
Dynamic Instrumentation withDynamic Instrumentation with
PinPin

Robert CohnRobert Cohn

IntelIntel

PinPin

 Fine-grained dynamic instrumentation of user mode programsFine-grained dynamic instrumentation of user mode programs

 InstrumentationInstrumentation
–– Inserting extra code to observe/change programInserting extra code to observe/change program

–– Profilers, trace collectors, Profilers, trace collectors, ……

 DynamicDynamic
–– Done at run-time, no special compilation or linkingDone at run-time, no special compilation or linking

–– Adapt instrumentation during executionAdapt instrumentation during execution

 Fine-grainedFine-grained
–– Observe the execution of every instructionObserve the execution of every instruction

–– Request instrumentation before or after any instruction executionRequest instrumentation before or after any instruction execution

 TransparentTransparent
–– Instrumentation observes original programInstrumentation observes original program

#include <#include <stdio.hstdio.h>>
#include "#include "pin.Hpin.H""

FILE * trace;FILE * trace;

VOID VOID traceInst(VOIDtraceInst(VOID * *ipip) {) {
 fprintf(tracefprintf(trace, "%, "%p\np\n", ", ipip););
}}

VOID VOID Instruction(INSInstruction(INS ins, VOID *v) { ins, VOID *v) {
 INS_InsertCall(insINS_InsertCall(ins, IPOINT_BEFORE, (, IPOINT_BEFORE, (AFUNPTR)traceInstAFUNPTR)traceInst, IARG_INST_PTR,, IARG_INST_PTR,

IARG_END);IARG_END);
}}

intint main(intmain(int argcargc, char * , char * argvargv[]) {[]) {
 trace = trace = fopen("itrace.outfopen("itrace.out", "w");", "w");
 PIN_Init(argcPIN_Init(argc, , argvargv););
 INS_AddInstrumentFunction(InstructionINS_AddInstrumentFunction(Instruction, 0);, 0);
 PIN_StartProgramPIN_StartProgram();();
 return 0; return 0;
}}

Instruction Trace

Example: Example: MallocMalloc Trace Trace

VOID VOID Image(IMGImage(IMG imgimg, VOID *v) {, VOID *v) {
 RTN RTN mallocRtnmallocRtn = = RTN_FindByName(imgRTN_FindByName(img, ", "mallocmalloc");");

 if (if (RTN_Valid(mallocRtnRTN_Valid(mallocRtn))))
 { {
 RTN_Open(mallocRtnRTN_Open(mallocRtn); // fetch); // fetch instsinsts in in mallocRtnmallocRtn

 RTN_InsertCall(mallocRtnRTN_InsertCall(mallocRtn, IPOINT_BEFORE,, IPOINT_BEFORE,
 (AFUNPTR)Arg1Before, (AFUNPTR)Arg1Before,

IARG_FUNCARG_ENTRYPOINT_VALUE, 0, IARG_END);IARG_FUNCARG_ENTRYPOINT_VALUE, 0, IARG_END);

 RTN_InsertCall(mallocRtnRTN_InsertCall(mallocRtn, IPOINT_AFTER,, IPOINT_AFTER,
 ((AFUNPTR)MallocAfterAFUNPTR)MallocAfter, ,

IARG_FUNCRET_EXITPOINT_VALUE, IARG_END);IARG_FUNCRET_EXITPOINT_VALUE, IARG_END);

 RTN_Close(mallocRtnRTN_Close(mallocRtn););
 } }
}}

SimpleExamples/malloctrace.C

before malloc’s entry

before malloc’s return

1st argument to malloc
(#bytes wanted)

1st return value (address
allocated)

Instrumentation PhilosophyInstrumentation Philosophy

 Tools view instruction list of application instructionsTools view instruction list of application instructions

 Users only insert function callsUsers only insert function calls

 No general code modification ability for toolsNo general code modification ability for tools

 Try to close gap by Try to close gap by inlininginlining and optimization of and optimization of
instrumentationinstrumentation

 Still a gap in altering control flowStill a gap in altering control flow

Just-in-time InstrumentationJust-in-time Instrumentation

2 3

1

7

4 5

6
7’

2’

1’

Compiler

Original
code

Code
cache

Pin tool inserts instrumentation when putting
code in cache

Just-in-time InstrumentationJust-in-time Instrumentation

2 3

1

7

4 5

6
7’

2’

1’

Compiler

Original
code

Code
cache

3’

5’

6’

JIT-based Instrumentation FeaturesJIT-based Instrumentation Features

 Handles mixed code and data, variable alignment,Handles mixed code and data, variable alignment,
variable size instructions with 100% accuracyvariable size instructions with 100% accuracy

 Maintains control at all times, change/observeMaintains control at all times, change/observe
anythinganything

 Only instrument executed codeOnly instrument executed code
–– Database server code is 60Meg + shared librariesDatabase server code is 60Meg + shared libraries

 No special handling for shared librariesNo special handling for shared libraries
 Handles dynamically generated codeHandles dynamically generated code
 No dependence on compiler or binary formatNo dependence on compiler or binary format

