O
O

O

Lock(L); .

n_of p++
- Analysis reveals that “happens
\ pp

Unlock(L);befL> . So, no data race problem.

O
O
O

Lock(L);

n of p++

Analysis based on [Lamport 1978] Wiilkye UL)E (intel)‘

How Does Thread Checker Work?

Thread 1 Thread 2

O
O
@)

@)
®)
O)

O
O
O

With no locks, neither segment “happens before”

the other. So there is a data race! (intel)

Intel® Thread Profiler

 Find Contended Locks

e Most Overhead

e [argest Reduction in
Parallelism

e Probe-based instrumentation of
threading API’s

Using Thread Profiler

Profile Filter::, Grouping: 1) Concurrency Level (]
=% OftE Bl wWekiE 0 Q@

v Thread State +
O
. %
o ™ =

[v Critical Path Data
[v Concurrency
[~ Behavior
exampleb.exe - No Thread Active

Activity: 1 |:] Serial
- Under Utilized
] lized

=i
[

Timeline |i|

= % Py & AR @

1 ,8|455 1 .84?555 1 .8I456 1 .84}585 J lv Thread State =+

- - — = — et e s ' B ictive
. : % Spin
y ’ ! W ait
__kmp_launch_wao... I Pause/lgnore
__kmp_launch_wo... [Critical Path Data
__kmp_launch_wo... v Concurrency
[~ Behavior

we= No Thread Active

' Serial
| |nder | Hized

__kmp_launch_mo...

2F
s
4:
5E

4

Profile View | Summary 1

Using Thread Profiler

Profile Filter::] Grouping: 1) Concurrency Level (]
= % OFE4 k[ook O R @

v Thread State + |

.
V

Iv Critical Path Data
|v Concurrency
[~ Behavior
exampleS.exe - No Thread Active

Activity: 1 |:| Seial
- Under Utilized
1 ilize

Timeline (]
9% v AR AR o

4.;58 4.I59 4i8 4'|81 4.l82 4.!33 4.|84 465 | ! d : : |v Thread State 4

1 — —— B ictive
i i i %% spin

Wait
- Pause/lgnore
__kmp_launch_wa... [v Critical Path Data —
__kmp_launch_wo... [Concurrency

I~ Behavior
== Na Thread Active

__kmp_launch_mo...

2
5:__kmp_launch_wo...
3:
4:

= Serial

‘ s |l | tlized)
Profile View | Summary 1

Intel Trace Analyzer and Collector

Collects MPI trace

Correctness checking of usage

Analysis for optimization

Probe-based to instrument MPI calls
o JIT-based for precise call stacks

Intel Trace Analyzer and Collector

N Intel® Trace Analyzer - [1: G/mario/ita/traces/comb/combustion.stf]
fle Style Windows Heb

View Charts Navigate Advanced Layout

33.0 s 33.4 =

MPL/MP1 AMFAOMP! AMPL AV, M. V.M, WV ANFMPY AOMEMP AMEM /NN NN NAPL MV RV AP
DR Y O O RV AR A O W A VAT AT RTRVEY I A VATAR LT LY
0 A 2 App A Appica AAppic Au A A A A A Aopi VP hopkoatin'hPon kit e NTA Aclf RIS RAe A 1 # tApphcation
N ST, O PR D AR B H RE e

Aat Profle | Load Balance | Cal Tree Flat Profle | Load Balance | Call Tree | Call Gragh |
l Group Al_Processes l] [Children of Group Al_Processes _:l

Name | Tsef | Tse¥ [TTotal

Group MPI

75.82 %
1612 %
1289 %
=1~ Group Applcation
Process 0
Process 1
Procass 2

Process 3

Cooperation

* Pin use of external components:
— Cannot use GPL libraries, but LGPL OK
— Symtab
— Unwind
— Code and CFG discovery (e.g. bloop)
— Thread safe instrumentation tool runtime (libc)
— No dependencies on system
e [Intel contributions:
— Pin is binary-only distribution
— Difficult to provide binaries for non Intel ISA
— XED IA32, Intel 64, AMD64 encoder/decoder/disassembler
— Open source components? E.g. injector

XED
encoder/decoder/disassembler

e Used in projects other than Pin
e Includes all public ISA extensions

e Correct
— Only decode what really is an instruction
— Get all the operands correct
— read/write/conditional, size, register type, ...
— Only encode well formed encode requests

e Fast, Small
 Thread safe
 Distributed as library in pin kit with manual

intel)

University Relations

e Close interaction with:
— Harvard
- MIT
— U Colorado Boulder
— U Virginia
e Internships

— Self contained projects
— Reliability, persistence

— Adds support in pin for projects continued at university
— Checkpoint/restart to support simulation

intel)

Summary

e Some instrumentation tools need full control and
ability to instrument every instruction

— JIT-based instrumentation

e Other tools need low overhead
— Native execution with probes

* Both styles of instrumentation share functionality