–– applies to instrumentation engine, but tools may need toapplies to instrumentation engine, but tools may need to
access symbol informationaccess symbol information

 Trace based optimization of instrumentationTrace based optimization of instrumentation

JIT Based InstrumentationJIT Based Instrumentation
DrawbacksDrawbacks

 Time overhead 0% - 300%Time overhead 0% - 300%

 Hardware counters may not be give usefulHardware counters may not be give useful
informationinformation

Probe-based instrumentationProbe-based instrumentation

 Overwrite original program with probe (branch) to reachOverwrite original program with probe (branch) to reach
dyninstdyninst-style trampolines-style trampolines

 Mostly execute original program, enter instrumentation viaMostly execute original program, enter instrumentation via
probesprobes

 Subset of APISubset of API
–– Started with very general capabilityStarted with very general capability
–– Replaced with straight jacket - wrap function calls to observe orReplaced with straight jacket - wrap function calls to observe or

alter behavioralter behavior
 Near zero overhead and perturbationNear zero overhead and perturbation
 Relevant timing, hardware counter dataRelevant timing, hardware counter data
 Weak code and CFG discoveryWeak code and CFG discovery

–– Sufficient for tools that watch API usageSufficient for tools that watch API usage
–– MPI trace analysisMPI trace analysis
–– Memory allocation errorsMemory allocation errors

 Shares compiler & injector with JIT based instrumentationShares compiler & injector with JIT based instrumentation

DetailsDetails

 IA32, Intel 64, IA64IA32, Intel 64, IA64

 Linux, Windows, Linux, Windows, MacOsMacOs

 No chargeNo charge
–– But not open sourceBut not open source

 BSD-like licenseBSD-like license
–– no restrictions on use or redistributionno restrictions on use or redistribution

–– Instrumentation Instrumentation vmvm distributed as binary distributed as binary

–– Sample tools are open sourceSample tools are open source

 Download it at Download it at http://rogue.colorado.edu/Pin
–– 600 downloads/month600 downloads/month

Pin UsersPin Users

 Microprocessor developmentMicroprocessor development
–– Fast & easy to extend emulatorFast & easy to extend emulator

 Intel Software Quality and Performance AnalysisIntel Software Quality and Performance Analysis
ProductsProducts
–– Emphasis on parallelismEmphasis on parallelism

 ISVISV
–– Software quality & performance toolsSoftware quality & performance tools

 UniversityUniversity
–– research & educationresearch & education

Microprocessor DevelopmentMicroprocessor Development

 Model performance of hardware that does notModel performance of hardware that does not
existexist

 Instrumentation based tools are fast and easy toInstrumentation based tools are fast and easy to
developdevelop

CMP$imCMP$im –– memory system performance modeling memory system performance modeling

EMX EMX –– instruction emulation instruction emulation

PinPointsPinPoints, , PinPlayPinPlay –– workload capture workload capture

4-threaded, 4-core, CMP
Multi-Level Cache Sharing:

4-threads per FLC
8-threads per MLC
16-threads per LLC

CMP$imCMP$im Features Features

LLC (Cores 0,1,2,3)

MLC (Cores 0,1) MLC (Cores 2,3)

Core 1 Core 2 Core 3Core 0
FLC FLC FLCFLC

––Use Pin to instrument all loads and storeUse Pin to instrument all loads and store
––Fast Memory Characterization:Fast Memory Characterization:

–– Single/multi-threaded workloadsSingle/multi-threaded workloads
–– 4-25 MIPS (100x-800x slow)4-25 MIPS (100x-800x slow)

––Memory System Configurations:Memory System Configurations:
–– Model private/shared cachesModel private/shared caches
–– Model single/hyper-threaded coresModel single/hyper-threaded cores
–– Model inclusive or non-inclusive cachesModel inclusive or non-inclusive caches

––Statistics:Statistics:
–– Detailed instruction/cache statisticsDetailed instruction/cache statistics
–– View phase behavior of workloadsView phase behavior of workloads

Sharing Phase Dependent & Sharing Phase Dependent & ff (cache size) (cache size)

1 Thread 2 Thread 3 Thread 4 Thread

H
ow

 M
uc

h
Sh

ar
ed

?
H

ow
 M

uc
h

Sh
ar

ed
?

4 MB LLC 16 MB LLC 64 MB LLC (a) SEM
PH

Y
(b) SVM

SE
Q

U
EN

TI
AL

SE
Q

U
EN

TI
AL

SE
Q

U
EN

TI
AL

4 Threaded Run:

EMX - Instruction EmulationEMX - Instruction Emulation

 Architectural evaluation requires extensions toArchitectural evaluation requires extensions to
existing instruction setsexisting instruction sets
–– Debug compiler & librariesDebug compiler & libraries

–– Performance evaluationPerformance evaluation

 EMX EMX pintoolpintool
–– Instrumentation replaces new instructions with emulationInstrumentation replaces new instructions with emulation

functionsfunctions

–– Near native speed for everything elseNear native speed for everything else

–– Can use instrumentation to study programs that useCan use instrumentation to study programs that use
extensionsextensions

Software Quality & PerformanceSoftware Quality & Performance
AnalysisAnalysis

ObserveObserve
Pin instruments loads and stores, control flowPin instruments loads and stores, control flow

Analyze dataAnalyze data

Present informationPresent information
Pin provides symbol/debug infoPin provides symbol/debug info

Many tools use both probe-based instrumentation forMany tools use both probe-based instrumentation for
speed and JIT-based instrumentation for detailedspeed and JIT-based instrumentation for detailed
analysisanalysis

Intel® Intel® VTuneVTune™™ Performance Analyzer Performance Analyzer

 Call graphCall graph

 Other profilersOther profilers

VtuneVtune™™ Call Graph Profile Call Graph Profile

Intel® Thread CheckerIntel® Thread Checker

 Detects threading bugsDetects threading bugs
•• Data Races Data Races

•• Deadlocks Deadlocks

•• Instruments loads, stores, threading APIInstruments loads, stores, threading API

IntelIntel®® Thread Checker Thread Checker

How Does Thread Checker Work?How Does Thread Checker Work?

Thread 1

 n_of_p++

Lock(L);

Unlock(L);

Thread 2

n_of_p++;

Lock(L);

Unlock(L);

Time

How Does Thread Checker Work?How Does Thread Checker Work?

Thread 1

n_of_p++

Lock(L);

Unlock(L);

Thread 2

n_of_p++;

Lock(L);

Unlock(L);

record read(n_of_p)

record lock(L)

record unlock(L)
record lock(L)

record unlock(L)

Use binary instrumentation

record write(n_of_p)

record read(n_of_p)
record write(n_of_p)

Time

How Does Thread Checker Work?How Does Thread Checker Work?

Thread 1

n_of_p++

Lock(L);

Unlock(L);

Thread 2

n_of_p++

Lock(L);

Unlock(L);

Analysis reveals that segment 1 “happens
before” segment 2. So, no data race problem.

Segment 1

Segment 2

Analysis based on [Lamport 1978]

Time

How Does Thread Checker Work?How Does Thread Checker Work?

Thread 1

n_of_p++

Thread 2

n_of_p++

Segment 1 Segment 2

With no locks, neither segment “happens before”
the other. So there is a data race!

Time

Intel® Thread ProfilerIntel® Thread Profiler

 Find Contended LocksFind Contended Locks
•• Most Overhead Most Overhead

•• Largest Reduction in Largest Reduction in
 Parallelism Parallelism

•• Probe-based instrumentation ofProbe-based instrumentation of
threading APIthreading API’’ss

Using Thread ProfilerUsing Thread Profiler

Using Thread ProfilerUsing Thread Profiler

Intel Trace Analyzer and CollectorIntel Trace Analyzer and Collector

 Collects MPI traceCollects MPI trace
 Correctness checking of usageCorrectness checking of usage
 Analysis for optimizationAnalysis for optimization
 Probe-based to instrument MPI callsProbe-based to instrument MPI calls
 JIT-based for precise call stacksJIT-based for precise call stacks

Intel Trace Analyzer and CollectorIntel Trace Analyzer and Collector

CooperationCooperation

 Pin use of external components:Pin use of external components:
–– Cannot use GPL libraries, but LGPL OKCannot use GPL libraries, but LGPL OK
–– SymtabSymtab
–– UnwindUnwind
–– Code and CFG discovery (e.g. Code and CFG discovery (e.g. bloopbloop))
–– Thread safe instrumentation tool runtime (Thread safe instrumentation tool runtime (libclibc))

–– No dependencies on systemNo dependencies on system

 Intel contributions:Intel contributions:
–– Pin is binary-only distributionPin is binary-only distribution
–– Difficult to provide binaries for non Intel ISADifficult to provide binaries for non Intel ISA
–– XED IA32, Intel 64, AMD64 encoder/decoder/XED IA32, Intel 64, AMD64 encoder/decoder/disassembler
– Open source components? E.g. injector

XEDXED
encoder/decoder/encoder/decoder/disassemblerdisassembler

 Used in projects other than Pin
 Includes all public ISA extensions
 Correct

– Only decode what really is an instruction
– Get all the operands correct
– read/write/conditional, size, register type, ...
– Only encode well formed encode requests

 Fast, Small
 Thread safe
 Distributed as library in pin kit with manual

University RelationsUniversity Relations

 Close interaction with:Close interaction with:
–– HarvardHarvard

–– MITMIT

–– U Colorado BoulderU Colorado Boulder

–– U VirginiaU Virginia

 InternshipsInternships
–– Self contained projectsSelf contained projects

–– Reliability, persistenceReliability, persistence

–– Adds support in pin for projects continued at universityAdds support in pin for projects continued at university
–– Checkpoint/restart to support simulationCheckpoint/restart to support simulation

SummarySummary

 Some instrumentation tools need full control andSome instrumentation tools need full control and
ability to instrument every instructionability to instrument every instruction
–– JIT-based instrumentationJIT-based instrumentation

 Other tools need low overheadOther tools need low overhead
–– Native execution with probesNative execution with probes

 Both styles of instrumentation share functionalityBoth styles of instrumentation share functionality

